machine learning for geological mapping: algorithms … · machine learning algorithms, ... chapter...

16
MACHINE LEARNING FOR GEOLOGICAL MAPPING:ALGORITHMS AND APPLICATIONS MATTHEW J. CRACKNELL BSc (Hons) ARC Centre of Excellence in Ore Deposits (CODES) School of Physical Sciences (Earth Sciences) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania May, 2014

Upload: trinhdien

Post on 09-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

MACHINE LEARNING FOR GEOLOGICALMAPPING: ALGORITHMS AND APPLICATIONS

MATTHEW J. CRACKNELL

BSc (Hons)

ARC Centre of Excellence in Ore Deposits (CODES)

School of Physical Sciences (Earth Sciences)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Tasmania

May, 2014

i

Did you ever fly a kite in bed?

Did you ever walk with ten cats on your head?

Did you ever milk this kind of cow?

Well, we can do it.

We know how.

If you never did you should.

These things are fun and fun is good.

Dr. Seuss

iii

DECLARATION OF ORIGINALITY

This thesis contains no material which has been accepted for a degree or diploma by the

University or any other institution, except by way of background information and duly

acknowledged in the thesis, and to the best of my knowledge and belief no material

previously published or written by another person except where due acknowledgement is

made in the text of the thesis, nor does the thesis contain any material that infringes

copyright.

AUTHORITY OF ACCESS

This non-published content of the thesis (see below) may be made available for loan and

limited copying and communication in accordance with the Copyright Act 1968.

STATEMENT REGARDING PUBLISHED WORKCONTAINED IN THESIS

Chapter 4 of this thesis is published under a Creative Commons Attribution (CC BY)

licence. You are free to copy, communicate and adapt the work, so long as you attribute

the authors. To view a copy of this licence, visit http://creativecommons.org/licenses/. The

publishers of the papers comprising Chapters 5 to 6 hold the copyright for that content, and

access to the material should be sought from the respective journals.

Matthew J. Cracknell

May 2014

iv Machine learning for geological mapping

v

STATEMENT OF CO-AUTHORSHIP

The following people and institutions contributed to the publication of work undertaken as

part of this thesis:

Matthew James Cracknell, ARC Centre of Excellence in Ore Deposits (CODES), School of

Earth Sciences, University of Tasmania = Candidate

Anya Marie Reading, ARC Centre of Excellence in Ore Deposits (CODES), School of

Earth Sciences, University of Tasmania = Author 1

Andrew William McNeill, Mineral Resources Tasmania, Department of Infrastructure

Energy & Resources (DIER) = Author 2

Author details and their roles:

Paper 1, ‘Geological mapping using remote sensing data: A comparison of five

machine learning algorithms, their response to variations in the spatial distribution of

training data and the use of explicit spatial information’:

Located in Chapter 4

Candidate was the primary author and with Author 1 contributing to its development,

refinement and presentation.

vi Machine learning for geological mapping

Paper 2, ‘The upside of uncertainty: Identification of lithology contact zones from

airborne geophysics and satellite data using Random Forests and Support Vector

Machines’:

Located in Chapter 5

Candidate was the primary author and with Author 1 contributing to development,

refinement and presentation.

Paper 3, ‘Mapping geology and volcanic-hosted massive sulfide alteration in the

Hellyer–Mt Charter region, Tasmania, using Random Forests™ and Self-Organising

Maps’:

Located in Chapter 6

Candidate was the primary author and with Author 1 contributing to its refinement and

presentation and Author 2 contributing to its formalisation and development.

