main-group elements (bi) in catalysis for organic synthesis · 18/03/2020  · the application of...

51
Main-group Elements (Bi) in Catalysis for Organic Synthesis Xiaheng Zhang MacMillan Group Meeting March 18 th ."2020 X R L X R L

Upload: others

Post on 20-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Main-group Elements (Bi) in Catalysis for Organic Synthesis

    Xiaheng ZhangMacMillan Group Meeting

    March 18th 2020

    XR

    LX

    R

    L

  • Mechanisms of Activation Mode for Main-group Elements

    ■ Activation mode of transition metal elements

    XR

    LX

    R

    L

    M

    ! donation into empty d-orbital

    M

    " donation from d-orbital into "∗-orbital

    ! donation into empty p-orbital " donation from p-orbital into "∗-orbital

    ■ Activation mode of main-group elements

  • Activation of Small Molecules by Main-group Elements

    Frustrated Lewis pairs activation

    Stephan, D. W. et al. Science 2006, 314, 1124.

    Activation of H2 by carbenes

    iPr2N

    Mes2P B

    F4

    H2 25 oC

    > 100 oCMes2P B

    F4

    H H

    Stephan, D. W. et al. Science 2016, 354, aaf7229.

    Me

    MeMe H2 35

    oCiPr2N

    Me

    MeMe

    Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.

    H H

  • Catalysis Enabled by Main-group Elements

    Frustrated Lewis pairs catalyzed hydrogenation

    Chernichenko,K.;Madaraśz,A.;Paṕai,I.;Nieger,M.;Leskela,̈ M.;Repo,T. Nat. Chem. 2013, 5, 718.

    FLP catalyzed C-H activation

    H2 FLP (5 mol%)

    Leǵare,́M.-A.;Courtemanche,M.-A.;Rochette,É.;Fontaine,F.-G. Science 2015, 349, 513.

    BuPh

    Bu

    Ph

    H

    H

    N

    B(C6F5)2

    Me

    Me

    FLP (Cat.)

    N

    Me

    HN

    Me

    BpinH-Bpin FLP (2.5 mol%)N

    BH2

    R

    R

    FLP (Cat.)

  • Catalysis Enabled by Main-group Elements

    C-H silylation catalyzed by alkali metal catalyst

    Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.

    Imine hydrogenation catalyzed by alkaline earth metal catalyst

    KOt-Bu (20 mol%)

    Harder, S. et. al. Nat. Catal. 2018, 1, 40.

    H2 Ca (10 mol%)

    N

    Me

    H

    Et3SiHN

    Me

    SiEt3

    MeMe

    NMe

    MeMe

    NMe

    H

    H

  • Main-group Elements (Bi) in Catalysis for Organic Synthesis

    ■ The facts of bismuth

    ■ Synthesis of organobismuthines

    ■ The application of organobismuthines in organic synthesis

    ■ Redox chemistry of bismuth

    Outline

  • Why do people care about bismuth catalysis

    Bi

    Peptobismol OTC

    stomach disorders

    ■ naturally abundant

    ■ ‘green element’ even less toxic than NaCl■ widely used in industry, antibiotics, radiopaque bone cements, polymers

    electron configuration: 4f145d106s26p3

    common oxidation state: +1, +3, +5

    Can we discover new reactivity that is unique to bismuth catalysis?

  • Main-group Elements (Bi) in Catalysis for Organic Synthesis

    ■ The facts of bismuth

    ■ Synthesis of organobismuthines

    ■ The application of organobismuthines in organic synthesis

    ■ Redox chemistry of bismuth

    Outline

  • Synthesis of organobismuthines

    ■ Synthesis of trivalent organobismuthines

    BiCl3ArMgBr, ArLi or ArBr, CoBr2, Zn

    BiAr3

    BiCl3 (0.5 eq)BiAr2Cl

    BiCl3 (2.0 eq)BiArCl2

    ■ Synthesis of highly functionalized trivalent organobismuthines

    Gagnon, A. et. al. J. Org. Chem. 2016, 81, 5401.

