lte tdd radio interface

131
 LTE TDD Demo Downlink Specification(step 0) ED 01 Release MAD 28.07.2008 3BK 11251 0313 DSZZA 1 /3    A    l    l   r    i   g    h    t   s   r   e   s   e   r   v   e    d  .    P   a   s   s    i   n   g   o   n   a   n    d   c   o   p   y    i   n   g   o    f    t    h    i   s    d   o   c   u   m   e   n    t  ,   u   s   e   a   n    d   c   o   m   m   u   n    i   c   a    t    i   o   n   o    f    i   s    t   c   o   n    t   e   n    t   s   n   o    t   p   e   r   m    i    t    t   e    d   w    i    t    h   o   u    t   w   r    i    t    t   e   n   a   u    t    h   o   r    i   z   a    t    i   o   n    f   r   o   m     A    l   c   a    t   e    l  .  Site Shanghai   AL CATEL -LUCENT MAD Originator(s) LTE TDD Radio In terf ace LTE TDD Radio Interface split to two parts: 1 st par t: LTE TDD Dem o Downlin k Specificat ion P 1 P70 2 nd part: LTE TDD Demo Uplink Specification P71 ~ P133 Site Shanghai   AL CATEL -LUCENT MAD Originator(s) LTE TDD Demo Downlink Specification(step 0) Domain  :  eNodeB Rubric  :  LTE Type :  Sub System Implem ent ation Proposal Distribution Codes  Internal :  External : PREDISTRIBUTION: ... ...  AB STRACT  Th is d ocumen t spec if ie s t h e LTE TDD d own li n k p h y sic al la y er fo r Alc at el -Lucen t SBel l’ s LTE  TDD Demo sy st em.S0(step 0).  Th is sp ec if ic at io n is de v el op ed b as ed o n Alc at el -Lu cen t s LTE p r ot otype sys t em in Pha se D2.4 and aims at a joint integration step with UE partners.  Th e major downlink f ea t ures of LTE TDD Demo S0 ar e: - 10MHz bandwidth - support LT E TDD UL/DL allocation configurat ion 5 - Adaptat ion of 3GPP num erology (1m s subfram e) - Adaptat ion of Rel. 8 coding chain (QP P interleaver) - Adaptation of Rel. 8 reference and synchronisation signal positions - Adaptive SISO with QPSK, 16QAM and 64QAM modulation: o Link adaptation using CQI signalled in UL not supported at S0 o HARQ using ACK/NACK signalled in UL o Enhanced scheduling (GBR/non-GBR, frequency-selective/diverse) not supported at S0 o 2Tx diversity (SFBC) not supported at S0 - Stat ic 2x2 MIMO (not support ed at S0) wit h QP SK, 16QAM and 64QAM m odulat ion:

Upload: usman-siddiqui

Post on 14-Apr-2018

260 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 1/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 1/3

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Site 

Shanghai  ALCATEL-LUCENT MAD

Originator(s) LTE TDD Radio Interface

LTE TDD Radio Interface split to two parts:1st part: LTE TDD Demo Downlink Specification P1~P702nd part: LTE TDD Demo Uplink Specification P71 ~ P133

Site Shanghai 

 ALCATEL-LUCENT MAD

Originator(s) LTE TDD Demo Downlink

Specification(step 0)

Domain  :  eNodeB

Rubric  :  LTE

Type  :  Sub System Implementation Proposal

Distribution Codes  Internal :   External :

PREDISTRIBUTION:

...

...

 ABSTRACT

 This document specifies the LTE TDD downlink physical layer for Alcatel-Lucent SBell’s LTE TDD Demo system.S0(step 0).

 This specification is developed based on Alcatel-Lucent’s LTE prototype system in PhaseD2.4 and aims at a joint integration step with UE partners.

 The major downlink features of LTE TDD Demo S0 are:- 10MHz bandwidth- support LTE TDD UL/DL allocation configuration 5- Adaptation of 3GPP numerology (1ms subframe)- Adaptation of Rel. 8 coding chain (QPP interleaver)- Adaptation of Rel. 8 reference and synchronisation signal positions- Adaptive SISO with QPSK, 16QAM and 64QAM modulation:

o Link adaptation using CQI signalled in UL not supported at S0o HARQ using ACK/NACK signalled in ULo Enhanced scheduling (GBR/non-GBR, frequency-selective/diverse) not

supported at S0o 2Tx diversity (SFBC) not supported at S0

- Static 2x2 MIMO (not supported at S0) with QPSK, 16QAM and 64QAM modulation:

Page 2: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 2/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 2/3

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

o Dual-stream 2-codeword single-user MIMO (SU-MIMO)o Dual-stream 2-codeword multi-user MIMO (MU-MIMO)

- L1/L2 control signalling:o DL scheduling grants for initial and retransmissionso UL scheduling grants and power control for initial transmissionso UL time advance correctiono System frame number (SFN)o DL ACK/NACK for UL HARQ

- Up to 2 users in single cell with aggregate data rates of up to 19Mbps indownlink[TFRC51]

-  Trial network with up to 1 eNB with up to 1 sector per eNB

 The higher layer protocol aspects are specified in a companion document.

 Approvals 

Name

App.

Herold Bernd Zhang J ianlin Li Chunting

Name

App.

 TPL TPL R&D director

Page 3: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 3/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 3/3

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

REVIEW

Ed. 01 Proposal 01 2008-05-16Ed. 01 Proposal 02 2008-05-21Ed. 01 Proposal 03 2008-06-10

Ed. 01 Proposal 04 2008-06-27

HISTORY

Ed01P01 16-May-08 First proposal of LTE TDD Demo DownlinkSpecification(step 0) based on Alcatel-Lucent’s LTEprototype system in Phase D2.4 

Ed01P02 21-May-08 Modified according to internal commentsEd01P03 10-J une-08 Modified according to Thomas’s commentsEd01P04 27-June-08 Modified according to “Memo of LTE TDD Demo

specification step0”Ed01Rel 28-J uly-08 Release based on Ed01P04

INTERNAL REFERENCED DOCUMENTS

Not applicable.

FOR INTERNAL USE ONLY

Not applicable.

Co-authors of this paper are:

Not applicable.

Page 4: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 4/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 1/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l . Sub System Implementation Proposal

TABLE OF CONTENTS

1  REFERENCED DOCUMENTS ........................................................................................6 

2  RELATED DOCUMENTS................................................................................................6 

3  OVERVIEW......................................................................................................................6  

3.1  Physical Layer Parameters ....................................................................................7 

3.2  Physical Channels and Signals .............................................................................8 

3.3  Downlink Transmission Chain ..............................................................................8 

3.4  Cell Ident if ication ....................................................................................................8 

4  DOWNLINK STRUCTURE ..............................................................................................9 

4.1  Time Domain Structure[12][13] .............................................................................9 

4.2  Time and Frequency Domain Structure..............................................................10 

5  REFERENCE SIGNALS ................................................................................................11 

5.1  Physical Resource Mapping ................................................................................12 

5.2  Sequence Generation ...........................................................................................14 

5.2.1  Pseudo-Random Sequence Generation..................................................15 

6  SYNCHRONISATION SIGNALS ...................................................................................16 

6.1  Primary Synchronisation Signal..........................................................................18 

6.1.1  Physical Resource Mapping....................................................................18 

6.1.2  Sequence Generation..............................................................................18 

6.2  Secondary Synchronisation Signals...................................................................18 

6.2.1  Physical Resource Mapping....................................................................18 

6.2.2  Sequence Generation..............................................................................19 

6.2.2.1  eNB-Specific Short Codes..............................................................19 

6.2.2.2  eNB-Specific Scrambling Codes.....................................................19 

6.2.2.3  Sector-Specific Scrambling Codes .................................................20 

6.2.2.4  Sector-Specific Scrambling and Interleaving..................................20 

7  PHYSICAL DOWNLINK CONTROL CHANNEL ...........................................................21 

7.1  Downlink Scheduling Grants ...............................................................................22 

7.1.1  Message Contents...................................................................................22 

7.1.1.1  Message Type Indicator .................................................................22 

7.1.1.2  Resource Assignment.....................................................................22 

7.1.1.3  Duration of Assignment..................................................................24 

7.1.1.4  Multiple Antenna Related Information.............................................24 7.1.1.5  Modulation Scheme........................................................................25 