We the undersigned agree with the above stated “proportion of work undertaken” for each

of the above published (or submitted) peer-reviewed manuscripts contributing to this

thesis:

Signed:

Anya M. Reading Jocelyn McPhie

Supervisor Head of School

School Of Earth Sciences School Of Earth Sciences

University of Tasmania University of Tasmania

Date:

vii

ABSTRACT

Machine learning algorithms are designed to identify efficiently and to predict accurately

patterns within multivariate data. They provide analysts computational tools to aid

predictive modelling and the interpretation of interactions between data and the

phenomena under investigation. The analysis of large volumes of disparate multivariate

geospatial data using machine learning algorithms therefore offers great promise to

industry and research in the geosciences. Geoscience data are frequently characterised by a

restriction in the number and distribution of direct observations, irreducible noise in these

data and a high degree of intraclass variability and interclass similarity. The choice of

machine learning algorithm, or algorithms and the details of how algorithms are applied

must therefore be appropriate to the context of geoscience data. With this knowledge, I aim

to employ machine learning as a means of understanding the spatial distribution of

complex geological phenomena.

I conduct a rigorous and comprehensive comparison of machine learning algorithms,

representing the five general machine learning strategies, for supervised lithology

classification applications. I also develop and test a novel method for obtaining robust

estimates of the uncertainty associated with machine learning algorithm categorical

predictions. The insights gained from these experiments leads to the further development

and comparison of new methods for the incorporation of spatial-contextual information

into machine learning supervised classifiers.

In using machine learning algorithms for geoscience applications, I have developed best-

practice methodologies that address the challenges facing geoscientists for geospatial

supervised classification. Guidelines are established that detail the preparation and

integration of disparate spatial data, the optimisation of trained classifiers for a given

application and the robust statistical and spatial evaluation of outputs. I demonstrate,

through a case study in a region that is prospective for economic mineralisation, the

combination of supervised and unsupervised machine learning algorithms for the critical

appraisal of pre-existing geological maps and formulation of meaningful interpretations of

geological phenomena.

viii Machine learning for geological mapping

The experiments conducted as part of my research confirm the efficacy of machine

learning algorithms to generate accurate geological maps representing a variety of terranes.

I identify and explore key aspects of the spatial and statistical distributions of geoscience

data that affect machine learning algorithm performance. My research clearly identifies

Random Forests™ as a good first-choice algorithm for the prediction of classes

representing lithologies using commonly available multivariate geological and geophysical

data. Furthermore, Random Forests prediction uncertainty is shown to be closely related to

ambiguous and/or erroneous classifications and, thus provides a practical means of

indicating variable levels of confidence. Spatial-contextual information is best incorporated

into machine learning supervised classifiers via the pre-processing of input variables

and/or the post-regularisation of classifications. My findings indicate that a trade-off

between optimal predictive models and interpretable explanatory models exists, whereby,

intuitively interpretable models are not necessarily the most accurate.

The practical application of machine learning algorithms requires the implementation of

three key stages: (1) data pre-processing; (2) algorithm training; and (3) prediction

evaluation. This methodology provides the foundation for generating accurate and

geologically meaningful predictions with minimal user intervention and assists in the

formulation of robust interpretations of complex geological phenomena. For example,

classifications obtained by Random Forests are useful for critically appraising interpreted

geological maps. Clusters produced by Self-Organising Maps indicate the presence of

discrete, spatially contiguous and geologically significant sub-classes within individual

lithological units, which represent regions of contrasting primary composition and

alteration styles. My results may be widely applied to a broad range of practical geoscience

challenges such as ore deposit targeting, geo-hazard risk assessment, engineering and

construction projects, hydrological and environmental modelling and ecological studies.

The applications of machine learning algorithms detailed in this thesis align well with

state-of-the-art Big Data online infrastructure and virtual laboratories currently emerging in

Australia.

ix

CONTENTS

DECLARATION OF ORIGINALITY ............................................................................... III

AUTHORITY OF ACCESS ................................................................................................. III

STATEMENT REGARDING PUBLISHED WORK CONTAINED IN THESIS ...... III

STATEMENT OF CO-AUTHORSHIP ...............................................................................V

ABSTRACT ...........................................................................................................................VII

CONTENTS .............................................................................................................................IX

LIST OF TABLES ................................................................................................................ XV

