m. apollonio

23
m. apollonio 7/7/2010 CM27 - RAL 1 Beam-Line Analysis

Upload: jesse

Post on 13-Jan-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Beam-Line Analysis. m. apollonio. 1. MC (G4Beamline). DATA. M0 10-240. MC (G4Beamline). DATA. M1 10-240. Characterizing the BL  MATRIX. Intensive Program (started in June with CR as MoM) Choose Range of Momenta  initial optics: M 0 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: m. apollonio

m. apollonio

7/7/2010 CM27 - RAL 11

Beam-Line Analysis

Page 2: m. apollonio

7/7/2010 CM27 - RAL 2

MC (G4Beamline)

DATA M0 10-240

Page 3: m. apollonio

7/7/2010 CM27 - RAL 3

MC (G4Beamline)

DATA M1 10-240

Page 4: m. apollonio

7/7/2010 CM27 - RAL 4

Page 5: m. apollonio

7/7/2010 CM27 - RAL 55

- Intensive Program (started in June with CR as MoM)- Choose Range of Momenta initial optics: M0 - scan of the DS triplets (and single Q4,..Q9) for some relevant optics

- define variation of Twiss Parameters as a function of optics- MC simulation - DATA Analysis - Comparison

- Optimize M0 Mopt: awesome or awful?- DATA Analysis

Characterizing the BL MATRIX

(*) 700mV ~ 20 mu-/spill

Page 6: m. apollonio

7/7/2010 CM27 - RAL 6

- The BL can be thought as constituted by TWO blocks: US (=PIONS) and DS (=MUONS)- BL momentum scale is a pair of values (P0 = momentum at target, PSol= momentum at Decay Solenoid exit, or D2)- P0 defines the momentum scale for PIONS- PSol defines the momentum scale for MUONS

- Momentum scale(s) must match the US Diffuser face values initial optics: M0 easy, once defined Pdif we can work back Psol and P0 through the tables. However the Twiss parameters at Diffuser are “random”

- Recall also the main philosophy in defining (P0, Psol)- select Psol such that BACKWARD GOING muons are captured- so increase PURITY

Page 7: m. apollonio

7/7/2010 CM27 - RAL 7

kinematic limits

238 MeV/c

195 MeV/c

@ the Dksol exit (G4Beamline)

6-200

10-240

6-240

Page 8: m. apollonio

7/7/2010 CM27 - RAL 8

3,140Pdif=151=0.2

=0.56mt=0.0mm

3,140Pdif=151=0.2

=0.56mt=0.0mm

3,200Pdif=207=0.1

=0.36mt=0.0mm

3,200Pdif=207=0.1

=0.36mt=0.0mm

3,240Pdif=245=0.1

=0.42mt=0.0mm

3,240Pdif=245=0.1

=0.42mt=0.0mm

6,140Pdif=148

=0.3 =1.13m t=5.0

6,140Pdif=148

=0.3 =1.13m t=5.0

6,200Pdif=215=0.2

=0.78mt=7.5mm

6,240Pdif=256=0.2

=0.8mt=7.5mm

6,240Pdif=256=0.2

=0.8mt=7.5mm

10,140Pdif=164=0.6

=1.98mt=10mm

10,140Pdif=164=0.6

=1.98mt=10mm

10,200Pdif=229=0.4

b=1.31mt=15.5mm

10,200Pdif=229=0.4

b=1.31mt=15.5mm

10,240Pdif=267=0.3

=1.29mt=15.5mm

10,240Pdif=267=0.3

=1.29mt=15.5mm

P(MeV/c)

140 200 240

3

Ptgt=321.3/Psol=185Pdif=151=0.2=0.56 mt=0.0 mm

Ptgt=390/Psol=231Pdif=207=0.1=0.36 mt=0.0 mm

Ptgt=453.6/Psol=265Pdif=245=0.1=0.42 mt=0.0mm

6

Ptgt=327.6/Psol=189Pdif=148=0.3=1.13 m t=5.0 mm

Ptgt=408.6/Psol=238Pdif=215=0.2=0.78 m t=7.5 mm

Ptgt=471.6/Psol=276Pdif=256=0.2=0.8 mt=7.5mm

10

Ptgt=338.4/Psol=195Pdif=164=0.6=1.98 mt=10 mm

Ptgt=429.3/Psol=251Pdif=229=0.4 =1.31 mt=15.5 mm

Ptgt=486/Psol=285Pdif=267=0.3=1.29 mt=15.5 mm

Page 9: m. apollonio

7/7/2010 CM27 - RAL 99

3,1403,140 3,2003,200 3,2403,240

6,1406,140 6,2006,200 6,2406,240

10,14010,140 10,20010,200 10,24010,240

P (MeV/c)

eN

(m

m r

ad

)

- finding the element (3,240) means to find the BL optics that matches the MICE optics for a beam of 3 mm rad at a P=240 MeV/c

- the element (10,200) is the BL optics matching a MICE beam with 10 mm rad at P=200 MeV/c

This pair is our goal: how do we get it?