7.1.1.6  Payload Size...................................................................................25 

7.1.1.7  Hybrid ARQ Process Number.........................................................26 

7.1.1.8  Redundancy Version ......................................................................26 

7.1.1.9  New Data Indicator.........................................................................27 

7.1.1.10  UE Identity......................................................................................27 

7.1.2  Coding, Modulation and Physical Resource Mapping .............................27 

7.1.2.1  Payload Mux...................................................................................28 

7.1.2.2  UE Specific CRC Attachment.........................................................29 

7.1.2.3  Channel Coding..............................................................................29 

7.1.2.4  Rate Matching.................................................................................29 

Page 5: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 5/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 2/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7.1.2.5  Block Interleaver.............................................................................29 

7.1.2.6  Cell-Specific Scrambling.................................................................30 

7.1.2.7  QPSK Modulation...........................................................................31 

7.1.2.8  Physical Resource Mapping...........................................................31 

7.1.3  Repetition Option for Coverage Extension...............................................32 

7.2  Uplink Scheduling Grants ....................................................................................32 

7.2.1  Message Contents...................................................................................32 

7.2.1.1  Message Type Indicator .................................................................33 

7.2.1.2  Resource Assignment.....................................................................33 

7.2.1.3  Duration of Assignment..................................................................34 

7.2.1.4  Scheduling Information Request.....................................................34 

7.2.1.5  Modulation Scheme........................................................................34 

7.2.1.6  Payload Size...................................................................................34 

7.2.1.7  MU-MIMO Pairing Indicator............................................................35 

7.2.1.8   Transmission Power.......................................................................35 

7.2.1.9  ACK/NACK Indicator.......................................................................37 

7.2.1.10  UE Identity......................................................................................37 

7.2.2  Coding, Modulation and Physical Resource Mapping .............................37 7.3  Uplink Time Advance Correction ........................................................................37 

7.3.1  Message Contents...................................................................................38 

7.3.1.1  Message Type Indicator .................................................................38 

7.3.1.2   Time Adjust.....................................................................................38 

7.3.1.3  Spare Bits .......................................................................................38 

7.3.1.4  UE Group Identity...........................................................................38 

7.3.2  Coding, Modulation and Physical Resource Mapping .............................39 

7.4  System Frame Number Update............................................................................39 

7.4.1  Message Contents...................................................................................39 

7.4.1.1  Message Type and Purpose Indicators..........................................40 

7.4.1.2  System Frame Number...................................................................40 

7.4.1.3  Spare Bits .......................................................................................40 7.4.1.4  Cell Identity.....................................................................................40 

7.4.2  Coding, Modulation and Physical Resource Mapping .............................40 

7.5  DL ACK/NACK .......................................................................................................40 

7.5.1  Coding and Modulation............................................................................41 

7.5.2  Physical Resource mapping ....................................................................41 

7.6  UE Procedures ......................................................................................................43 

7.6.1  Scheduling Grants ...................................................................................43 

7.6.2  UL Time Advance Correction...................................................................44 

7.6.3  System Frame Number Update ...............................................................44 

7.6.4  DL ACK/NACK .........................................................................................45 

8  PHYSICAL DOWNLINK SHARED CHANNEL..............................................................46 8.1  Resource Assignment and User Multiplexing....................................................47 

8.2  RLC/MAC PDU Formats........................................................................................47 

8.3  Transport Formats ................................................................................................48 

8.4  Coding Chain ........................................................................................................48 

8.4.1  CRC Attachment......................................................................................50 

8.4.2  Bit Scrambling..........................................................................................50 

8.4.3  Code Block Segmentation .......................................................................50 

8.4.4  Channel Encoding....................................................................................50 

8.4.5  Hybrid ARQ (Rate Matching) ...................................................................51 

8.4.6  Resource Segmentation..........................................................................51 

8.4.7  PDSCH Interleaving.................................................................................52 

8.4.8  Physical Resource Concatenation for PDSCH ........................................55 

Page 6: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 6/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 3/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

8.5  Modulation and Physical Resource Mapping.....................................................55 

8.5.1  UE-Specific Scrambling...........................................................................55 

8.5.2  Constellation Re-Arrangement for 16QAM/64QAM.................................56 

8.5.3  Modulation Mapper..................................................................................57 

8.5.4  Spatial Multiplexing..................................................................................57 

8.5.4.1  SISO Case......................................................................................57 

8.5.4.2  2Tx Diversity (MISO) ......................................................................57 

8.5.4.3  MIMO Precoding.............................................................................58 

8.5.5  Physical Resource Mapping....................................................................58 

9  DOWNLINK TIMING......................................................................................................58 

9.1  HARQ Timing ........................................................................................................58 

9.1.1  DL HARQ Timing Relationship ................................................................59 

10  GLOSSARY ...................................................................................................................62 

11   APPENDIX – RESOURCE MAPPING EXAMPLE ........................................................63 

Page 7: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 7/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 4/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

LIST OF FIGURES

Figure 1: Frame struc ture type 2 (for 10 ms switch-point periodicity). 9 

Figure 2: Mapping of downlink reference signals in 10MHz BW case for  0=hop

 f  . 13 

Figure 3: Mapping of downlink reference signals in 10MHz BW case for  5=hop f  . 14 

Figure 4: Feedback shif t register for cell-specific pseudo-random sequence. 16 

Figure 5: Time domain struc ture of synchronisation signals(pre-delivery). 17 

Figure 6: Time domain struc ture of synchronisation signals(final delivery). 17 

Figure 7: Example of resource assignment in 10MHz BW case. 24 

Figure 8: PDCCH coding, modulation and physical resource mapping. 28 

Figure 9: PDCCH block interleaver. 30 

Figure 10: Feedback shift register for cell-specific scrambling. 31 

Figure 11: RLC/MAC PDU header. 48 

Figure 12: Coding chain for PDSCH (modif ied from [4]). 49 

Figure 13: PDSCH interleaver structure for 64QAM. 53 Figure 14: PDSCH block interleaver structure. 54 

Figure 15: Feedback shift register for UE-specific scrambling sequence. 56 

Figure 16: HARQ process number for uplink-downlink allocations configuration 5 60 

Figure 17: normal downlink subframe(w/o sync signals) physical resource

mapping example for the 10MHz BW 64 

Figure 18: Subframe1 physical resource mapping example for the 10MHz BW 65 

Figure 19: Subframe6 physical resource mapping example for the 10MHz BW 68 

LIST OF TABLES

Table 1: Downlink physical layer parameters. 7 

Table 2: Supported downlink physical channels and signals. 8 

Table 3: Uplink-downlink allocations 9 

Table 4: Lengths of DwPTS/GP/UpPTS 10 

Table 5: Frequency domain parameters for LTE DL. 10 

Table 6: Interpretation of resource assignment in 10MHz BW case. 23 

Table 7: Signalling of modulation scheme. 25 

Table 8: Redundancy version coding for QPSK. 26 

Table 9: Redundancy version coding for 16QAM and 64QAM. 26 

Table 10: Coding of MU-MIMO pairing indicator. 35 

Table 11: Power offset signalling for accumulated PUSCH power control. 37 Table 12: Orthogonal sequences of length 16. 41 

Table 13: Ac tive subcarrier indices k for DL ACK/NACK channel elements in 10MHzBW. 42 

Table 14: Example block sizes in coding chain. 50 

Table 15: Constellation re-arrangement for 64QAM. 57 

Table 16: Maximum number of UL/DL HARQ processes 59 

Table 17: k for TDD configuration 5 59 

Table 18:Uplink ACK/NACK timing index k for TDD 60 -  Table 19: HARQK  for for uplink-downlink allocations configuration 5 61 

Page 8: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 8/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 5/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

LIST OF OPEN POINTS:

Page 9: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 9/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 6/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

1 REFERENCED DOCUMENTS

[1] 3GPP TS 36.211 V8.1.0 (2007-11) "Physical Channels and Modulation (Release 8)”[2] D. Hartmann / F. Pelizza (ALU), LTE IP Traffic Concept, Phase D2.4, Ed01P03,

2007-12-03[3] LTE TDD Demo Transport Formats, step 0, Ed01P01, 2008-06-10[4] 3GPP TS 25.212 V6.10.0 (2006-12) “Multiplexing and Channel Coding (Release 6)”[5] 3GPP TS 36.212 V1.0.0 (2007-03) “Multiplexing and Channel Coding (Release 8)”[6] Alcatel-Lucent, Flexible Channel Interleaver for E-UTRA, 3GPP R1-071426, Mar.

