m sc steel-08-prof-zahid_siddiqi

33
Steel Structures SE-505 Plastic Analysis and Design of Structures M.Sc. Structural Engineering

Upload: rizwan-khurram

Post on 17-Aug-2015

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M sc steel-08-prof-zahid_siddiqi

Steel Structures

SE-505

Plastic Analysis and Design of Structures

M.Sc. Structural Engineering

Page 2: M sc steel-08-prof-zahid_siddiqi

Example

Design the following two bay single story frame with the working loads as shown in the figure.

Assume that the positive hinges are formed at the midspans and use the following load combinations:

1. 1.2D + 1.6L

2. 1.2D + 1.6L + 0.8W

3. 1.2D + 0.5L + 1.3W

Page 3: M sc steel-08-prof-zahid_siddiqi

30m 20m

8m

D = 5 kN/mL = 5 kN/m

25 kN/m

1. Structure And Loading

First And Second CombinationsLet w = 1.2 × 5 + 1.6 × 5 = 14 kN/mHorizontal load = 0.8 × 25 × 8 / 2 = 80 kN

= 5.72 w

Page 4: M sc steel-08-prof-zahid_siddiqi

Third Combination

Let w = 1.2 × 5 + 0.5 × 5 = 8.5 kN/mHorizontal load = 1.3 × 25 × 8 / 2 = 130 kN

= 15.30 w

5.72 w or2.68 (5.72 w)

Mp

Mp k1 Mp

k1 Mpk2 Mp

A

B

CD

E F

15 w 10 w7.5 w 12.5 w 5 w

Page 5: M sc steel-08-prof-zahid_siddiqi

2. Relative Mp Values

Let

Plastic moment capacity for beam BC = Mp

Then plastic moment capacity for column AB = Mp

The factor k1 will be calculated according to the ratio of simply supported moments for the spans BC and CD.

This ratio simplifies to the ratio of the square of spans, if the load is the same.

2

2

BC

CD

LL

2

2

3020

k1 = = = 0.44

Page 6: M sc steel-08-prof-zahid_siddiqi

Mp 0.44 Mp

k2 Mp

Use same Mp value of k1 Mp for the column DE.

Find k2 for the equilibrium of Joint – C, but having certain minimum value.

k2 = 1 − 0.44 = 0.56(not less than 0.5 times the larger Mp value)

3. Analysis i) Beam BC Mechanism 15w

θ θ

B CWE = 15w × 15θ = 225 w θWI = 4 Mp θw = 0.0178 Mp

Page 7: M sc steel-08-prof-zahid_siddiqi

10w

θ θ

C D

ii) Beam CD Mechanism

WE = 10w × 10θ = 100 w θ

WI = 0.44 Mp 4θ

w = 0.0176 Mp

iii) Panel Mechanism

WE = 5.72w × 8θ = 45.76 w θor = 15.3w × 8θ = 122.4 w θWI = 2 Mp θ + 2 × 0.56Mp θ

+ 2 × 0.44Mp θ = 4 Mp θ

w = 0.0874 Mp or 0.0326 Mp

5.72 w or15.3 w

Page 8: M sc steel-08-prof-zahid_siddiqi

iv) Joint C Mechanism

WE = 0

WI = 2 Mp θ θ

θθ

v) Combined Mechanism [(i) + (iii)]