    Bi

    OH

    3

    NaBH4 Bi

    OH

    3

    97% yield

    BrCH2CO2EtPPh3Bi 3

    CO2Et

    80% yield

    Bi3

    Me

    99% yield

    HO

    MeMgBr Bi 3

    82% yield

    Ph3PCH3It-BuOK

  • Synthesis of organobismuthines

    ■ Synthesis of pentavalent organobismuthines

    Michaelis, A. Ber. Dtsch. Chem. Ges. 1887, 20, 52.Barton, D. H. R.; Finet, J.-P. Pure Appl. Chem. 1987, 59, 937.

    Bi3

    Br2

    Cl2 or PhICl2

    Bi3

    Cl

    Cl

    NaF or AgFBi

    3

    F

    F

    K2CO3O3CBi3

    RCO2H, H2O2Bi

    ROCO

    ROCO 5Bi

    3

    Br

    Br

  • Main-group Elements (Bi) in Catalysis for Organic Synthesis

    ■ The facts of bismuth

    ■ Synthesis of organobismuthines

    ■ The application of organobismuthines in organic synthesis

    ■ Redox chemistry of bismuth

    Outline

  • Organobismuth as arylation reagents

    ■ The first arylation reaction using organobismuthines

    75% yield

    N

    MeO

    HO NPh3BiCO3

    DCMN

    MeO

    ON

    N

    MeO

    ON

    Ph

    Barton, D. H. R.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B. J. Chem. Soc., Chem. Commun. 1980, 246.

    ■ The first C-arylation of phenols organobismuthines

    OH Ph3BiCO3

    TMG

    OH

    Ph

    76% yield

  • Organobismuth as arylation reagents

    ■ O-arylation and C-arylation controlled by condition

    90% yield 90% yield

    91% yield 57% yield

    Me

    Me

    O

    Me

    BiPh3X

    Me

    Me

    O

    Me

    Ph

    Me

    Me

    O

    MePh

    Ph4BiO2CCF3

    TMG

    basic conditions

    Ph4BiO2CCF3

    Cl3CCO2H

    acidic or neutral conditions

    OH

    PhOPh

    O

    PhCO2Et

    OPh

    CO2Et

    Me

    Me

    OPhMe

    Me

    OPh

    72% yield 58% yield

    Barton, D. H. R. et. al. J. Chem. Soc., Chem. Commun. 1980, 827. Barton, D. H. R. et. al. J. Chem. Soc., Chem. Commun. 1981, 503.

  • Organobismuth as arylation reagents

    ■ O-arylation of alcohols, diols, aminoalcohols

    73% yield

    Me

    MeOH Ph4BiO2CCF3 or Ph3Bi(OAc)2

    DCM or toluene

    David, S.; Thieffry, A. J. Org. Chem. 1983, 48, 441. Barton, D. H. R. et. al. J. Chem. Soc., Chem. Commun. 1986, 65.

    Me

    MeO

    Ph

    tBu

    OPh

    OH

    OPh

    OHMe

    88% yield

    PhHNOH

    51% yield

    HO OPhMe Me

    99% yield

    MeOOPh

    86% yield

    PhPh

    O

    OPh

    88% yield

    HOOPh

    80% yield

  • Organobismuth as arylation reagents

    ■ O-arylation of tertiary alcohols via Cu catalysis

    OH

    Me

    Me Ph3Bi(OAc)2, Cu(OAc)2, Cy2NMe, O2

    DCM or toluene

    Ikegai, K.; Fukumoto, K.; Mukaiyama, T. Chem. Lett. 2006, 35, 612. Mukaiyama, T.; Sakurai, N.; Ikegai, K. Chem. Lett. 2006, 35, 1140.

