l.v. fil’kov, v.l. kashevarov lebedev physical institute dipole and quadrupole polarizabilities of...

24
L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Post on 19-Dec-2015

223 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

L.V. Fil’kov, V.L. Kashevarov

Lebedev Physical Institute

Dipole and quadrupole polarizabilities of the pion

NSTAR 2007

Page 2: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

1. Introduction

2.

3. p n

4.

5. A A

6. Discussion

7. Summary

NSTAR 2007

Page 3: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

The dipole (, ) and quadrupole (,) pion polarizabilities are defined through the expansion of the non-Born helicity amplitudes

of the Compton scattering on the pion over t at s=

s=(q1+k1)2, u=(q1–k2)2, t=(k2–k1)2

M++(s=μ2,t 2(α1 - β1) + 1/6(α2 - β2)t ] + O(t2)

M+-(s=μ2,t 2(α1 + β1) + 1/6(α2+β2)t] + O(t2)

(α1, β1 and α2, β2 in units 10-4 fm3 and 10-4 fm5, respectively)

Page 4: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

→ 0 0

L. Fil’kov, V. Kashevarov, Eur. Phys. J. A5, 285 (1999); Phys. Rev. C72, 035211 (2005)

Page 5: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

s-channel: ρ(770), ω(782), φ(1020);

t-channel: σ, f0(980), f0(1370), f2(1270), f2(1525)

Free parameters: mσ, Γσ, Γσ→,

(α1-β1), (α1+β1), (α2-β2), (α2+β2)

The σ-meson parameters were determined from the fit to the

experimental data on the total cross section in the energy region

270 - 825 MeV. As a result we have found:

mσ=(547± 45) MeV, Γσ =(1204±362) MeV, Γσ→=(0.62±0.19) keV

0 meson polarizabilities have been determined in the energy

region 270 - 2250 MeV.

A repeated iteration procedure was used to obtain stable results.

Page 6: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

The total cross section of the reaction →0 0

H.Marsiske et al., Phys.Rev.D 41, 3324 (1990)

J.K.Bienlein, 9-th Intern. Workshop on Photon-Photon

Collisions, La Jolla (1992)

our best fit

Page 7: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

0 meson polarizabilities

[1] L .Fil’kov, V. Kashevarov, Eur.Phys.J. A 5, 285 (1999)

[2] L. Fil’kov, V. Kashevarov, Phys.Rev. C 72, 035211 (2005)

[3] J. Gasser et al., Nucl.Phys. B728, 31 (2005)

[4] A. Kaloshin et al., Z.Phys. C 64, 689 (1994)

[5] A. Kaloshin et al., Phys.Atom.Nucl. 57, 2207 (1994)

Two-loop ChPT calculations predict a positive value of (α2+β,

in contrast to experimental result.One expects substantial correction to it from three-loop

calculations.

Page 8: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

+ p → + + + n (MAMI)J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005)

Page 9: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

where t = (pp –pn )2 = -2mp Tn

The cross section of p→ + n has been calculated in

the framework of two different models:

I. Contribution of all pion and nucleon pole diagrams.

II. Contribution of pion and nucleon pole diagrams and

(1232), P11(1440), D13(1520), S11(1535) resonances,

and σ-meson.

Page 10: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

To decrease the model dependence we limited ourselves

to kinematical regions where the difference between model-1

and model-2 does not exceed 3% when (α1 – β1 =0.

I. The kinematical region where the contribution of (α1 – β1)+ is

small: 1.5 2 < s1 < 5 2

Model-1

Model-2

Fit of the experimental data

The small difference between the theoretical curves and the experimental data was used for a normalization of the experimental data.