2007 and 3GPP R1-072046, May 2007[7] V. Braun (ALU R&I), LTE Uplink, Prototype Phase D2.4, Detailed Specification,

Ed02P02, 2008-02-22 [8] 3GPP TS36.213 V8.1.0 (2007-11) “Physical Layer Procedures (Release 8)”[9] V. Braun (ALU R&I), LTE Cell Planning, Prototype Phase D2.4, Ed01P07, 2008-02-

06[10] 3GPP 36.104-810,” Base Station (BS) radio transmission and reception”

[11] LTE TDD Demo Uplink Specification(step 0)_ Ed01Rel 

[12] 3GPP TS 36.211 V8.2.0 (2008-3) "Physical Channels and Modulation (Release8)”

[13] 3GPP R1-082239 ,” Correction of the description of frame structure type 2”

[14] 3GPP R1-081124,”Way forward for TDD HARQ process”

[15] 3GPP R1-081582,” UL ACK/NACK timing for TDD”

[16] Memo of LTE TDD Demo specification step0

[17] V. Braun (ALU R&I), LTE Uplink, Prototype Phase D2.4, Detailed Specification,Ed02P04, 2008-03-10

2 RELATED DOCUMENTS

 The following related documents will be provided during the LTE prototype Phase D2.

[R1] V. Braun (ALU R&I), LTE Downlink, Prototype Phase D2, Top Level Specification[R2] “, LTE Uplink, Prototype Phase D2, Top Level Specification[R3] “, LTE Feature List, Prototype Phase D2 (Excel sheet)[R4] ALU, RLC/MAC Design for LTE, Prototype Phase D2.x, Detailed Specification

3 OVERVIEW

 The major LTE TDD Demo downlink features of step0 are:- 10MHz bandwidth- support LTE TDD UL/DL allocation configuration 5- Adaptation of 3GPP numerology (1ms subframe)- Adaptation of Rel. 8 coding chain (QPP interleaver)- Adaptation of Rel. 8 reference and synchronisation signal positions- Adaptive SISO with QPSK, 16QAM and 64QAM modulation:

o Link adaptation using CQI signalled in UL not supported at S0o HARQ using ACK/NACK signalled in ULo Enhanced scheduling (GBR/non-GBR, frequency-selective/diverse) not

supported at S0o 2Tx diversity (SFBC) not supported at S0

Page 10: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 10/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 7/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- Static 2x2 MIMO(not supported at S0) with QPSK, 16QAM and 64QAM modulation:o Dual-stream 2-codeword single-user MIMO (SU-MIMO)o Dual-stream 2-codeword multi-user MIMO (MU-MIMO)

- L1/L2 control signalling:o DL scheduling grants for initial and retransmissionso UL scheduling grants and power control for initial transmissionso UL time advance correctiono System frame number (SFN)o DL ACK/NACK for UL HARQ

- Up to 2 users in single cell with aggregate data rates of up to 19Mbps indownlink[TFRC51][16]

-  Trial network with up to 1 eNB with up to 1 sector in the eNB- PDSCH on Special subframe is not supported in S0.

 The remainder of this section gives a brief overview of the major physical layer parameters,the supported physical channels and signals and the DL transmission chain.

 The numerology and notation follow the status of 3GPP WG RAN1 Version 8.1.0 specs asagreed by 3GPP RAN1#52 meeting (Sorrento, Feb. 2008).

3.1 Physical Layer Parameters

 The major physical layer parameters are summarised in Table 1.

 Table 1: Downlink physical layer parameters.

Parameter Valuein 10MHz BW

Comment

 Transmission bandwidth 10MHzCarrier Frequency 2300MHz 3GPP Band class 40[10]Subcarrier spacing 15kHzSampling frequency 15.36MHzIFFT/FFT size 1024 samplesNumber of activesubcarriers

600 Centered around DC subcarrierDC subcarrier not counted and notallocated

Frame length 10ms Generic frame structure for TDDSubframe length 1ms

Slot length 0.5msCyclic prefix length (us,samples)

(5.21/80) x 1(4.69/72) x 6

Normal cyclic prefix

Number of OFDMsymbols per slot

7 Normal cyclic prefix

Number of consecutivesubcarriers per resourceunit

12

Number of resource unitsper subframe

50

Number of antenna ports 1 1 for SISO

Page 11: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 11/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 8/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

3.2 Physical Channels and Signals

 The supported physical channels and signals together with supported modulation schemesare summarised in Table 2.

 Table 2: Supported downlink physical channels and signals.

Physical Channels Modulation Scheme Comment

Physical Downlink SharedChannel PDSCH

QPSK, 16QAM, 64QAM Carries data from higher layers

Physical Downlink ControlChannel PDCCH

BPSK (ACK/NACK)QPSK (else)

L1/L2 control channel

Physical Signals Modulation Scheme Comment

Reference Signal BPSK Required for demodulation andmeasurements

Synchronisation Signals Zadoff-Chu (primary)BPSK (secondary)

Required to derive frame andsymbol timing, and cell ID

 The transmission power of PDCCH, reference signals and synchronisation signals shall beconstant and separately configurable by using power offsets relative to a fixed referencepower per resource element. The transmission power of PDSCH used for transmission to aUE may be adaptive on a subframe basis.

 The power step size shall be 0.1dB, and the power offsets shall have the followingparameter range and default values:

-  The non-zero resource elements of the reference signal shall be transmitted with apower offset of 0…6dB versus the reference power (default 3dB).

-  The non-zero resource elements of the synchronisation signal shall be transmittedwith a power offset of –3…+6dB versus the reference power (default 0dB).

- Resource elements used for PDCCH shall be transmitted with a power offset of –

10…+6dB versus the reference power (default 0dB).- Resource elements used for PDSCH shall be transmitted with a power offset of –20…+6dB versus the reference power (default 0dB).

Within a subframe, all non-zero resource elements of a physical channel or signal that aretransmitted to a UE are transmitted with the same power.

3.3 Downlink Transmission Chain 

 The physical channels and signals are multiplexed in the frequency domain, transformed

into the time domain by using an IFFT, and cyclic prefix is inserted in the time domain, asdescribed in [1].

Unused resource elements shall be filled with zeros.

Windowing (in time domain) is not applied (i.e. rectangular window is applied for eachOFDM symbol).

3.4 Cell Identif ication

A single-cellular trial network shall be deployed, where this cell use 10MHz BW.

Page 12: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 12/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 9/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Only one cell shall be supported by the trial network, denoted by the Cell ID (0).

Only one eNB shall be supported by the trial network, denoted by the eNB ID (0). The eNBID is also called the Cell Group ID.

Only one sector shall be supported per eNB, denoted by the Sector ID (0). The Sector ID isalso called the Partial Cell Group ID.

A cell is defined as a sector at a certain carrier frequency, and the Cell ID is given by thecombination of eNB ID and Sector ID according to Cell ID = Sector ID +3x eNB ID, asdefined in §6.11 of [1].

 The mapping of UL/DL parameters to the cell IDs is summarized in a cell planning sheet [9].

4 DOWNLINK STRUCTURE

 This section briefly describes the time and frequency domain structures of the LTE downlink.

