mae 435 chris cook jeffry walker joshua beverly miguel de rojas

30
5-DOF ANTHROPOMORPHIC MANIPULATOR MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Upload: sibyl-garrison

Post on 12-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

5-DOF ANTHROPOMORPHIC

MANIPULATOR

MAE 435

Chris Cook

Jeffry Walker

Joshua Beverly

Miguel de Rojas

Page 2: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Types of Manipulators

Cartesian Gantry Cylindrical Spherical SCARA Anthropomorphic – Make of 59% in use

worldwide as of 2005 IFR report

Page 3: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Types of Manipulators

Page 4: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Welding Manipulator

Page 5: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Surgical Manipulator

Page 6: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

5 Degrees of Freedom

Page 7: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Gripper End-Effector

Page 8: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Project Goals

5cm x 5cm x 5cm cube Placed within 6 in radial position Repeated TBD number of times

Page 9: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Servo Motor vs. DC Motor

Page 10: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Preliminary CalculationsJointMass=.939; %mass of joint (kg)ShaftMass=.113; %mass of shaft (kg)ShaftLength=.2032; %length of shaft (m)MotorOutput=.4862; %N-m output torque peak effectiveGearRation=132; %ratio of planetary gearboxLoadLifted=.34; %minimum mass to be picked up (kg)g=9.81; %gravity %effective forcesjf=JointMass*g;sf=ShaftMass*g;lf=LoadLifted*g;L=ShaftLength; %Joint TorquesJ1torque=lf*3*L+jf*L*(3+2+1)+sf*L*(2.5+1.5+.5);J2torque=lf*2*L+jf*L*(2+1)+sf*L*(1.5+.5);J3torque=lf*L+jf*L+sf*L*.5;

Torque (N-m)

Joint 1 14.277

Joint 2 7.2414

Joint 3 2.6622

Page 11: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Selected Motor

Page 12: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Cost Considerations

Page 13: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Midterm Status Update

Machining and assembly complete unless modifications become necessary

Inventor solid model complete unless modifications become necessary

Wiring is complete pending testing Computer code for the microcontroller is

in development Dynamics/Kinematics in development

Page 14: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Machining

Page 15: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Assembly

Page 16: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Assembly Complete

Page 17: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Solid Model

Page 18: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Forward Kinematics

Denavit-Hartenberg Parameters• 3 fixed-link parameters αi and ai: describe the Link i • di and θi : describe the Link’s connection

Page 19: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Forward Kinematicsi αi-1 ai-1 di θi

1 0 0 d1 θ1

2 90 0 d2 θ2

3 0 a2 d3 θ3 + 90

4 90 a3 d4 θ4

5 -90 a4 d5 θ5𝑇𝑖

𝑖−1 =

cos𝜃𝑖 −sin 𝜃𝑖 0 𝑎𝑖− 1

sin𝜃 𝑖cos𝛼𝑖 −1 cos𝜃 𝑖cos𝛼𝑖 −1 −sin 𝛼𝑖−1 −sin𝛼 𝑖−1𝑑𝑖

sin𝜃 𝑖 sin𝛼𝑖− 1 cos𝜃 𝑖 sin𝛼𝑖− 1 cos𝛼𝑖−1 cos𝛼 𝑖−1𝑑𝑖

0 0 0 1𝑇10 =

cos𝜃1 −sin 𝜃1 0 0sin𝜃1 cos𝜃1 0 00 0 1 𝑑10 0 0 1

𝑇21 =

cos𝜃2 −sin 𝜃2 0 𝑎10 0 −1 −𝑑2

sin𝜃2 cos𝜃2 0 00 0 0 1

𝑇32 =¿

𝑇43 =

cos𝜃4 − sin𝜃4 0 𝑎30 0 −1 −𝑑4

sin 𝜃4 cos𝜃4 0 00 0 0 1

𝑇54 =

cos𝜃5 −sin 𝜃5 0 𝑎40 0 1 𝑑5

−sin 𝜃5 −cos𝜃5 0 00 0 0 1

𝑇50 = 𝑇1

0 𝑇21 𝑇3

2 𝑇43 𝑇5

4

Page 20: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Inverse Kinematics

Goal: determine all the joint variables for a specific end-effector position and orientation

Feed this information to the controls

Page 21: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Inverse Kinematics

Determine the inverse kinematics starting from this equation

Page 22: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Wiring/Soldering

Page 23: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Motor Drivers

Page 24: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Closed-Loop Feedback Control

PID Controller (Proportional Integral Derivative)

Page 25: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Control Signal Filter

Page 26: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Motor Driver

Page 27: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Motor and Gearbox

Page 28: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

Gantt Chart

Page 30: MAE 435 Chris Cook Jeffry Walker Joshua Beverly Miguel de Rojas

References 1. Siciliano, B., et al., Robotics

Modeling, Planning and Control. Advanced Textbooks in Control and Signal Processing2009: Springer.

2. Lee, C.S.G., Robot Arm Kinematics, Dynamics, and Control. Computer, 1982. 15(12): p. 62-80.

3. MathWorks MATLAB 4. Autodesk Inventor 5. Microsoft Office Suite