WE = (225 + 45.76) w θ= 270.76 w θ

or = (225 + 122.4) w θ= 347.4 w θ

WI = 6 Mp θ

w = 0.0222 Mp or 0.0173 Mp

Page 9: M sc steel-08-prof-zahid_siddiqi

5.72 w or15.3 w

15 w 10 w

4. Reactions For Critical Mechanisms

A. Reactions For Mechanism (v) For 3rd Combination

Mp = 8.5 / 0.0173 = 491.3 kN-m

2 × 491.3 − 7.45 × 8 + 8.5 × 152 / 2 − VA × 15 = 0⇒ VA = 125.28 kN

Page 10: M sc steel-08-prof-zahid_siddiqi

VE = 8.5 × 20 / 2 = 85 kN

VF = 8.5 × 50 − 85 − 125.28 = 214.2 kN

HA = 130.3 − 68.8 − 54.05 = 7.45 kN

130.3 kN

8.5 kN/m

A

BC D

EF

491.3 275.1 216.2

216.2275.1

491.3 216.2

491.37.4568.8 54.05

54.05

214.2

68.87.45

125.28 85

Page 11: M sc steel-08-prof-zahid_siddiqi

B. Reactions For Mechanism (v) For 2nd Combination

Mp = 14 / 0.0222 = 630.6 kN-m

630.6 + 77.6 × 8 + 14 × 152 / 2 − VA × 15 = 0⇒ VA = 188.4 kN

VE = 14 × 20 / 2 = 140 kN

VF = 14 × 50 − 188.4 − 140 = 371.6 kN

HA = 80.08 − 88.3 − 69.4

= 77.6 kN (towards the right)

Page 12: M sc steel-08-prof-zahid_siddiqi

80.08 kN

14 kN/m

A

BC D

EF

630.6 353.2 277.5

277.5353.2

630.6 277.5

630.677.688.3 69.4

69.4

371.6

88.377.6

188.4 140

Page 13: M sc steel-08-prof-zahid_siddiqi

C. Reactions For Mechanisms (i) And (ii) For 1st Combination

14 kN/m

A

BC D

EF

397.75 222.75 175

350795.5

350

795.5

65.6

350

83.5149.2

210 140

795.5

445.5 350

Page 14: M sc steel-08-prof-zahid_siddiqi

* Moments at bases of columns may be taken equal to half of the top moments as carry-overs.

* Beams have equal end moments and hence the vertical reactions are equal to simply supported reactions.

5. Bending Moment Diagrams

6. Selection Of Sections

If the sections for dmin of beams are not available or are highly uneconomical, Ireq for partially fixed ends may be checked.

Page 15: M sc steel-08-prof-zahid_siddiqi

7. Check Moment MagnificationRevise the column and beam sections accordingly.

8. Check Compactness Of Sections9. Satisfy Interaction Equations For Columns10. Check Interaction Equations For Other

Combinations11. Check Shear12. Decide Lateral BracingConsider both the critical lengths Lp and Lpd. Also decide the unbraced lengths of columns to prevent buckling about minor axis.

Page 16: M sc steel-08-prof-zahid_siddiqi

13. Design Three Connections

14. Design Three Base Plates

Example

Design the given gable frame with haunched connections for the following load cases:

1.2D + 1.6L

1.2D + 0.5L + 1.3W

Page 17: M sc steel-08-prof-zahid_siddiqi

9m 9m

6m

D = 5 kN/m, L = 10 kN/m

10 kN/m

2.5m

Page 18: M sc steel-08-prof-zahid_siddiqi

1. LoadingCase I

Let w = 1.2 × 5 + 1.6 × 10 = 22 kN/m

Case II

Let w = 1.2 × 5 + 0.5 × 10 = 11 kN/m

Horizontal load = 1.3 × 10 × 8.52 / 2 = 78.27 kN= 7.12 w

Page 19: M sc steel-08-prof-zahid_siddiqi

2. Relative Plastic Moment ValuesMp – values of the girder at the end of the haunch (point – A) and at the maximum moment section (point – B) close to the crown should be the same, although the moments will be opposite in direction.

Mp – values of the column may be different and can be found from the moment diagram.

Let

Mp = value of Mp required at the haunch point

Page 20: M sc steel-08-prof-zahid_siddiqi

22 95.2 +

3341.99

×

MA and MB = value of Mp required for the girder

Length of haunch along the girder = L / 10 to L / 6

= 3 m

Length of the haunch along the column

= 2/3rd of length along the beam = 2 m

Total inclined length of one girder =

= 9.341 m

Horizontal length of haunch = = 2.89 m

Page 21: M sc steel-08-prof-zahid_siddiqi

3. AnalysisCase I:

x

2.89m

A

A

B

B

6H 6H8.5H

891 kN-m

Page 22: M sc steel-08-prof-zahid_siddiqi

289.222 2×

95.2 H

Let

Plastic moment required at the haunch point

= Mp = 6H

Due to the presence of the haunch, let the hinges be formed at section A and B.