4.1 Time Domain Structure[12][13]

 The frame structure type 2 for TDD with normal prefix is applied as illustrated in Figure 1

Figure 1: Frame structure type 2 (for 10 ms sw itch-point periodicity).

 Time units ( )2048150001s ×=T  seconds .

A frame is divided into 2 half-frame of length 5ms(half-frame #0, #1). The first half-frameconsists of eight slots of length ms5.015360 sslot =⋅= T T  and three special fields, DwPTS, GP,

and UpPTS. The second half-frame consists of ten slots of length ms5.015360 sslot =⋅= T T  .A frame is divided into 10 subframes of length 1ms (subframe #0, …subframe #9),subframes 0 and 5 and DwPTS are always reserved for downlink transmission.

A frame is divided into 20 slots of length 0.5ms (slot #0 … slot #19).

At LTE TDD Demo S0, only UL/DL allocation configuration 5 and DwPTS/GP/UpPTS lengthconfiguration 8 for normal cyclic prefix is supported as shown in Table 3 and Table 4.

 Table 3: Uplink-downlink allocations

Page 13: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 13/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 10/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Subframe number Configuration

Switch-pointperiodicity

0 1 2 3 4 5 6 7 8 9

5 10 ms D S U D D D D D D D

 Table 4: Lengths of DwPTS/GP/UpPTSNormal cyclic prefixConfiguratio

nDwPTS GP UpPTS

8 s24144 T ⋅ s2192 T ⋅ s4384 T ⋅

  The configuration 5 of UL/DL allocation is 10 ms switch-point periodicity. In case of 10 msswitch-point periodicity, the special subframe exists in the first half-frame only. UpPTS andthe subframe immediately following the special subframe are always reserved for uplinktransmission.

At LTE TDD Demo S0(UL/DL allocation configuration 5), DwPTS in the special subframe isnot used for PDSCH data transmission. UpPTS is not used for any uplink transmission andsubframe 2 is used for uplink transmission.

A downlink slot carries 7 OFDM symbols when normal cyclic prefix is applied. The OFDMsymbols in a slot are denoted by the time index l = 0,1,…6.

 The cyclic prefix length is 80 samples in the first OFDM symbol (l=0) of a slot and 72samples in the remaining six OFDM symbols of a slot in 10 MHz BW, respectively. Theactive part of each OFDM symbol uses 1024 samples in 10 MHz BW.

4.2 Time and Frequency Domain Structure

 The time-frequency structure of the LTE downlink is illustrated in the Appendix.

 The frequency-domain structure is described here in detail for the 10 MHz BW case, and Table 5 summarises the frequency domain parameters for some bandwidths.

 Table 5: Frequency domain parameters for LTE DL.

Parameter 10MHz BWsubcarrier spacing 15kHz#active subcarriers 600active subcarrier index k 0...599IFFT size 1024subcarrier number 0…1023#guard bands at lower band edge 212#guard bands at upper band edge 211smallest used subcarrier number (k=0) 212highest used subcarrier number (k=kmax) 812subcarrier number for DC subcarrier 512#RUs per subframe 50RU index 0…49

#RUPs per subframe 25

Page 14: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 14/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 11/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

RUP index 0…24#RUQs per subframe 13RUQ index 0…12

In the frequency domain, there are 600 active subcarriers around the DC subcarrier,denoted by the active subcarrier index k, k=0,1,…599.

 The DC subcarrier is not used for downlink transmission, and no value of k is associatedwith the DC subcarrier (as in [1]).

 The IFFT size is 1024 samples over 1024 possible subcarriers denoted by the subcarriernumber 0,1,…1023.

Among the 1024 subcarriers only 600 are active, with guard bands of 212(211) subcarriersat the lower (upper) edge of the frequency band.

 The first active subcarrier with index k=0 corresponds to the subcarrier number 212, and thelast active subcarrier with index k=599 corresponds to the subcarrier number 812(212+599+1 for DC). The DC subcarrier corresponds to the subcarrier number 512.

A Resource Unit (RU) is defined to cover 12 consecutive subcarriers over a duration of onesubframe, i.e. an RU includes 12x14 = 168 resource elements. The RU is the smallest entitythat can be addressed by the eNB scheduling. There are 50 RUs per subframe in 10MHzBW, numbered RU #0 … RU #49. (Note that a resource unit corresponds to two resourceblocks, consecutive in time, as defined in [1]. The term resource block will not be used in thesequel.)

Further, we define a Resource Unit Pair (RUP) given by two adjacent resource units RU #iand RU #(i+1), where i is even. The RUPs are numbered RUP #0 … RUP #24.

In 10MHz BW case, we further define a Resource Unit Quadruple (RUQ) by four adjacentresource units RU #i, RU #(i+1), RU #(i+2) and RU #(i+3), where i mod 4 = 0. The RUQs arenumbered RUQ #0 … RUQ #12, where in 10MHz BW case RUQ #12 consists of two RUs#48 and #49 only.

Note that the number of resource elements per RU used for reference signals is fixed andequals 16, so 12x14-16 = 152 resource elements per RU are available for carrying data orcontrol signals (if not used for synchronisation signal).

5 REFERENCE SIGNALS

Cell-specific reference signals are transmitted by eNB to assist demodulation andmeasurements by the UE.

 The physical resource mapping of reference signals follows Section 6.10.1.2 of [1] for thecase that the number of supported downlink antenna ports always equals 2 (also in 1Txcase where the actual number of used antenna ports is 1, which is antenna port #0). In S0stage, only 1Tx case is supported.

 The UE shall be configurable to perform channel estimation and measurements (CQI, pathloss, cell search) based on the reference signal transmitted by eNB from antenna port #0.

Page 15: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 15/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 12/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

In SU-MIMO and 2Tx diversity (SFBC) cases, the UE shall be configurable to performchannel estimation based on the reference signals transmitted by eNB from both antennaports #0 and #1. (Alternatively, the UE may detect the SU-MIMO case from the DLscheduling grants received on PDCCH.) In S0 stage, SU-MIMO and 2Tx diversity (SFBC)are not supported.

 The sequence generation follows the 3GPP agreements of RAN1#52 (Sorrento)meeting(3GPP R1-081106). In LTE TDD demo S0, the cell-specific pseudo-randomsequence is used.

 The physical resource mapping of downlink reference signals is illustrated in the Appendix.

5.1 Physical Resource Mapping

 The mapping of downlink reference signals for LTE TDD frame structure with normal cyclicprefix is applied, where the number of downlink antenna ports equals two.

 This mapping is as in [1] with const vshift  = , i.e. no frequency hopping is applied. A fixed

value of  }5,,1,0{ K∈= hopshift  f v shall be configurable, and for transmission from different

eNBs different values of  hop f  shall be used.

 The frequency shift valuehop f  is tied to the cell ID to be used in the trial network according

to =hop f  cell ID.[16]

In step0, there is only one cell, and only cell-id=0 will be tested. If not stated otherwise, theillustrations in this document assume 0=hop f  for the sake of simplicity.

Figure 2 and Figure 3 illustrate the resource elements used for reference symbol

transmission in 10MHz BW case for 0=hop f  and 5=hop f  , respectively. The

notation K,, 1,0, p p p R R R = is used to denote the sequence of resource elements used per

slot for reference symbol transmission on antenna port }1,0{, ∈ p p .

Resource elements used for reference signal transmission on any of the antenna ports in aslot shall not be used for any transmission on any other antenna port in the same slot.

In 1Tx case, R0 is transmitted from antenna port p=0 and R1 is set to zero for antenna portp=0.

In 2Tx case (not supported at LTE TDD Demo S0), R0 is transmitted from antenna portp=0 and R0 is set to zero for antenna port p=1. Likewise, R1 is transmitted from antenna portp=1 and R1 is set to zero for antenna port p=0.

Note that in the frequency domain, the distance between consecutive reference symbolscontained in the same OFDM symbol equals 6 subcarriers (6x15kHz), except around the DCsubcarrier where it equals 7 subcarriers (7x15kHz).