    89% yield

    EtO2C

    O

    Me

    Me

    EtO2CPh

    O

    Me

    Me

    EtO2CPh

    89% yield

    OMe

    EtO2CPh

    Ph

    94% yield

    O

    Me

    EtPh

    88% yield

    OPh

    BnN

    Ph

    87% yield

    O

    Me

    Me

    MePh

    50% yield

    O

    Me

    MePhTBSO

    O

    N

  • Organobismuth as arylation reagents

    ■ Cu catalyzed arylation of N, S-nucleophiles

    Nu

    Me

    Me Ph3Bi(OAc)2 or Ar3Bi, Cu(OAc)2, O2

    Gagnon, A. et. al. Synthesis 2017, 49, 1707.

    96% yield

    Nu

    Me

    MePh

    HN

    Ph

    80% yield 91% yield

    Me

    Me

    HN

    OBn

    Ph

    Ph

    O

    O NH

    HN

    O

    PhtBu

    N

    MeO2C

    Ph-pMe

    87% yield

    N

    N

    Ph

    87% yield

    N N

    N

    Ph

    60% yield

    N NN

    N

    Ph

    87% yield

    Ph

    S

    Ph

    84% yield

    MeO

  • Organobismuth as arylation reagents

    ■ Cu catalyzed arylation of N, S-nucleophiles

    Nu

    Me

    Me Ph3Bi(OAc)2 or Ar3Bi, Cu(OAc)2, O2

    Gagnon, A. et. al. Synthesis 2017, 49, 1707.

    96% yield

    Nu

    Me

    MePh

    HN

    Ph

    80% yield 91% yield

    Me

    Me

    HN

    OBn

    Ph

    Ph

    O

    O NH

    HN

    O

    PhtBu

    N

    MeO2C

    Ph-pMe

    87% yield

    N

    N

    Ph

    87% yield

    N N

    N

    Ph

    60% yield

    N NN

    N

    Ph

    87% yield

    Ph

    O

    NMe

    52% yield

    Me3Bi

  • Cross-coupling using organobismuth

    Pd

    Rh

    CO2EtPh3Bi

    CO2EtPh

    Pd

    Ph3BiN

    N Cl

    FGN

    N Ph

    FG

    Pd

    Ph3BiPO

    Ph

    EtOH P

    OPh

    EtOPh

    Pd

    c-Pr3BiN Cl

    CN

    N

    CN

    Gagnon, A.; Duplessis, M.; Alsabeh, P.; Barabé, F. J. Org. Chem. 2008, 73, 3604.

    Wang, T.; Sang, S.; Liu, L.; Qiao, H.; Gao, Y.; Zhao, Y. J. Org. Chem. 2014, 79, 608.Kawamura, T.; Kikukawa, K.; Takagi, M.; Matsuda, T. Bull. Chem. Soc. Jpn. 1977, 50, 2021.

    Gagnon, A. J. Org. Chem. 2016, 81, 5401.

    O

    Ph3Bi

    O

    Ph

    Li, C.-J. et. al J. Am. Chem. Soc. 2001, 123, 7451.

    OPh3BiCl2, PBu3

    OPh

    Krische, M. J. J. Am. Chem. Soc. 2004, 126, 5350.