Page 10: m. apollonio

7/7/2010 CM27 - RAL 1010

(*) MICE note 176

BLBL DiffuserDiffuser MICEMICE

- Hyp.: is known (~1 mm rad trace space) - we proceed backward: - fix P/N in the cooling channel- fix the optics in the cooling channel ()- solve the equations giving and t at the US face of the diffuser (*)

t

Page 11: m. apollonio

7/7/2010 CM27 - RAL 1111

- So the question becomes: - how do we “tell” the beamline to be at US_Diff?- solution(s)

- we optimise the BL by varying Q4-Q9 - let us break the BL in two parts: US and DS- in what follows I mean a beamline

Q4Q1

Dip

ole1

DK solenoidQ2 Q3

Dip

ole2

Q5 Q6 Q7 Q8 Q9

- US part: we can optimise the MAX number of pions- but not much magic left …

- DS part: - choose Q4-Q9 - shoot a beam- check at Diffuser vs “target” values- repeat

Page 12: m. apollonio

beam line: typical spectrum at the exit of the DS

7/7/2010 CM27 - RAL 12

- Rationale- select u.s. of DKSol with D1- select d.s. of DKSol with D2

- back scattered muons == purity

Page 13: m. apollonio

we already have an initial solution: the “central value”

7/7/2010 CM27 - RAL 13

3,1403,140 3,2003,200 3,2403,240

6,1406,140 6,200 6,2406,240

10,14010,140 10,20010,200 10,24010,240

Page 14: m. apollonio

7/7/2010 CM27 - RAL 14

Will it work? Pdiff = 215

In the original scheme the pi mu beamline is Ppi=444 Pmu=256Best separation PI/MU

acceptance acceptanceNB.: PD2=256 MeV/c becomes Pdif=215 MeV/c

Page 15: m. apollonio

7/7/2010 CM27 - RAL 15 195 350

Pdiff = 148 215 256

Ppi (tgt) = 350

i.o.t. accommodate several mu momenta another “shortcut” scheme was adopted (aug 2009):Define one lower Ppi ~ 350/360 and several different Pmu (we lose in purity …)

acceptance acceptance

Page 16: m. apollonio

Q4Q1

Dip

ole1

DK solenoidQ2 Q3

Dip

ole2

Q5 Q6 Q7 Q8 Q9

d.s. BL tuning: match to diffuser

P=444 MeV/c

fix D1 fix D2

7/7/2010 CM27 - RAL 1616

Page 17: m. apollonio

7/7/2010 CM27 - RAL 17

- a first round of the BL optimised (e,P) matrix has been produced in august 2009 (“shortcut”)

- however the few data taken in november reveal a pretty strange look

- one thing I dislike is using only one momentum for the pion (US) component and Select the backward going muons

Page 18: m. apollonio

http://mice.iit.edu/bl/MATRIX/index_mat.html7/7/2010 CM27 - RAL 18

Page 19: m. apollonio

RUN 1174-1177 – PI- (444MeV/c) MU- (256 MeV/c) at D2

~29.

NB: DTmu(256)= DTmu(300) * beta300/beta256 = 28.55 * .943/.923 = 29.13

0.943269

0.943269

PI- should be here: 30.44

7/7/2010 CM27 - RAL 19

Page 20: m. apollonio

?RUN 1201 – PI- (336.8MeV/c) MU- (256 MeV/c) at D2

PI- should be here: 30.44

MU- should be the same asbefore … what is that?7/7/2010 CM27 - RAL 20

Page 21: m. apollonio

7/7/2010 CM27 - RAL 21

y

x

x’

y’

COV-MAT

GenerateGaussianBeam with defined COV-MAT(arbitrary statistics)

G4Beamline Generation upTo DS

Page 22: m. apollonio

7/7/2010 CM27 - RAL 22

a) Consider all 9 cases: one Ppi + one Pmu per case (no “shortcuts”)b) Define initial BL currents (from scaling tables)c) Check tuning with G4Beamlined) use simulation output at DS to infer the COV-MAT of the beame) Generate a Gauss-beam with that CovMat:

a) E.g. MatLab tool, fast + any number of particles …f) Propagate / optimise this beam in the DS section

a) By hand (GUI tool)b) By algorithm (GA)

g) check results versus real data …

wrap-up …

Page 23: m. apollonio

7/7/2010 CM27 - RAL 23