Page 16: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 16/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 13/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

R1,100R0,200

R0,300

R0,201 

R0,298 

R0,299 

R0,301

R0,398

R0,399

R0,100 

R0,1 

R0,0

R0,98 

R0,99 

R0,101 

R0,198 

R0,199 

   i  n   d  e  x   k  : „   F  r  e  q  u  e  n  c  y   “   (   6   0   0  s  u   b -  c  a  r  r   i  e  r  s   )

  s  u   b -  c  a  r  r   i  e  r  n  u  m   b  e  r   (  s   t  a  r   t  c  o  u  n   t   i  n  g

   f  r  o  m  z  e  r  o   )

index l : „Time“ (2 x 7 OFDM symbols)

1 sub frame =1 ms

1 slot =0.5 ms (even) 1 slot =0.5 ms (odd)

reference symbols

idle symbols =zeros (unused reference symbol positions)

ak,l 

resource elements not used for reference signals

431 4 30 160 52 5 2 6

   1

   0

   3

   2

   5

   4

   7

   6

   9

   8

   1   1

   1   0

   5   8   9

   5   8   8

   5   9   1

   5   9   0

   5   9   3

   5   9   2

   5   9   5

   5   9   4

   5   9

   7

   5   9   6

   5   9   9

   5   9   8

   R  e  s  o  u  r  c  e   U  n   i   t   0

   R  e  s  o  u  r  c  e   U  n   i   t   4   9

212

213

214

215

216

217

218

219

220

221

222

223

801

802

803

804

805

806

807

808

809

810

811

812

Antenna port #0

R1,200

R1,300 

R1,201 

R1,298 

R1,299 

R1,301 

R1,398 

R1,399 

R1,1

R1,0

R1,98

R1,99

R1,101

R1,198

R1,199

1 sub frame =1 ms

1 slot =0.5 ms (even) 1 slot =0.5 ms (odd)

ak,l 431 4 30 160 52 5 2 6

   1

   0

   3

   2

   5

   4

   7

   6

   9

   8

   1   1

   1   0

   5   8   9

   5   8   8

   5   9   1

   5   9   0

   5   9   3

   5   9   2

   5   9   5

   5   9   4

   5   9

   7

   5   9   6

   5   9   9

   5   9   8

   R  e  s  o  u  r  c  e   U  n   i   t   0

   R  e  s  o  u  r  c  e   U  n   i   t   4   9

212

213

214

215

216

217

218

219

220

221

222

223

801

802

803

804

805

806

807

808

809

810

811

812

Antenna port #1

index l : „Time“ (2 x 7 OFDM symbols)

Figure 2: Mapping of downlink reference signals in 10MHz BW case for 0=hop f  .

Page 17: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 17/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 14/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

R1,100R0,200

R0,301

R0,201 

R0,298 

R0,299 

R0,398

R0,300

R0,101 

R0,1 

R0,0

R0,98 

R0,99 

R0,198 

R0,199 

R0,100 

   i  n   d  e  x   k  : „   F  r  e  q  u  e  n  c  y   “   (   6   0   0  s  u   b -  c  a  r  r   i  e  r  s   )

  s  u   b -  c  a  r  r   i  e  r  n  u  m   b  e  r   (  s   t  a  r   t  c  o  u  n   t   i  n  g

   f  r  o  m  z  e  r  o   )

index l : „Time“ (2 x 7 OFDM symbols)

1 sub frame =1 ms

1 slot =0.5 ms (even) 1 slot =0.5 ms (odd)

reference symbols

idle symbols =zeros (unused reference symbol positions)

ak,l 

resource elements not used for reference signals

431 4 30 160 52 5 2 6

   1

   0

   3

   2

   5

   4

   7

   6

   9

   8

   1   1

   1   0

   5   8   9

   5   8   8

   5   9   1

   5   9   0

   5   9   3

   5   9   2

   5   9   5

   5   9   4

   5   9

   7

   5   9   6

   5   9   9

   5   9   8

   R  e  s  o  u  r  c  e   U  n   i   t   0

   R  e  s  o  u  r  c  e   U  n   i   t   4   9

212

213

214

215

216

217

218

219

220

221

222

223

801

802

803

804

805

806

807

808

809

810

811

812

Antenna port #0

R1,201

R1,300 

R1,298 

R1,299 

R1,200 

R1,301 

R1,398 

R1,399 

R1,98

R1,1

R1,99

R1,0

R1,101

R1,198

R1,199

1 sub frame =1 ms

1 slot =0.5 ms (even) 1 slot =0.5 ms (odd)

ak,l 431 4 30 160 52 5 2 6

   1

   0

   3

   2

   5

   4

   7

   6

   9

   8

   1   1

   1   0

   5   8   9

   5   8   8

   5   9   1

   5   9   0

   5   9   3

   5   9   2

   5   9   5

   5   9   4

   5   9

   7

   5   9   6

   5   9   9

   5   9   8

   R  e  s  o  u  r  c  e   U  n   i   t   0

   R  e  s  o  u  r  c  e   U  n   i   t   4   9

212

213

214

215

216

217

218

219

220

221

222

223

801

802

803

804

805

806

807

808

809

810

811

812

Antenna port #1

index l : „Time“ (2 x 7 OFDM symbols)

R0,399

 Figure 3: Mapping of downlink reference signals in 10MHz BW case for 5=hop f  .

5.2 Sequence Generation

 The sequence generation follows [1] and is obtained by a pseudo-random sequence.

Different sequences are applied in OFDM symbols #0 and #4 of a slot and in even-numbered and odd-numbered slots.

 The reference sequence transmitted from antenna port #0 is generated by the followingequations:

),()( nC nC PRS =  

where

Page 18: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 18/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 15/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- )(nC PRS  denotes the pseudo-random sequence,

- ,1,,1,0 −= N n K where 400= N  in 10MHz BW case.

 The pseudo-random sequences are cell-specific (not eNB-specific).

 The symbols of the pseudo-random sequence )(nC PRS  are drawn from the BPSK alphabet

}1{± , the reference symbols )(nC  are drawn from the same BPSK alphabet }1{± .

 The symbols of the sequence )(nC  are mapped to the R0 positions of antenna port #0 and

to the R1 positions of antenna port #1. The mapping extends over a full subframe (i.e. over 4OFDM symbols carrying reference symbols) and starts at the smallest active subcarrierindex k and extends to higher subcarrier indices with increasing sequence index n.

 The reference symbol positions 1,01,00,00 ,,, −= N  R R R R K and 1,11,10,11 ,,, −= N  R R R R K are

filled with the reference sequence symbols )(nC  in the form

- ),1(,),1(),0( 1,01,00,0 −=== − N C  RC  RC  R  N K

 

- ),1(,),1(),0( 1,11,10,1 −=== − N C  RC  RC  R  N K  

where 400= N  in 10MHz BW case.

Note that no sequence value is mapped to the DC sub-carrier.

5.2.1 Pseudo-Random Sequence Generation

Bipolar cell-specific sequences )(nC PRS  are applied, derived from binary Gold sequences,

and the Gold sequence generation is as agreed during 3GPP RAN1#51bis meeting inSevilla, cf. R1-080594.

As agreed during 3GPP RAN1#52 meeting in Sorrento (cf. 3GPP R1-081106), the pseudorandom sequence generator is clocked twice to generate a complex I and Q sample used inthe scrambling of the reference signal. The I bit is generated first followed by the Q bit.However, the Q bits are ignored here and only the I bits are mapped to the referencesequence which is then BPSK modulated.

 The initialization of the Gold sequences is as agreed during 3GPP RAN1#52 meeting inSorrento (cf. 3GPP R1-081106), but time-variant input variables are avoided to reduce testeffort (i.e. the variables <Subframe_Num> and <OFDM_Symbol_Num> are replaced by the

cell identifier).