    Bi redox chemistry is unclear with rare examples

  • Main-group Elements (Bi) in Catalysis for Organic Synthesis

    ■ The facts of bismuth

    ■ Synthesis of organobismuthines

    ■ The application of organobismuthines in organic synthesis

    ■ Redox chemistry of bismuth

    Outline

  • Bi(III)/Bi(V) redox activation

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi X B(OH)2 SO O

    Bi OH

    [O]OH

    ortho-Arylation of phenols via Bi(III)/Bi(V) redox activation

    OH

    HO

    iPr

    Me

    Liganasantibacterial, cyctotoxic

    OH

    CO2H

    NH

    N

    NN

    OAr

    Pharmaceuticalsaplastic anemia

    N

    N

    OH

    Cl

    Agrochemicalsherbicide

  • Bi(III)/Bi(V) redox activation

    ■ Current approaches for the preparation of 2-hydroxybiaryls

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    H

    OH

    R

    H

    O

    R

    H, X, Li

    PG, DG

    H, X, Li OR

    OH

    R

    2-hydroxybiaryls

    OBiPh3XPh4BiO2CCF3

    TMG

    basic conditions

    Ph4BiO2CCF3

    Cl3CCO2H

    acidic or neutral conditions

    OH

    Ph

    OPh

    ■ Barton’s pioneer discovery

    ■ O or C arylation is highly dependent on the nature of the organobismuth and reaction conditions■ multistep synthesis of arylbismuth reagents, transfer one of the aryl groups in the organobismuth■ lack of systematic studies of mechanism which impedes practical exploration of the method

  • Bi(III)/Bi(V) redox activation

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi X B(OH)2 SO O

    Bi OH

    [O]OH

    ortho-Arylation of phenols via Bi(III)/Bi(V) redox activation

    ■ one-pot boron-to-bismuth transmetallation ■ commercially available starting materials■ completely prevents the formation of O-arylated products■ operates under air in non-anhydrous conditions

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    ■ Reaction design

    SO O

    Bi X

    SO O

    Bi

    B(OH)2

    B-to-Bi transmetallation

    mCPBA

    Bi(III) to Bi(V) oxidationBi

    OOH

    SO

    O

    O

    Cl

    OH

    phenol deprotonation

    Bi

    OO

    SO

    O

    O

    Cl

    HO

    arylated product

    exocyclicaryl group

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi OTs SO O

    Bi

    B-to-Bi transmetallation

    B(OH)2

    (1.1 equiv.)

    K2CO3 (1.2 equiv.)

    PhMe/water (99/1), 60 oC, 2h

    SO O

    Bi F

    SO OLi Li

    SO OnBuLi

    ArBiBr2BiBr3 Ar3Bi

    ■ Transmetallation to universal bismacyclic precursor

    TsOH

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi OTs SO O

    Bi

    B(OH)2

    (1.1 equiv.)

    K2CO3 (1.2 equiv.)

    PhMe/water (99/1), 60 oC, 2h

    ■ Transmetallation to universal bismacyclic precursor

    >99% yield

    SO O

    Bi NMe2

    >99% yield

    SO O

    Bi CN

    >99% yield

    SO O

    Bi

    F3CO

    >99% yield

    SO O

    Bi

    Me

    Me

    Me

    >99% yield

    SO O

    Bi

    >99% yield

    SO

    BiNBoc

    >99% yield

    SO

    Bi

    >99% yield

    SO

    BiN

    O

    Me

    MeN

    OMe

    NH

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi OTs SO O

    Bi

    B(OH)2

    (1.1 equiv.)

    K2CO3 (1.2 equiv.)

    ■ One-pot, Bi(V)-mediated arylation of phenols and naphthols

    69% yield

    OH

    OH

    mCPBA, r.t., 10 min

    OH

    77% yield

    OHMeO

    OMe

    F

    59% yield

    OH

    F

    Br

    OH

    Me

    Me Me

    89% yield

    OH

    87% yield

    Br

    OH

    59% yield

    OHN

    93% yield

    p-F

    OH

    90% yield

    p-F

    HN

    N

    SMe

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi OTs SO O

    Bi

    B(OH)2

    (1.1 equiv.)

    K2CO3 (1.2 equiv.)

    ■ One-pot, Bi(V)-mediated arylation of phenols and naphthols

    OH

    OH

    mCPBA, r.t., 10 min

    +

    SO O

    Bi OmCBAcOH elution

    SO O

    Bi OAc

    B(OH)2

    96%

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi OTs SO O

    Bi

    B(OH)2

    (1.1 equiv.)