MA = 22 × 9 × 2.89 − − 6H −

= 480.3 − 1.134 Mp

× 2.89

222 2x×

95.2 HMB = 22 × 9 × x − − 6H −

= 198 x − 11 x2 − Mp − 0.046 Mp × x

× x

Page 23: M sc steel-08-prof-zahid_siddiqi

Now, MB = − MA

(as both must be equal and opposite)198 x − 11 x2 − Mp − 0.046 Mp × x

= 480.3 − 1.134 Mp

Mp = x

xx046.0134.2

3.48019811 2

+++−

To get the minimum collapse load or the maximum required Mp value,

dxdM p

= 0

(−11x2 + 198 x + 480.3) (0.046) − (2.134 + 0.046 x) (−22 x + 198) = 0

Page 24: M sc steel-08-prof-zahid_siddiqi

0.506 x2 + 46.948 x − 400.436 = 0

x = 7.863

Mp = 543.8 kN-m

MA = − 136.3 kN-m

MB = 136.3 kN-m

Column moment = 362.53 kN-m

Page 25: M sc steel-08-prof-zahid_siddiqi

22 kN/m

120.65543.8

362.53

543.8

2 m

543.8 / 6 = 90.63

198

Page 26: M sc steel-08-prof-zahid_siddiqi

Case II:11 kN/m

2.5 m

HH − T

T = 78.27 kN

6 m

A

B

18 m

Page 27: M sc steel-08-prof-zahid_siddiqi

x

A

A

B

B

6H 6H8.5H

445.5 kN-m

469.62 kN-m

The negative moment on the right side (section A) is more as the simply supported positive moment here is less.

However the positive moment (section B) is greater on the left side.

Page 28: M sc steel-08-prof-zahid_siddiqi

289.211 2×

1889.262.469 ×

95.2 H

Let plastic moment required at the haunch point

= Mp = 6H

Due to the presence of the haunch, let the hinges be formed at section A and B.

MA = 99 × 2.89 − +

− 6H − × 2.89

= 315.57 − 1.134 Mp

211 2x×

1862.469 x×

95.2 H

MB = 99 × x − + 469.62 −

− 6H − × x

Page 29: M sc steel-08-prof-zahid_siddiqi

MB = 72.91 x − 5.5 x2 − Mp − 0.0463 Mp × x+ 469.62

Now, MB = − MA

(as both must be equal and opposite)

72.91 x − 5.5 x2 − Mp − 0.0463 Mp × x + 469.62

= 315.57 − 1.134 Mp

Mp = xxx

0463.0134.219.78591.725.5 2

+++−

To get the minimum collapse load or the maximum required Mp value,

dxdM p = 0

Page 30: M sc steel-08-prof-zahid_siddiqi

(−5.5x2 + 72.91 x + 785.19) (0.0463) − (2.134 + 0.0463 x) (−11 x + 72.91) = 0

0.25465 x2 + 23.474 x − 119.236 = 0

x = 4.827 m

Mp = 428.0 kN-m

MA = − 169.8 kN-m

MB = 169.8 kN-m

Column moment = 285.3 kN-m

Page 31: M sc steel-08-prof-zahid_siddiqi

11 kN/m

428.0

285.3

78.27

2 m

428 / 6 = 71.33

125.1

6.94

72.91

41.645

Page 32: M sc steel-08-prof-zahid_siddiqi

4. Initial Selection Of SectionsA. Girder:

Mp = 169.8 kN-m

Z = 2509.0108.169 6

××

W 360 × 44 is selected with the following properties:

A = 5710 mm2; d = 352 mm; bf = 171 mm; tf = 9.8 mm; tw = 6.9 mm

φb Mp = 174.40 kN-m; Lp = 1.88 m; Lr = 5.53 m; rx = 146mm; ry = 37.8 mm

= 755 × 103 mm3

Page 33: M sc steel-08-prof-zahid_siddiqi

Concluded