magamp cores magamp cores

17
Technical Presentation 2001 Roman Klinger, KB-PM K MagAmp cores MagAmp cores MagAmp Cores MagAmp Cores Main Applications: Main Applications: Magnetics Quantitiy + + + 0 / + - / 0 0 / + + +

Upload: others

Post on 26-Mar-2022

34 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

MagAmp CoresMagAmp CoresMain Applications:Main Applications:

Magnetics Quantitiy

+ +

+

0 / +

- / 0

0 / +

+ +

Page 2: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Operation and Circuit principleOperation and Circuit principle

Forward Transformer(Master - Slave Type):

A Magnetic Amplifier is used to A Magnetic Amplifier is used to regulate the regulate the 2. and further output voltages2. and further output voltages of multiple of multiple output SMPSoutput SMPS‘‘s. s. It is an alternative to an electronic It is an alternative to an electronic regulation and consists of a regulation and consists of a soft magnetic soft magnetic core with a square hysteresis loopcore with a square hysteresis loop with with several no. of turns of copper wire (the core several no. of turns of copper wire (the core winding) and a winding) and a regulation circuitregulation circuit. The . The Magnetic Amplifier principle allows load Magnetic Amplifier principle allows load current regulation of several Amps with the current regulation of several Amps with the help of some 10 to 100 mA control current.help of some 10 to 100 mA control current.Small MagAmp cores are well introduced in Small MagAmp cores are well introduced in PCPC-- and server power supplies. The best and server power supplies. The best magnetic properties are achieved by magnetic properties are achieved by amorphous toroidal tapeamorphous toroidal tape--wound coreswound cores((VITROVAC 6025 ZVITROVAC 6025 Z)) or or nanocrystalline nanocrystalline VITROPERM 500 ZVITROPERM 500 Z..

Page 3: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Current consumption of the 3.3 V Current consumption of the 3.3 V MagAmpMagAmp regulated output.regulated output.

current requirements of 3.3 V output of Desktop-PC SMPS

0

5

10

15

20

25

30

35

1998 1999 2000 2001

ATX Rev. 2.01Micro ATX Micro ATX, ATX 2.03

ATX 2.03, ATX 12V

Form Factor: ATX 2.01 Micro ATX ATX 2.03 ATX 12Vtotal Output Power (typ.): 200 W 120 – 145 W 200 – 250 W 300 W

typ. output current of 3.3 V: 12 A 8 A 14 A 30 A

Page 4: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

VAC core solutions:VAC core solutions:

AmorphousAmorphousVITROVAC 6025 ZVITROVAC 6025 Z

Nanocrystalline Nanocrystalline VITROPERM 500ZVITROPERM 500Z

Main Customer Benefits of VITROPERM 500Z cores:

• high squareness – enabling good regulation behaviour and reduced dead-time of MagAmp Choke

• very high induction swing - high magnetic flux in small core sizes

• extended temperature range up to 120°C

• best suitable for high current handling (reduction of copper losses be low no. of turns, thicker copper wire)

• cost advantage (Fe-based alloy)

reduction of weight, volume and costs

Main Customer Benefits of VITROPERM 500Z cores:

• high squareness – enabling good regulation behaviour and reduced dead-time of MagAmp Choke

• very high induction swing - high magnetic flux in small core sizes

• extended temperature range up to 120°C

• best suitable for high current handling (reduction of copper losses be low no. of turns, thicker copper wire)

• cost advantage (Fe-based alloy)

reduction of weight, volume and costsreduction of weight, volume and costs

Page 5: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp coresM

ain

Ma t

eria

l Pro

per ti

esM

ain

Ma t

eria

l Pro

per ti

es

Page 6: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Material Comparison: Material Comparison: Saturation Induction, SquarenessSaturation Induction, Squarenessamorphous VITROVAC 6025Zamorphous VITROVAC 6025Z -- nanocrystalline VITROPERM 500Znanocrystalline VITROPERM 500Z

Page 7: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Material Comparison: Material Comparison: Core LossesCore Lossesamorphous VITROVAC 6025Zamorphous VITROVAC 6025Z -- nanocrystalline VITROPERM 500Z nanocrystalline VITROPERM 500Z -- ferriteferrite