A Gold sequence of length  N 2 , 400= N  in 10MHz BW case, is generated by modulo-2

addition of the output sequences )(1 n x and )(2 n x of two feedback shift registers of length

31,

,12,,1,0},1,0{)(,2mod ))()(()( 21 −=∈+= N nncn xn xnc K  

and the generator polynomials of the binary sequences )(1 n x and )(2 n x are given by

1331 ++ x x and 1

2331 ++++ x x x x , respectively. The generation of the Gold sequence isdepicted in Figure 4 (cf. R1-080318).

Page 19: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 19/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 16/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

x1(n) 

x2(n) 

c(n) 

Init x1:  ... 

Init x2:

 

MSB  LSB 

... xcell,9

(MSB)xcell,1

(LSB)0 

0  0 

xcell,4...1

(MSB...LSB)0  xcell,4...1

(MSB...LSB)... 

Figure 4: Feedback shift register for cell-specific pseudo-random sequence.

 The 31 entries of the first shift register are initialized according to:0,1)(1 == nn x (LSB, green in Figure 4),

,300,0)(1 ≤<= nn x (grey in Figure 4).

 The second shift register is initialized with

,22 139

cellcellcell X  X  X  ′′′+′′+′  

where:

- 9,2,1, ,,,cellcellcellcell x x x X  K=′ denotes a shortened 9bit cell identifier (blue in Figure 4),

- 4,2,1, ,,,cellcellcellcellcell x x x X  X  K=′′′=′′ denote shortened 4bit cell identifiers (yellow and

red in Figure 4, respectively),where we use the index 1 to indicate the LSB. Note that the remaining positions are

initialized with zeros: 3016,0)(2 ≤<= nn x (grey in Figure 4).

 The outputs of the shift registers ,30),(),( 21 >nn xn x are iteratively obtained according to:

,2mod ))()3(()31( 111 n xn xn x ++=+  

.2mod ))()1()2()3(()31( 22222 n xn xn xn xn x ++++++=+  

From the binary Gold sequence )(nc of length  N 2 bits, we create the bipolar pseudo-

random sequence )(nC PRS  of length  N  symbols according to:

,1,,1,0},1{)2(21)( −=±∈−= N nncnC PRS 

K

 where 400= N  in 10MHz BW case (i.e. only the even-numbered samples of the Gold

sequence )(nc are taken into account).

6 SYNCHRONISATION SIGNALS

Synchronisation signals are transmitted periodically by eNB from which the UE shall derivetime and frequency synchronisation.

For S0 pre-delivery (S0.1) [ for frame structure 2, configuration 5 in TDD specification, P-SCH and S-SCH are located in subframe#0 (slot#0)and subframe#5(slot #10)(as defined in

[17],see Figure 5).This is only for S0 pre-delivery (S0.1). SCH subframe can only be used

Page 20: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 20/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 17/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

for PDSCH with 36 RUs, and the subset of 6 contiguous RUs centered around DC (i.e. RUs#22…#27) in 10MHz case are not used for PDSCH transmission, but can be used forPDCCH transmission.][16]

Figure 5: Time domain structure of synchronisation signals(pre-delivery).

But for S0 final delivery the P-SCH and S-SCH location defined bellow for S0 final deliveryhas to be used.

Primary and secondary synchronisation signals are distinguished and they are transmittedeach with a period of 5ms in subframe #0,#1 and subframe #5,#6 of a frame, as in [1]. Thetime domain structure of the synchronisation signals is illustrated in Figure 6.

Figure 6: Time domain structure of synchronisation signals(final delivery).

 The synchronisation signals are transmitted from antenna port #0 only.

For S0 in subframes #0, #5,#6 (subframe #1 is special subframe), the subset of 6contiguous RUs centered around DC (i.e. RUs #22…#27) in 10MHz case are not used forPDSCH transmission, but can be used for PDCCH transmission.

 The sequence generation and physical resource mapping is compliant with 3GPP Rel. 8 [1].

0.5ms slot

l+1 =

Page 21: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 21/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 18/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

6.1 Primary Synchronisation Signal

 The primary synchronisation signal ( )nd  transmitted in a cell has a length of 62 symbols (n

= 0 … 61). The same primary synchronisation signal is used in subframe #1 and subframe#6 of a frame.

6.1.1 Physical Resource Mapping

 The primary synchronisation signal is transmitted in the third OFDM symbol (l=2) of the firstslot in subframe #1(special subframes) and #6 of a frame.

 The primary synchronisation signal is mapped to 62 active subcarriers (excluding the DCsubcarrier) according to:

261,...,1,02/31)(, ==+−== ln N nk nd a DL

 BW lk  ,,,  

where 600= DL

 BW  N  in 10MHz BW case. Where n= -5,-4,…,-1,62,63,…,66 are reserved andand not used for transmission of the primary synchronization signal .The respectivesubcarrier indices k are given by:

- 269 … 330 in 10MHz BW case.

6.1.2 Sequence Generation

 Three Zadoff-Chu sequences of length 62 are defined to be used as primarysynchronization sequences according to

⎨⎧

=++−

=+−=

,61,,32,31),63/)2)(1(exp(

,30,,1,0),63/)1(exp()(

K

K

nnn M  j

nn Mn jnd  M 

π 

π  

where }34,29,25{∈ M  ( },2,1,1{ nn N n M  −∈ where 63,252,291 === N nn ).

3GPP assumes that if the eNB supports multiple sectors on the same carrier, three differentprimary synchronisation signals shall be transmitted in three adjacent sectors. Differentprimary synchronisation sequences can be defined by using different values of   M  .

 The primary synchronisation sequence value  M  to be used in the trial network is tied to theSector ID according to 34,29,25= M  for Sector ID = 0,1,2, respectively [9].

6.2 Secondary Synchronisation Signals

 Two different secondary synchronisation signals, denoted by ( )ns1 and ( )ns11 , are used in

slots #1 and #11 of a frame, respectively. Each secondary synchronisation signal has alength of 62 symbols (n = 0 … 61).

6.2.1 Physical Resource Mapping

 The secondary synchronisation signal ( )ns1 is transmitted in OFDM symbol l=6 of slot #1 of 

a frame.

Page 22: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 22/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 19/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The secondary synchronisation signal ( )ns11 is transmitted in OFDM symbol l=6 of slot #11

of a frame.

 The secondary synchronization signals ( )ns  j, ,61,,0K=n are mapped to 62 active

subcarriers (excluding the DC subcarrier) according to:

⎦ ,6,61,,1,0,2/31),(, ==+−== ln N nk nsa DL BW  jlk  K

 

where 11/1= j denotes the slot number and 600= DL

 BW  N  in 10MHz BW case. Where n=-5,-

4,…,-1,62,63,…,66 are reserved and and not used for transmission of the secondarysynchronization signal .The respective subcarrier indices k are given by:

- 269 … 330 in 10MHz BW case.

6.2.2 Sequence Generation

3GPP assumes that up to 2x3x168 different secondary synchronisation sequences will beavailable, and that different secondary synchronisation sequences shall be transmitted fromdifferent cells within some geographical area.

Here, the sequence generation is confined to the cell identifiers 0 … 14 and comprises a setof 2x3x5 different secondary synchronisation sequences.

Note that the factor 2 takes into account that different sequences are applied in slots 1/11 of a frame, and the factor 3 takes into account that different sequences are transmitted from(up to 3) different cells of an eNB.

6.2.2.1 eNB-Specific Short Codes

We define a set of 6 short codes ),(nSC i   ,5,,1,0K

=i of length 31 by cyclic shifts of a basesequence 0SC  according to )31mod )(()( 0 inSC nSC i += , where 30,,1,0 K=n .

 The base sequence consists of 31 BPSK symbols and is generated by a linear feedback

shift register defined by the primitive polynomial 125 ++ x x . It is given by:

}.-1,1,-11,-1,-1,1,,-1,-1,1,-1,-1,1,1,1-1,-1,-1,--1,-1,1,1,,1,1,-1,1,1,1,1,1,-1{)(0 =nSC   

As an example:

}.,1,-1,1-1,-1,1,-11,-1,1,-1,-1,1,1,1,-,-1,-1,-1,,-1,1,1,-1,1,-1,1,-11,1,1,-1,1{)(1 =nSC   

Each eNB is assigned two short codes )(nSC i and )(1 nSC i+ , where eNB X i = and eNB X   (0…4) denotes the eNB identifier (also called cell group identifier )1(

 ID N  ) [9].