    K2CO3 (1.2 equiv.), 1h

    ■ Mechanistic studies for the reaction

    FF

    SO O

    Bi OH H2OS

    O OBi O

    S

    O

    O

    Bi

    >99%

    K2CO3,PhMe/water

    30 minr.t., 99%

    B(OH)2

    F

    isolated

    plausible pre-transmetallation intermediate

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    ■ Reaction design

    SO O

    Bi X

    SO O

    Bi

    B(OH)2

    B-to-Bi transmetallation

    mCPBA

    Bi(III) to Bi(V) oxidationBi

    OOH

    SO

    O

    O

    Cl

    OH

    phenol deprotonation

    Bi

    OO

    SO

    O

    O

    Cl

    HO

    arylated product

    exocyclicaryl group

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi

    ■ Mechanistic studies for the reaction

    F1) mCPBA, PhMe2) DBU

    Bi

    OO

    SO

    O

    Bi

    SO

    O

    F

    F

    (X-ray)

    Bi(V) dimer

    Bi(V) dimermCPBA

    Bi

    OmCBOH

    SO

    O

    mCPBA

    Bi

    OmCBOmCB

    SO

    O

    mCBA/Bi = 1.3 2NMR ratio

    HO

    F

    PhOHPhOH

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi

    ■ Mechanistic studies for the reaction

    F1) mCPBA, PhMe2) DBU

    Bi

    OO

    SO

    O

    Bi

    SO

    O

    F

    F

    (X-ray)

    Bi(V) dimer

    Bi(V) dimermCPBA

    Bi

    OmCBOH

    SO

    O

    mCPBA

    Bi

    OmCBOmCB

    SO

    O

    mCBA/Bi = 1.3 2NMR ratio

    HOPhOH

    Fk > 40 M-1S-1

    PhOH

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi

    ■ Mechanistic studies for the reaction

    F

    d0-PhOH (5.0 eq)d5-PhOH (5.0 eq)

    OH

    F

    mCPBA, PhMe, r.t.

    kH/kD = 1.03

    SO O

    Bi F

    OH

    F

    mCPBA, PhMe, r.t.

    kH/kD = 0.83

    OH

    D

    H

  • Bi(III)/Bi(V) redox activation for ortho-Arylation of phenols

    Jurrat, M.;Maggi, L.;Paṕai,I.;Lewis, W.;Ball, L. T. Nat. Chem. 2020, 12, 260.

    SO O

    Bi

    ■ Mechanistic studies for the reaction

    F

    Bi

    OmCBOH

    SO

    O

    Bi

    OmCBO

    SO

    O

    FF

    k > 40 M-1S-1k > 1.6 M-1S-1RDS

    PhOH

    -H2O

    OH

    F

    PhOH, mCPBA

    PhMe, r.t.

    mCPBA

  • What about Bi(III)/Bi(V) redox catalysis?

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Bpin F

    Bi

    SON

    F3C

    BF4

    Bi(III) (10 mol%)NaF (5.0 eq), CDCl3, 90 oC

    NCl Cl

    F

    BF4 (1.0 eq)

    90% yield

    F

    TMS

    71% yield

    F

    Ph

    77% yield

    F

    Me

    55% yield

    FMeO

    36% yield

    FCl

    84% yield

    FMe

    Me

    Br

    45% yield

    F

    Me

    F

    49% yield

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Proposed mechanism for Bi(III)/Bi(V) redox catalysis

    BY2F

    Bi

    SON

    F3C

    X

    C-F bond formation

    Bi

    SON

    F3C

    F-X

    OA

    Bi

    SON

    F3C

    PhF

    X

    RETM

    electrophile

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Proof of concept study

    Bi

    SOO

    Me

    XeF2 (1.0 eq)