Page 8: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Nanocrystalline VITROPERM 500Z: NEW Type SeriesNanocrystalline VITROPERM 500ZNanocrystalline VITROPERM 500Z: : NEW Type Series

Core type series of nanocrystalline VITROPERM 500Z MagAmp coresfinished dimensions(limiting values)

corecross-section

meancorepathlength

coremass

totalflux 125°C

totalflux 190°C

corearea 2

product

eff. Cu-winding

area

meanCu-path

length

heattransferResis-tance

part number,order code

coredimensionsda,Core x di,Core xhCore

O.D. I.D. H AFe lFe mFe φss φss, 90°C Wa×AFe ACu lCu Rth

mm mm mm cm² cm g µWb µWb cm4 cm² cm K/W T6000...

10×7×4.5 11.7 5.5 6.1 0.054 2.67 1.1 12.7 11.9 0.013 0.059 2.27 57 6-E4010-W759

11×8×4.5 14.1 6.6 6.3 0.054 2.98 1.2 12.7 11.9 0.018 0.085 2.53 46 6-E4011-W760

12×8×4.5 14.1 6.6 6.3 0.072 3.14 1.7 16.9 15.8 0.025 0.085 2.53 46 6-E4012-W761

12.5×10×4.5 14.1 8.5 6.8 0.045 3.53 1.2 10.6 9.9 0.026 0.140 2.59 42 6-E4012-W762

16×10×6 18.0 8.0 8.1 0.144 4.08 4.3 33.8 31.7 0.072 0.124 3.25 34 6-E4016-W763

16.5×12.5×6 19.1 10.9 8.1 0.096 4.56 3.2 22.6 21.1 0.090 0.231 3.30 30 6-E4016-W764

17.5×12.5×6 19.1 10.9 8.1 0.120 4.71 4.2 28.8 26.4 0.112 0.231 3.30 30 6-E4017-W765

19×15.2×4.5 21.2 12.9 7.2 0.068 5.37 2.7 16.1 15.0 0.089 0.323 3.28 27 6-E4019-W766

20×15×8 22.6 10.3 10.2 0.160 5.50 6.5 37.6 35.2 0.133 0.206 4.08 26 6-E4020-W767

20×12.5×8 22.6 10.3 10.2 0.240 5.11 9.0 56.4 52.8 0.200 0.206 4.08 26 6-E4020-W768

Page 9: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Amorphous VITROVAC 6025 ZAmorphous VITROVAC 6025 ZCore informations:

Our Mag Amp Cores are

preferably supplied in

plastic protective cases,

adding silicone rubber

(Fix 022). This finish is

suitable for direct winding

and offers optimum

mechanical protection for

the core, and thus the

best magnetic properties.

The resins used for the

plastic cases are

according to UL94V-0 or

UL94V-1. Epoxy coated

(Fix 350) core designs

aswell as many other core

sizes are available on

request.

VITROVAC 6025 Z cores for Mag Amps, standard sizes:coredimensions

finisheddimensions(limiting values)

corecross-section

meancorepathlength

coremass

totalflux 1

(25°C)

totalflux 1

(90°C)

eff.winding

area

meancopper

pathlength

heattrans.Res.

part number,order code

O.D. I.D. H AFe lFe mFe φss φss, 90°C ACu lCu Rth

mm mm mm cm² cm g µWb µWb cm² cm K/W T6000...