LIST OF FIGURES ........................................................................................................... XVII

LIST OF ABBREVIATIONS.............................................................................................XXI

ACKNOWLEDGEMENTS ............................................................................................. XXIII

CHAPTER 1 – INTRODUCTION ........................................................................................ 1

1.1. Machine learning .......................................................................................................................2

1.2. Geological maps .........................................................................................................................4

1.3. Research scope and hypothesis ..................................................................................................5

1.3.1. Major research questions to be addressed ..........................................................................6

1.4. Thesis structure..........................................................................................................................7

CHAPTER 2 – MACHINE LEARNING THEORY AND IMPLEMENTATION ....... 9

2.1. Machine learning .......................................................................................................................9

2.1.1. Supervised versus unsupervised learning.........................................................................10

2.2. Supervised classification ..........................................................................................................10

2.2.1. Classification strategies...................................................................................................11

2.2.1.1. Statistical learning algorithms.....................................................................................11

2.2.1.2. Instance-based learners...............................................................................................14

2.2.1.3. Logic-based learners ..................................................................................................17

2.2.1.4. Support Vector Machines ...........................................................................................20

2.2.1.5. Perceptrons ................................................................................................................23

2.2.2. Supervised classifier implementation ..............................................................................25

2.2.2.1. Data pre-processing....................................................................................................26

2.2.2.2. Classifier training.......................................................................................................27

x Machine learning for geological mapping

2.2.2.3. Prediction evaluation ................................................................................................. 29

2.3. Unsupervised clustering.......................................................................................................... 33

2.3.1. Clustering strategies....................................................................................................... 33

2.3.1.1. Partitioning algorithms .............................................................................................. 33

2.3.1.2. Hierarchical algorithms ............................................................................................. 35

2.3.1.3. Self-Organising Maps................................................................................................ 36

2.3.2. Unsupervised clustering implementation ........................................................................ 38

2.4. Conclusions ............................................................................................................................. 38

CHAPTER 3 – A REVIEW OF MACHINE LEARNING FOR GEOSCIENCE

CLASSIFICATION APPLICATIONS ..............................................................................41

3.1. Machine learning non-geoscience applications....................................................................... 41

3.2. Machine learning geoscience applications .............................................................................. 44

3.2.1. Classification of 0D data ................................................................................................ 45

3.2.1. Classification of 1D data ................................................................................................ 46

3.2.1.1. One temporal dimension............................................................................................ 46

3.2.1.2. One spatial dimension ............................................................................................... 47

3.2.1. Classification of 2D data ................................................................................................ 51

3.2.1.3. Land cover/vegetation mapping ................................................................................. 52

3.2.1.4. Geological mapping .................................................................................................. 55

Supervised classification...................................................................................................... 55

Unsupervised clustering....................................................................................................... 58

Combined supervised and unsupervised methods.................................................................. 60

3.3. Practical machine learning implementation ........................................................................... 61

3.3.1. Data............................................................................................................................... 63

3.3.2. Data pre-processing ....................................................................................................... 64

3.3.3. Prediction evaluation...................................................................................................... 64

3.3.4. Integrated workflow....................................................................................................... 65

3.4. Conclusions ............................................................................................................................. 66

CHAPTER 4 – GEOLOGICAL MAPPING USING REMOTE SENSING DATA: A

COMPARISON OF FIVE MACHINE LEARNING ALGORITHMS, THEIR

RESPONSE TO VARIATIONS IN THE SPATIAL DISTRIBUTION OF TRAINING

DATA AND THE USE OF EXPLICIT SPATIAL INFORMATION ...........................69

4.0. Abstract................................................................................................................................... 69

4.1. Introduction ................................................................................................................................ 70

4.1.1. Machine learning for supervised classification................................................................ 72

4.1.2. Machine learning algorithm theory................................................................................. 73

4.1.2.1. Naïve Bayes .............................................................................................................. 73

4.1.2.2. k-Nearest Neighbours ................................................................................................ 73

