m. carson, university of sheffield, ukdmc ilias-valencia-april 15 2005 gamma backgrounds, shielding...

17
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, Gamma backgrounds, shielding and veto shielding and veto performance for dark performance for dark matter detectors matter detectors M. Carson, University of Sheffield

Upload: shonda-lloyd

Post on 16-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Gamma backgrounds, shielding Gamma backgrounds, shielding and veto performance for dark and veto performance for dark

matter detectorsmatter detectors

M. Carson, University of Sheffield

Page 2: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Sources of radioactivitySources of radioactivity

• Gammas/neutrons from Uranium and Thorium decay chains.

• Gammas from 60Co (1.17 MeV, 1.33 MeV) and 40K (1.46 MeV).

• Radon and 85Kr (in Xe).

• External sources: rock, laboratory …

• Internal sources: readout (PMTs), copper, steel, target …• Aim is to figure out the main contributions to background

signal in the target and develop techniques to remove them: shielding, active veto, muon veto …

Page 3: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Th chain decaysb1: with; b0: without Coulomb correction

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

25 1025 2025 3025 4025 5025 6025 7025 8025 9025

E (keV)

DN

(/5

0 k

eV b

in/d

ecay

)

a

b1

b0

g

c.e.

U chain decaysb1: with; b0: without Coulomb correction

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

25 1025 2025 3025 4025 5025 6025 7025 8025 9025

E (keV)

DN

(/5

0 k

eV b

in/d

ecay

)

a

b1

b0

g

c.e.

Page 4: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Radon and KrRadon and Kr• 222Rn from decay chain of 238U.

• Rn decay in air produces alpha, beta and gamma radiation. Detector vessel can shield against alpha and beta radiation but gammas may deposit energy in target.

• Beta decay of 214Pb and 214 Bi gives main contribution to gammas from Rn.

• In liquid Xenon, 85Kr beta-decay can also deposit energy in target.

Page 5: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Model detectorModel detector

250 kg liquid xenon

CH2

Pb

PMTs

Cu (1m diameter)

Page 6: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Contamination levelsContamination levels

U (ppb) Th (ppb) K Co60 (ppb)

PMT (R8778) 4 4 0.31 ppb 1.9×10-9

Cu Vessel 0.02 0.02 1 ppb N/A

NaCl 60 300 1300 ppm N/A

Page 7: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Model detectorModel detector

NaCl rock

Page 8: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Gammas from rockGammas from rock

• A is spectrum of gammas from rock (input). Total rate 0.09 cm -2 s-1.

• B, C, D, E after 5, 10, 20, 30 cm of lead shielding.

• F shows gamma spectrum after 20 cm Pb + 40 g cm-2 CH2.

Page 9: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Energy deposition in targetEnergy deposition in target

0.9 kg-1 day-1

0.03 kg-1 day-1

0.004 kg-1 day-1

0.00002 kg-1 day-1

+ 40 cm CH2

+ 40 cm CH2

2-10 keV 222Rn (10 Bq/m3)

PMTs

85Kr (5 ppb)

Copper vessel

10 cm Pb + 40 cm CH2

20 cm Pb + 40 cm CH2

Page 10: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Veto performanceVeto performance

• Detector is 250 kg of liquid Xe viewed by array of R8778 PMTs contained in copper vessel.

• Surrounded by CH2 veto in stainless steel container 0.5 cm thick.

• 10 cm lead shielding outside.

• Neutrons and gammas generated in copper vessel and propagated isotropically through the detector.

• Internal neutrons only, lead shielding reduces external neutron flux.

Page 11: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Source neutron spectrum Source neutron spectrum (Copper vessel)(Copper vessel)

Page 12: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Efficiency for neutronsEfficiency for neutrons

• Graph shows veto efficiency as a function of veto threshold energy for 5, 10, 20, 30 and 40 g cm-2 (CH2 ρ = 1 g cm-3).

• Xenon recoils are between 10-50 keV (2-10 keVee).

• Proton recoils only.

• Quenching factor for protons is 0.2×E1.53 (E in MeV).

• Efficiency =

• Addition of Gd to CH2 can help improve the efficiency by detecting gamma from neutron capture on Gd.

recoilsescoincidenc

##

Page 13: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Neutron captureNeutron capture• Neutrons can be captured anywhere in the

set-up and subsequent gamma may deposit energy in veto.

• Efficiency increases from 65% to 82% with increasing Gd loading.

• Counting either proton recoils or neutron capture efficiency can increase to 89%.

Xe

n

0.2 % Gd NC only

NC only

NC & || PR

Page 14: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

RealityReality• Have assumed full 4π veto coverage and

infinite time window to detect gammas from neutron capture (not very likely).

• Capture time (eτ) inversely proportional to Gd loading: τ = 30μs for 0.1% Gd and 6μs for 0.5% Gd.

• For protons τ = 200 μs.

• If time window is reduced to 100 μs then efficiency drops to 82%.

• For more realistic geometry get 82% efficiency (and 70% with 100μs time window).

• One possibility is for a modular veto design. This means less coverage and more gamma/neutron emitting material.

Passive CH2with Gd

Page 15: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

Internal gammasInternal gammas

Spectrum of gammasentering target fromCu vessel

Page 16: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

GammasGammas

• Veto configuration optimised for neutrons – 40 g cm-2, 0.2 % Gd.

• For gammas from copper vessel or PMTs get 40% efficiency between 2-10 keVee, above 100 keV in veto.

• Get absorbtion on the Cu vessel walls, veto container and PMTs.

• Increasing the energy range causes efficiency to drop.

Compton

Photoelectric

Page 17: M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April 15 2005 Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,

M. Carson, University of Sheffield, UKDMC

ILIAS-Valencia-April 15 2005

ConclusionsConclusions

• 70% - 80% veto efficiency for internal neutrons.

• 40% efficiency for internal gammas.

• Precise numbers depend on detector configuration.

• 10 cm Pb is enough to shield this model detector (of course, depends upon internal contamination).

• Radon gas within the shielding may present a problem (ventilation?).