10×8×4 11.6 6.5 5.1 0.032 2.83 0.7 3.7 3.2 0.082 2.01 56 6-E4010-W534

10.1×6.9×4.5 11.6 5.5 6.0 0.058 2.67 1.2 6.7 5.8 0.059 2.24 57 6-E4010-W663

12.8×9.5×3.2 14.7 7.9 4.8 0.042 3.50 1.1 4.8 4.2 0.121 2.23 44 6-E4012-W464

12×8×4.5 14.0 6.6 6.2 0.07 3.14 1.7 8.1 7.0 0.085 2.45 47 6-E4012-W547

12.5×10×5 14.0 8.5 6.8 0.050 3.53 1.4 5.8 5.0 0.140 2.56 42 6-E4012-W535

14×8×4.5 15.5 6.5 5.7 0.108 3.46 2.9 12.4 10.8 0.082 2.53 44 6-E4014-W481

15.9×12.7×3.2 17.5 11.4 4.5 0.041 4.49 1.4 4.7 4.1 0.253 2.41 34 4-E4015-W6182

16×10×6 17.9 8.2 8.2 0.144 4.08 4.5 16.6 14.4 0.131 3.20 34 6-E4016-W536

17.5×12.5×6 19.1 10.9 8.1 0.120 4.71 4.4 13.8 12.0 0.231 3.30 30 6-E4017-W537

19.2×12.7×3.2 20.6 11.4 4.3 0.083 5.01 3.2 9.6 8.3 0.253 2.63 30 4-E4019-W6092

19×15×5 21.2 13.0 7.3 0.080 5.34 3.3 9.2 8.0 0.329 3.17 27 6-E4019-W539

19×15×10 21.2 13.0 12.3 0.160 5.34 6.6 18.4 16.0 0.329 4.25 24 6-E4019-W540

20×12.5×8 22.6 10.3 10.2 0.240 5.1 9.4 27.6 24.0 0.206 4.05 26 6-E4020-W538

1 Φss = 2×Bs×AFe2 epoxy coated

Page 10: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp coresExamples:Examples:

VITROVAC 6025 Z VITROPERM 500 ZVITROVAC 6025 Z VITROPERM 500 Z

Server SMPS

(f=120 kHz): comparable regulation behaviour:

Server SMPS

(f=120 kHz): comparable regulation behaviour:

Core size: 16x10x6 mm 16x12.5x6 mmCore Weight: 4.5 g 3.0 gTmax in operation: 35 K 50 KPrice: 100 % ~ 70 %

Core size: 16x10x6 mm 16x12.5x6 mmCore Weight: 4.5 g 3.0 gTmax in operation: 35 K 50 KPrice: 100 % ~ 70 %

VITROVAC 6025 Z VITROPERM 500 ZVITROVAC 6025 Z VITROPERM 500 Z

Desktop-PC SMPS(100 kHz,

3.3 V, 30 Amax ):

Desktop-PC SMPS(100 kHz,

3.3 V, 30 Amax ):

Core size: 14x8x4.5 mm 11x8x4.5 mmCore Weight: 2.9 g 1.6 gNo. of turns N = 4 N = 5Price: 100 % ~ 40 %

Core size: 14x8x4.5 mm 11x8x4.5 mmCore Weight: 2.9 g 1.6 gNo. of turns N = 4 N = 5Price: 100 % ~ 40 %

•• less material (20 less material (20 -- > 50 %)> 50 %)•• smaller core sizessmaller core sizes•• cost down (10 cost down (10 -- > 50 %)> 50 %)

NanocrystallineNanocrystallineVITROPERM 500 ZVITROPERM 500 Z

Page 11: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Further Design Examples:Further Design Examples:

DesktopDesktop--PC SMPS, 120 kHz, forward converter, short circuit proof designPC SMPS, 120 kHz, forward converter, short circuit proof designTTambamb = 40= 40°°C, C, ττ maxmax = 0.45= 0.45

Page 12: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Material Comparison: Material Comparison: Reset Current Reset Current amorphous VITROVAC 6025Zamorphous VITROVAC 6025Z -- nanocrystalline VITROPERM 500Znanocrystalline VITROPERM 500Z

Page 13: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Magnetic test specificationMagnetic test specification

Oscilloscope

Square wavepulsegenerator

i1

i1

Tong-test instrumentIntegrator

uc

R

COscilloscope

Core

Wattmeter(channel B, "current input")

Sine wavegenerator

i1

Core

Rm

um

u2

N2N1

RMS voltmeter,frequency counter,wattmeter(channel A,"voltage input")

1 2

Testing property Testing method Testing value

cased cores coated coresouter diameter> 12,5 mm:

outer diameter≤12,5 mm:

outer diameter> 12,5 mm:

outer diameter≤12,5 mm:

• squareness measurement of the residual flux

density swing ∆Brs from

remanence to saturation with

unipolar voltage pulses, fp = 1 kHz

≤ 50 mT ≤ 75 mT ≤ 80 mT ≤ 140 mT

• core losses

PFe

Measured with sinusoidal driving

voltage (f=50kHz) and flux density

amplitude Bmax = 0.4 T

≤ 65 W/kg ≤ 75 W/kg

1

2

VITROVAC 6025 Z (XCZ-500) VITROPERM 500 Z

< 150 mT

< 120 W/kg

Page 14: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp coresC

alcu

latio

n fo

rmul

ae, V

ITR

OPE

RM

500

ZC

alcu

latio

n fo

rmul

ae, V

ITR

OPE

RM

500

ZDetermine wire current density S (typically 5 – 10 A/mm2)and calculate wire size and wire cross section aCu: aCu [mm2] =

I1,RMS [A]S [A/mm2]

Calculate regulation voltage UReg of MagAmp Choke: τmax = max. pulse duty ratio of primary switch, û1,min = peak value of transformer output voltage α = 1 for forward converters, α = 2 for push pull converters with 2 MagAmps

UReg [ V ] = α x τmax x û1,min [ V ]

Select core (start with small core) and calculate no. of turns:

N ≥10 x UReg [ V ]

α x 2.0 [ T ] x AFe [cm2 ] x f [ kHz ]

Check winding space Check winding space of selected coreof selected core ACu [cm2] ≥ aCu [cm2] x N

Calculate regulation fluxdensity swing ∆BReg ∆BReg [ T ] ≥

10 x UReg [ V ]α x N x AFe [cm2 ] x f [ kHz ]

∆BReg < (2 x BS) - ∆Brs

Estimate reset current IS:IS (mA) ≈

25 x ∆BReg [ T ]0.45 x f [ kHz ]0.53 x lFe [cm]N

Experimental Testing

∆TCu + ∆TFe < limit

nono

nono

nono

yesyes

yesyes

yesyes

Check Check temperature risetemperature rise

Select next bigger core

Increase N orselect nextbigger core

Increase N orselect nextbigger core

Calculate temperature riseof winding ∆TCu:(ρCu ≈ 2.27 x 10-6 Ωm)

and core ∆TFe: ∆TFe [ K ] = 420 x mFe [ g ] x Rth [ K/W ] x ∆BReg [ T ]1.5 x f [ kHz ]1.5

Rth [ K/W ] x I1,RMS [ A ]2 x N2 x lCu [cm] x ρCu [ Ωm ]∆TCu [ K ] = 20 x ACu [ cm2 ]

Design Software: Design Software: MagAmp CalculatorMagAmp Calculator

new programm version, Rev. 000104 betanew programm version, Rev. 000104 beta

for Microsoft Excel 97 / 2000for Microsoft Excel 97 / 2000

VITROVAC 6025 ZVITROVAC 6025 ZVITROPERM 500 ZVITROPERM 500 Z

Page 15: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Design Software: Design Software: MagAmp CalculatorMagAmp Calculator

new programm version, Rev. 000104 betanew programm version, Rev. 000104 beta

NOTE: Enable Macros for full functionality. If disabled, the MagAmp Calculator does not operate properly.

Our Original Software is virus-checked.

Select Core Material for Calculation:

- amorphous VITROVAC 6025Z- nanocrystalline VITROPERM 500Z

Page 16: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

Design Software: Design Software: MagAmp CalculatorMagAmp Calculator

new programm version, Rev. 000104 betanew programm version, Rev. 000104 beta

Menu Bar

Circuit Principle(automaticallychanged by options on the leftscreen side)

Quick Result ViewerandDesign Change Buttons

INPUT fields for allapplication data(fill the white fieldsonly)

Core Selectionand AutoCalcButton

Material Display Bar

Page 17: MagAmp cores MagAmp Cores

Technical Presentation 2001 Roman Klinger, KB-PM K

MagAmp coresMagAmp cores

• Press change core material (red) for calculation with Cores of VITROPERM 500Zand change core material (blue) for calculation with amorphous VITROVAC6025Z. This opens the following screen message:

CHANGE fieldforwindings

and back -Button