    CHCl3, 0 oC

    >95% isolated

    Bi

    SO

    O

    Me

    F F

    FBi

    SOO

    Me

    F

    X-ray

    Bi

    SOO

    F

    Me

    F110 oCCDCl3

    45% yieldreductive elimination

    from Bi(V) center

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Ligand effect for the reductive elimination

    Bi

    SOO

    Me

    XeF2 (1.0 eq)

    F

    45% yield

    then 110 oC

    Bi

    SON

    F3C

    Bi

    SON

    Me

    XeF2 (1.0 eq)

    F

    28% yield

    then 110 oC

    XeF2 (1.0 eq)

    F

    94% yield

    then 110 oC

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Kinetic analysis of the reductive elimination

    Bi

    SON

    F3C

    XeF2 (1.0 eq) F 110 oCBi

    SON

    F3C

    F

    F

    R

    R

    R

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Mechanism study of the reductive elimination

    FBi

    SO

    NCF3

    F

    F slower decay in the presence of Bu4NF

    CD3Cl, 90 oC, 6hBi

    SON

    F3C

    F

    F

    C-F bond R.E.

    94% yield

    proposed cationic intermediates

    Bi

    SON

    F3C

    PhF

    FB F

    F F

    fast dissociation of labile BF4- ligand

    CD3Cl, 60 oC, 5min

    NMR, HRMS

    Bi

    SON

    F3C

    F

    BF4

    C-F bond R.E. F

    85% yield

    1.0 eq BF3·Et2OCH3Cl, -45 oC

    5 min>99% yield

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Fluoropyridinium as fluorinating reagent

    CD3Cl, 60 oC, 2hBi

    SON

    F3C

    F

    BF4

    F

    85% yield

    Bi

    SON

    F3C

    NCl Cl

    F

    BF4

    (1.2 eq)

    Bi

    SO

    NF3C

    F

    N ClCl BF4

    ligand exchange

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Transmetallation of arylborone to Bi

    Bi

    SON

    F3C

    BF4

    Bi

    SON

    F3C

    Ph-B, KF, MeCN, 90 oC

    B(OH)2

    95% yield

    Bpin

    67% yield

    B

    72% yield

    O

    O

    Me

    Me

    PhB

    80% yield

    OB

    OB

    O

    Ph

    Ph

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Merging element steps together for Bi(III)/Bi(V) redox catalysis

    Bi

    SON

    F3C

    BF4

    Bi

    SON

    F3C

    Ph-B, KF, MeCN, 90 oC

    CD3Cl, 60 oC, 2hBi

    SON

    F3C

    NCl Cl

    F

    BF4

    (1.2 eq)F

    85% yield

  • Fluorination of arylboron via Bi(III)/Bi(V) redox catalysis

    Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science. 2020, 367, 313.

    ■ Merging element steps together for Bi(III)/Bi(V) redox catalysis

    Bi

    SON

    F3C

    BF4

    Bi

    SON

    F3C

    Ph-B, KF, MeCN, 90 oC

    Bpin F

    Bi

    SON

    F3C

    BF4

    Bi(III) (10 mol%)NaF (5.0 eq), CDCl3, 90 oC

    NCl Cl

    F

    BF4 (1.0 eq)

    First Bi(III)/Bi(V) redox catalysis

  • What about Bi(I)/Bi(III) redox catalysis?

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    ■ Bi(I) catalyzed transfer hydrogenation

    Bi(I) (1 mol%)NH3BH3 (1.0 eq), H2O (1.0 eq)

    THF, 35 oCN

    NPh

    PhN

    NPh

    Ph

    H

    H

    N

    BiN

    tBu

    tBu

    Bi(I) catalyst

    N

    BiN

    tBu

    tBu

    H

    H

    via Bi(III) hydride

  • What about Bi(I)/Bi(III) redox catalysis?