Contents xi

4.1.2.3. Random Forests .........................................................................................................73

4.1.2.4. Support Vector Machines ...........................................................................................74

4.1.2.5. Artificial Neural Networks .........................................................................................74

4.1.3. Geology and tectonic setting ...........................................................................................75

4.2. Data ..........................................................................................................................................77

4.3. Methods....................................................................................................................................78

4.3.1. Pre-processing ................................................................................................................78

4.3.2. Classification model training...........................................................................................79

4.3.3. Prediction evaluation ......................................................................................................79

4.4. Results ......................................................................................................................................79

4.5. Discussion.................................................................................................................................84

4.5.1. Machine learning algorithms compared...........................................................................84

4.5.2. Influence of training data spatial distribution ...................................................................87

4.5.3. Using spatially constrained data ......................................................................................88

4.6. Conclusions ..............................................................................................................................89

4.7. Acknowledgements ..................................................................................................................90

4.8. Description of supplementary information..............................................................................91

CHAPTER 5 – THE UPSIDE OF UNCERTAINTY: IDENTIFICATION OF

LITHOLOGY CONTACT ZONES FROM AIRBORNE GEOPHYSICS AND

SATELLITE DATA USING RANDOM FORESTS AND SUPPORT VECTOR

MACHINES ............................................................................................................................93

5.0. Abstract....................................................................................................................................93

5.1. Introduction .............................................................................................................................94

5.1.1. The lithology prediction problem ....................................................................................97

5.1.2. Random Forests..............................................................................................................98

5.1.3. Support Vector Machines................................................................................................99

5.2. Data ........................................................................................................................................101

5.2.1. Tectonic setting and history ..........................................................................................101

5.2.2. Data sources .................................................................................................................103

5.2.3. Data pre-processing ......................................................................................................103

5.3. Methods..................................................................................................................................103

5.3.1. Training and evaluating algorithms ...............................................................................105

5.3.2. Variance.......................................................................................................................106

5.4. Results ....................................................................................................................................106

5.5. Discussion...............................................................................................................................114

5.6. Conclusions ............................................................................................................................118

5.7. Acknowledgements ................................................................................................................119

xii Machine learning for geological mapping

CHAPTER 6 – MAPPING GEOLOGY AND VOLCANIC-HOSTED MASSIVE

SULFIDE ALTERATION IN THE HELLYER–MT CHARTER REGION,

TASMANIA, USING RANDOM FORESTS™ AND SELF-ORGANISING MAPS

................................................................................................................................................ 121

6.0. Abstract..................................................................................................................................121

6.1. Introduction ...........................................................................................................................122

6.1.1. Geological setting .........................................................................................................123

6.1.2. Random Forests ............................................................................................................128

6.1.3. Self-Organising Maps ...................................................................................................130

6.2. Data and Methods ..................................................................................................................130

6.2.1. Source data ...................................................................................................................130

6.2.2. Data sampling...............................................................................................................131

6.2.3. Training Random Forests and variable selection ............................................................133

6.2.4. Implementing Self-Organising Maps .............................................................................136

6.3. Results ....................................................................................................................................137

6.3.1. Geological classification using Random Forests ............................................................137

6.3.2. Discrimination of geological sub-classes using Self-Organising Maps............................141

6.4. Discussion...............................................................................................................................144

6.5. Conclusions ............................................................................................................................146

6.6. Acknowledgements.................................................................................................................147

CHAPTER 7 – SPATIAL-CONTEXTUAL MACHINE LEARNING SUPERVISED

CLASSIFIERS: LITHOSTRATIGRAPHY CLASSIFICATION EXAMPLE ........ 149

7.0. Abstract..................................................................................................................................149

7.1. Introduction ...........................................................................................................................150

7.1.1. Pre-processing methods.................................................................................................152

7.1.1.1. Focal operators.........................................................................................................152

7.1.1.2. Image segmentation..................................................................................................153