Remark: the short codes are denoted as )()(

00 ns

m and )()(

11 ns

m by 3GPP [1].

6.2.2.2 eNB-Specific Scrambling Codes

We define a set of 6 eNB-specific scrambling codes ),(nSCRC i   ,5,...,1,0=i of length 31 by

cyclic shifts of a base sequence 0SCRC  according to )31mod )(()( 0 inSCRC nSCRC i += ,

where 30,,1,0 K=n .

Page 23: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 23/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 20/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The base sequence consists of 31 BPSK symbols and is generated by a linear feedback

shift register defined by the primitive polynomial 1245 ++++ x x x x . It is given by:

}.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1{)(0 −−−−−−−−−−−−−−−−=nSCRC   

Each eNB is assigned two scrambling codes )(nSCRC i and )(1 nSCRC i+ whereeNB X i =  

andeNB X  (0…4) denotes the eNB identifier (also called cell group identifier )1(

 ID N  ) [9].

Remark: the eNB-specific scrambling codes are denoted as )()(

10 n z

m and )()(

11 n z

m by 3GPP

[1].

6.2.2.3 Sector-Specific Scrambling Codes

We define a set of 6 sector-specific scrambling codes ),(nSSCRC k   ,5,...,1,0=k  of length 31

by cyclic shifts of a base sequence 0SSCRC  according to

)31mod )(()( 0 k nSSCRC nSSCRC k +=

, where 30,,1,0K=

n .

 The base sequence consists of 31 BPSK symbols and is generated by a linear feedback

shift register defined by the primitive polynomial 135 ++ x x . It is given by:

}.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1{)(0 −−−−−−−−−−−−−−−−=nSSCRC   

Each sector of an eNB is assigned two sector-specific scrambling codes )(nSSCRC k and

)(3 nSSCRC k + , where Sector  X k = and Sector  X  (0…2) denotes the sector identifier (also called

partial cell group identifier )2(

 ID N  ) [9].

Remark: the sector-specific scrambling codes are denoted as )(0 nc and )(1 nc by 3GPP [1].

6.2.2.4 Sector-Specific Scrambling and Interleaving

 The secondary synchronization signal ( )ns  j, ,61,,0K=n transmitted in slot 11/1= j of a

frame consists of 62 BPSK symbols.

It is obtained by element-by-element interleaving of two sequences )(ma  jand )(mb j

,

,30,,0K=m each consisting of 31 BPSK symbols:

)}.30(),30(,),1(),1(),0(),0({)( j j j j j j j bababans K=  

For the secondary synchronisation signal ( )ns1 transmitted in slot #1 of a frame, we use:

- )()()(1 mSSCRC mSC ma k i ⊗= ,

- )()()()( 311 mSCRC mSSCRC mSC mb ik i ⊗⊗= ++ ,

where ⊗ denotes the element-by-element multiplication scrambling operation.

For the secondary synchronisation signal ( )ns11 transmitted in slot #11 of a frame, we use:

- )()()( 111 mSSCRC mSC ma k i ⊗= + ,

- )()()()( 1311 mSCRC mSSCRC mSC mb ik i ++ ⊗⊗= .

Page 24: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 24/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 21/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

In the equations above, we use eNB X i = and Sector  X k = .

7 PHYSICAL DOWNLINK CONTROL CHANNEL

UE will modifiy resource mapping for PDCCH. UE SW must be configurable for both

PDCCH mapping options and compatible with resource mapping scheme defined in this TDD specification. In step 0, only the resource mapping scheme defined in this TDDspecification will be tested.[16]

DL and UL scheduling grants shall be transmitted on PDCCH in order to signal the DL andUL transport formats to the UE, respectively. The DL scheduling grant shall be transmitted incase of both initial transmission and retransmission of a transport block, whereas the ULscheduling grant is confined to the initial transmission of a transport block.

Further, PDCCH is used to convey the following messages to the UE:- UL time advance correction messages,- system frame number (SFN) update messages.

In order to limit the search complexity of the UE, eNB shall not transmit an UL time advancecorrection message in a subframe in which the SFN update message is transmitted.

 The DL and UL scheduling grants, UL time advance correction messages and SFNmessages shall be transmitted on the second OFDM symbol (l=1) per subframe.

DL ACK/NACK shall be transmitted to signal the UE whether a transport block on PUSCHwas successfully received by eNB. A DL NACK further triggers a retransmission of atransport block on PUSCH.

DL ACK/NACKs are transmitted in the first OFDM symbol (l=0) per subframe using resource

elements not allocated by reference signals.

 The message contents and formatting of the DL and UL scheduling grants and DLACK/NACKs are specified in the sequel.

PDCCH can be transmitted in each downlink subframe and DwPTS (PDCCH transmitted inDwPTS not used in S0 because of UL/DL configuration 5).

 The PDCCH is transmitted only on antenna port #0.

DL MU-MIMO ,SU-MIMO and Tx diversity are not supported at LTE TDD Demo S0.

In a dedicated test mode for DL MU-MIMO, the eNB can be configured to transmit PDCCHequally from antenna ports #0 and #1.

If 2Tx diversity is configured, the PDCCH modulation symbols are SFBC encoded asdescribed in Section 8.5.3.2 and transmitted via antenna ports #0 and #1 (tbd.).

 The physical resource allocation for PDCCH is illustrated in the Appendix.

Page 25: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 25/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 22/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7.1 Downlink Scheduling Grants

A DL scheduling grant transmitted within a subframe informs a UE (or a group of Ues)whether it will receive a transport block on PDSCH within the same subframe, either aninitial transmission or a retransmission of a transport block.

Further, the DL scheduling grant contains all the information required by the UE forprocessing the transport block received on PDSCH.

7.1.1 Message Contents

At LTE TDD Demo S0, message content slightly changed compared to D2.4, one bit addedfor HARQ process number and one bit reduced for Duration of assignment.

 The following information is transmitted within a DL scheduling grant on PDCCH:

- Message type indicator (2bits): 2,1, , mtimtimti x x X  =  

- Resource assignment (16bits):13,2,1,3,2,1, ,,,,,,

rarararacracracra x x x x x x X  K=  

- Duration of assignment (1bits): 1,doadoa x X  =  

- Multiple antenna related information (1bit): 1,marimari x X  =  

- Modulation scheme (2bits): 2,1, , msmsms x x X  =  

- Payload size (6bits): 6,2,1, ,,,  ps ps ps ps x x x X  K=  

- Hybrid ARQ process number (4bits): ,1 ,2 ,3 ,4, , ,hap hap hap hap hap

 X x x x x=  

- Redundancy version (3bits): 3,2,1, ,,rvrvrvrv x x x X  =  

- New data indicator (1bit): 1,nd nd  x X  =  - UE identity (16bits): 16,2,1, ,,, ueueueue x x x X  K=  

 The payload of a DL scheduling grant transmitted on PDCCH has a size of 36bits. It isobtained by multiplexing the above information elements (except for the UE identity)according to:

.,,,,,,,, 1,3,1,2,1,3621 nd rvracmtimti x x x x x x x x X  KK ==  

Note that we use the index 1 to indicate the MSB, and the highest indices to indicate the

LSB, in unsigned binary representation, e.g. 2=mti X  corresponds to 0,1 2,1, == mtimti x x (as

in HS-SCCH coding chain of 3GPP Rel. 6 [4]).

7.1.1.1 Message Type Indicator

A DL scheduling grant is indicated to the UE by .0=mti X   

7.1.1.2 Resource Assignment

 The resource assignment field indicates to the UE which resource units are used for PDSCHtransmission.

Page 26: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 26/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 23/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The first three bits 3,2,1, ,, racracracrac x x x X  =  of the resource assignment field are used as

control bits and the remaining 13bits 13,2,1, ,,, rarara x x x K are used as a bit map. The

interpretation of the bit map depends on the values of the control bits for the 10MHz BWcase.