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    ■ Bi(I) catalyzed transfer hydrogenation

    Bi(I) (1 mol%)NH3BH3 (1.0 eq), H2O (1.0 eq)

    THF, 35 oC

    97% yield

    NN

    PhPh

    NN

    PhPh

    H

    H

    N

    BiN

    tBu

    tBu

    Bi(I) catalyst

    NN

    H

    H

    Me

    Me

    99% yield

    NN

    H

    H

    CF3

    F3C

    98% yield

    NN

    H

    HBr

    99% yield

    NN

    H

    H

    NMe2

    I

    98% yield

    NN

    H

    H

    Me

    Me

    Me

    MeNN

    H H

    99% yield

  • Transfer hydrogenation via Bi(I)/Bi(III) redox catalysis

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    ■ Bi(I) catalyzed transfer hydrogenation of nitroarenes

    Bi(I) (1 mol%)NH3BH3 (1.0 eq)

    dioxane, 35 oC

    97% yield

    N

    BiN

    tBu

    tBu

    Bi(I) catalyst

    NO2 N

    H

    Me

    OH

    N

    H

    Me

    OH

    88% yield

    N

    H

    I

    OH

    67% yield

    N

    H

    OH

    82% yield

    N

    H

    OH

    75% yield

    N

    H

    OH

    22% yield

    N

    H

    OH

    Me

    Me

  • Transfer hydrogenation via Bi(I)/Bi(III) redox catalysis

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    Bi(I) (1 mol%)NH3BH3 (1.0 eq), H2O (1.0 eq)

    THF, 35 oCN

    NPh

    PhN

    NPh

    Ph

    H

    H

    N

    BiN

    tBu

    tBu

    H

    H

    via Bi(III) hydride

    Effect of water

  • Transfer hydrogenation via Bi(I)/Bi(III) redox catalysis

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    Bi(I) (1 mol%)Dn-NH3BH3 (1.0 eq), D2O

    THF, 35 oC

    NN

    PhPh

    NN

    PhPh

    H

    H

    N

    BiN

    tBu

    tBu

    H

    H

    via Bi(III) hydride

    KIE experiments

    Both N-H and B-H bonds are cleaved in the rate-determining step

  • Transfer hydrogenation via Bi(I)/Bi(III) redox catalysis

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    Bi(I) (1 mol%)NH3BH3 (1.0 eq), H2O

    THF, 35 oC

    Competition experiment study

    ■ azoarenes are not participating in the RDS of this transformation

    ■ Bi(I) and AB are both involved in the RDS

    NN

    H

    H

    Me

    Me

    NN

    Me

    Me

    Bi(I) (1 mol%)NH3BH3 (1.0 eq), H2O

    THF, 35 oC

    NN

    H

    H

    F

    F

    NN

    F

    F

    Product 1:1 ratio observed

  • Transfer hydrogenation via Bi(I)/Bi(III) redox catalysis

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    ■ Stoichiometric study for Bi(III)—H species

    PhSiH

    ■ Bi(I) and H2 was detected during the reaction■ proton is from hydridic sources

    N

    BiN

    tBu

    tBu

    H

    H

    putative Bi(III) hydrideintermediate

    NN

    PhPh

    H

    H

    NN

    PhPh

    H

    H

    NN

    PhPhN

    BiN

    tBu

    tBu

    F

    F

    N

    BiN

    tBu

    tBu

    Cl

    Cl

    NaBH3CNN

    NPh

    Ph

    71% yield

    98% yield

  • Transfer hydrogenation via Bi(I)/Bi(III) redox catalysis

    Wang, F.; Planas, O.; Cornella, J. JACS 2019, 141, 4235.

    ■ Mass-spectrometry study for Bi(III)—H species

    N

    BiN

    tBu

    tBu

    H

    H

    putative Bi(III) hydrideintermediate

    N

    BiN

    tBu

    tBu

    20 mol%

    NH3BH3 (1.0 equiv)

    ND3BD3 (1.0 equiv)

    N

    BiN

    tBu

    tBu

    H

    HRMS-ESI