Page 11: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

II. The kinematical region where the (α1 – β1)+ contribution

is substantial:

< s1 < 152, -122 < t < -22

(α1 – β1)+= (11.6 ± 1.5st ± 3.0sys ± 0.5mod) 10-4 fm3

ChPT (Gasser et al. (2006)): (α1 –β1 (5.7±1.0) 10-4 fm3

Page 12: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

→+ -

L.V. Fil’kov, V.L. Kashevarov, Phys. Rev. C 73, 035210 (2006)

Old analyses: energy region 280 - 700 MeV (α1-β1)± = 4.4 - 52.6

Our analysis: energy region 280 - 2500 MeV,DRs at fixed t with one subtraction at s=2,DRs with two subtraction for the subtraction functions,subtraction constants were defined through the pionpolarizabilities.

s-channel: ρ(770), b1(1235), a1(1260), a2(1320)t-channel: σ, f0(980), f0(1370), f2(1270), f2(1525)Free parameters: (α1-β1)±, (α1+β1)±, (α2-β2)±, (α2+β2)±

Page 13: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Charged pion polarizabilities

[1] L. Fil’kov, V. Kashevarov, Phys. Rev. C 72, 035211 ( 2005).

[2] J. Gasser et all., Nucl. Phys. B 745, 84 (2006).

Page 14: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Total cross section of the process →

our best fit

Born contribution

calculations with α1 and β1 from ChPT fit with α1 and β1 from ChPT

Page 15: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Angular distributions of the differential cross sections

Mark II – 90

CELLO - 92

╬ VENUS - 95

Calculations using our fit

|cos*|

d/

d(|

cos

*|<

0.6)

(n

b)

: Bürgi-97, : our fit

, Gasser-06

Page 16: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

A→ A

t 10(GeV/c)2dominance of Coulomb bremsstrahlung t 10 Coulomb and nuclear contributions are of similar

size t 102dominance of nuclear bremsstrahlungSerpukhov (1983): Yu.M. Antipov et al., Phys.Lett. B121, 445(1983)

E1=40 GeV Be, C, Al, Fe, Cu, Pb

|t| < 6x104 (GeV/c)2

:

13.6 2.82.4

2 /E1

Page 17: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Charged pion dipole polarizabilities

Page 18: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Dispersion sum rules for the pion polarizabilities

Page 19: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

The DSR predictions for the charged pions polarizabilities in

units 10-4 fm3 for dipole and 10-4 fm5 quadrupole polarizabilities.

The DSR predictions for the meson polarizabilities

Page 20: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Contribution of vector mesons

ChPT

DSR

Page 21: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Discussion

1. (α1 - β1)±

The σ meson gives a big contribution to DSR for (α1 –β1). However, it was not taken into account in the ChPT

calculations. Different contributions of vector mesons to DSR and

ChPT.

2. one-loop two-loops experiment

(α2-β2)± = 11.9 16.2 [21.6] 25 +0.8-0.3 The LECs at order p6 are not well known. The two-loop contribution is very big (~100%).

3. (α1,2+β1,2)±

Calculations at order p6 determine only the leading order term in the chiral expansion.

Contributions at order p8 could be essential.

Page 22: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

Summary

1. The values of the dipole and quadrupole polarizabilities of 0 have been found from the analysis of the data on the process →0 0.

2. The values of (α1± β1)0 and (α2 –β2)0 do not conflict within the errors

with the ChPT prediction.

3. Two-loop ChPT calculations have given opposite sign for (α2+β2)0.

4. The value of (α1 –β1)± =13.0+2.6-1.9 found from the analysis of the data

on the process → + - is consisted with results obtained at MAMI (2005) (p→ + n), Serpukhov (1983) Z → Z), and Lebedev Phys. Inst. (1984) (p→ + n).

5. However, all these results are at variance with the ChPT predictions. One of the reasons of such a deviation could be neglect of the σ- meson contribution in the ChPT calculations.

6. The values of the quadrupole polarizabilities (α2 ±β2 )± disagree with

the present two-loop ChPT calculations.

7. All values of the polarizabilities found agree with the DSR predictions.

Page 23: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

and contributions to 1–1

(11)±

Page 24: L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007

contribution to DSR