7.1.2. Training data selection ..................................................................................................154

7.1.3. Post-processing methods ...............................................................................................155

7.1.4. Combination methods ...................................................................................................155

7.1.5. Study aims....................................................................................................................155

7.2. Data ........................................................................................................................................156

7.2.1. Lithostratigraphy – classification target .........................................................................156

7.2.2. Geophysical data – input variables ................................................................................159

7.2.2.1. Pre-processing..........................................................................................................160

7.3. Methods..................................................................................................................................160

7.3.1. Data sampling...............................................................................................................160

7.3.2. Global pixel-based classifiers........................................................................................162

Contents xiii

7.3.3. Spatial-contextual classifiers.........................................................................................162

7.3.3.1. Pre-processing..........................................................................................................162

7.3.3.2. Algorithm training....................................................................................................164

7.3.3.3. Post-processing ........................................................................................................165

7.3.4. Prediction evaluation ....................................................................................................165

7.4. Results ....................................................................................................................................165

7.5. Discussion...............................................................................................................................173

7.5.1. Spatial-contextual classifiers compared .........................................................................173

7.5.2. Issues of spatial scale....................................................................................................175

7.5.3. Geological interpretations .............................................................................................176

7.6. Conclusions ............................................................................................................................177

CHAPTER 8 – SYNTHESIS AND DISCUSSION ........................................................ 179

8.1. Algorithms..............................................................................................................................179

8.1.1. Supervised classification...............................................................................................179

8.1.1.1. Implementation ........................................................................................................180

8.1.1.2. Decision structures...................................................................................................181

8.1.1.3. Accuracy comparison ...............................................................................................181

8.1.1.4. Spatial-contextual classifiers ....................................................................................183

8.1.1.5. Prediction uncertainty...............................................................................................184

8.1.2. Unsupervised clustering................................................................................................185

8.2. Applications ...........................................................................................................................186

8.2.1. Data pre-processing ......................................................................................................186

8.2.1.1. Data preparation.......................................................................................................187

8.2.1.2. Variable extraction ...................................................................................................188

8.2.1.3. Variable selection.....................................................................................................189

8.2.2. Classifier training .........................................................................................................189

8.2.2.1. Training and test data ...............................................................................................190

8.2.2.2. Classifier induction ..................................................................................................190

8.2.2.3. Classification post-processing...................................................................................191

8.2.3. Evaluation and interpretation ........................................................................................192

8.2.3.1. Statistical evaluation ................................................................................................193

8.2.3.2. Interrogating decision structures ...............................................................................194

8.2.3.3. Complementary interpretation ..................................................................................197

8.3. Extended research implications.............................................................................................199

8.3.1. Integrated workflow using R.........................................................................................199

8.3.2. Wider geoscience applications ......................................................................................200

8.3.3. Big Data .......................................................................................................................202

CHAPTER 9 – CONCLUSIONS...................................................................................... 205

xiv Machine learning for geological mapping

REFERENCES .................................................................................................................... 209

APPENDIX A – MACHINE LEARNING ALGORITHM SENSITIVITY TO

IMBALANCED CLASS DISTRIBUTIONS .................................................................. 253

A.1. Introduction ..........................................................................................................................253

A.2. Methods .................................................................................................................................254

A.3. Results ....................................................................................................................................256

A.4. Discussion and Conclusions ...................................................................................................259

APPENDIX B – VARIANCE AND ENTROPY FOR MULTICLASS

CLASSIFICATION UNCERTAINTY ............................................................................ 261

APPENDIX C – SUPPLEMENTARY INFORMATION............................................. 263

C.1. Data ........................................................................................................................................263

C.2. MLA software and parameters..............................................................................................266

APPENDIX D – R PACKAGES....................................................................................... 269

APPENDIX E – DATA SOURCES AND PRE-PROCESSING .................................. 271

APPENDIX F – R CODE AND SCRIPTS...................................................................... 275

README.txt.....................................................................................................................................275