7.1.1.2.1 10MHz BW Case

For 10MHz BW case, the definition of the resource assignment field is summarized in Table6 and exemplified in Figure 7. The bit map scope defines whether the bit map addressessingle resource units (RU), resource unit pairs (RUP) or resource unit quadruples (RUQ). The bit map space/definition define which RUs/RUPs/RUQs can be addressed by the bitmap.

 Table 6: Interpretation of resource assignment in 10MHz BW case.

rac X    Bit mapscope

Bit map space Bit map definition 

0 RUQ RUQ #0 till #12 - 0, =nra x : PDSCH is not transmitted to the UE on

RUQ #(n-1)

- 1, =nra x : PDSCH is transmitted to the UE on RUQ

#(n-1) 1 RUP RUP #0 till #12 - 0, =nra x : PDSCH is not transmitted to the UE on

RUP #(n-1)

- 1, =nra x : PDSCH is transmitted to the UE on RUP

#(n-1) 

2 RUP RUP #12 till #24 - 0, =nra x : PDSCH is not transmitted to the UE onRUP #(n+11)

- 1, =nra x : PDSCH is transmitted to the UE on RUP

#(n+11) 3 RU RU #0 till #12 - 0, =nra x : PDSCH is not transmitted to the UE on

RU #(n-1)

- 1, =nra x : PDSCH is transmitted to the UE on RU

#(n-1) 4 RU RU #12 till #24 - 0, =nra x : PDSCH is not transmitted to the UE on

RU #(n+11)

- 1, =nra x : PDSCH is transmitted to the UE on RU

#(n+11)5 RU RU #25 till #37 - 0, =nra x : PDSCH is not transmitted to the UE on

RU #(n+24)

- 1, =nra x : PDSCH is transmitted to the UE on RU

#(n+24)6 RU RU #37 till #49 - 0, =nra x : PDSCH is not transmitted to the UE on

RU #(n+36)

- 1, =nra x : PDSCH is transmitted to the UE on RU

#(n+36)

Page 27: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 27/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 24/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7 RU Left RU of RUQ#0 till #12(with smallestfrequencyindex) 

- 0, =nra x : PDSCH is not transmitted to the UE on

RU #(4n-4)

- 1, =nra x : PDSCH is transmitted to the UE on RU

#(4n-4)

RU #i

Bit map example: Xra =*,*,*,1,0,1,0,1,0,1,0,1,0,1,0,1

Xrac=4 7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

Xrac=5

Xrac=6

Xrac=7

#i  PDSCH transmission in RU #i#i  #i  #i 

#i  no PDSCH transmission in RU #i

7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

Xrac=0 7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

Xrac=1

Xrac=2

Xrac=3

7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

7 8 9 10 11 120 1 2 3 4 5 6 20 21 22 23 2413 14 15 16 17 18 19

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

32 33 34 35 36 3725 26 27 28 29 30 31 45 46 47 48 4938 39 40 41 42 43 44

 Figure 7: Example of resource assignment in 10MHz BW case.

7.1.1.3 Duration of Assignment

Xdoa is 1 bit, i.e.,1doa doa X X = . At LTE TDD Demo S0,the Duration of Assignment field

can only be set to zero, it indicates to the UE that the received DL scheduling grant is validfor the current PDSCH subframe only .

We use .0=doa

 X   

7.1.1.4 Multiple Antenna Related Information

 The eNB can transmit PDSCH to a UE using a single transmission stream (SISO, 2Txdiversity or MU-MIMO) or using a dual-stream 2-codeword SU-MIMO scheme. At LTE TDDDemo S0, The eNB can only transmit PDSCH to a UE using a single transmission stream(SISO) , a single codeword (transport block) is transmitted per subframe (TTI) to the UE.

In SISO, 2Tx diversity or MU-MIMO case, a single codeword (transport block) is transmittedper subframe (TTI) to the UE, and two codewords (transport blocks) per subframe (TTI) in

SU-MIMO case.

Page 28: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 28/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 25/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The multiple antenna related information indicates a stream identifier (or codeword identifier)to the UE:

- 0=mari X  : PDSCH stream #0 (codeword #0),

- 1=mari X  : PDSCH stream #1 (codeword #1)( not supported at LTE TDD Demo

S0).

In SU-MIMO case, the eNB transmits two DL scheduling grants to the UE using twoadjacent PDCCH control channel elements #i and #(i+1).

7.1.1.5 Modulation Scheme

 The modulation scheme field indicates the modulation scheme applied for PDSCHtransmission in the indicated subframes. The interpretation of the modulation scheme field issummarized in Table 7.

 Table 7: Signalling of modulation scheme.

ms X    Modulation scheme )( ms X K   

0 QPSK 81 16QAM 722 64QAM 2883 n.a. n.a.

7.1.1.6 Payload Size

 The payload size field indicates the transport block size transmitted on PDSCH in theindicated subframes.

 The transport block size in number of bits is determined according to),8)((

PS ms RU  X  X K  N  +  

where:

-  RU  N  denotes the number of resource units indicated by the resource assignment

fieldra X  ,

- )( ms X K  denotes a modulation-specific offset as defined in Table 7,

- the payload size fieldPS  X  is set by eNB to take values in the range:

o  35,,1,0 K=PS  X  for QPSK modulation,

o  63,,1,0 K=PS  X  for 16QAM/64QAM modulation.

Note that the transport block size is in integer multiples of bytes.

A subset of the possible transport block sizes shall be supported.

For example, UE received a DL grant and decoded the information of QPSK, NRU=12,

5=PS  X  , QPSK,then payload is known by the calculating of.12(8+8*5)=576

Page 29: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 29/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 26/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7.1.1.7 Hybrid ARQ Process Number

At LTE TDD Demo S0, only uplink-downlink allocations configuration 5 is supported, aslisted in section 4.1 Table 3.

[16]For pre-delivery only: [UE and eNB shall be configurable for mode1 and mode2:mode1: no HARQ retransmission for UL and DL, DL up to 8 HARQ processes.

eNB may send initial transmissions only(coding and signaling on PDCCH as thisspecification defined.)

HARQ IDs may be in the range 0...7 (4 bits used for signaling as this specificationdefined)

A single 1-bit ACK will be sent by the UE for all 8 HARQ processes from an &-operation.

mode2:UL and DL HARQ, with restrict max number of HARQ process 1 for S0.1(HARQid=0),can be sent in any DL subframe.

UE should feedback the ACK/NACK in the way defined in 6.3.1 of [11].]

Given configuration 5, up to 13 DL Hybrid ARQ processes #0 till #12 are supported in caseof no PDSCH transmitted on special subframe, as shown in Figure 16(section 9.1). The DLHybrid ARQ process number is signalled by the Hybrid ARQ process number field

hap X  (4bits). Note that the HARQ process number #0 …#12 shown in Figure 16 is just for

example. Actually, TDD DL HARQ process number is dynamically scheduled by eNB.

7.1.1.8 Redundancy Version

 The redundancy version fieldrv X  is obtained after jointly encoding the redundancy version

parameters r, s and the constellation version parameter b.

 The redundancy version coding is summarized in Table 8 and Table 9 for QPSK and16QAM/64QAM modulation, respectively.

 Table 8: Redundancy version coding for QPSK.

rv X    s r 0 1 01 0 02 1 13 0 14 1 25 0 26 1 37 0 3

 Table 9: Redundancy version coding for 16QAM and 64QAM.

Page 30: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 30/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 27/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

rv X    s r b

0 1 0 01 0 0 02 1 1 13 0 1 1

4 1 0 15 1 0 26 1 0 37 1 1 0

For QPSK,rv X  =0 for the initial transmission, 

rv X  =1 for the first re-transmission, rv X  =2 for the

second re-transmission, rv X  =3 for the third re-transmission, and rv X  =3 for the more re-

transmission(up to seventh re-transmission),

For 16QAM and 64QAM, rv X  =0 for the initial transmission,  rv X  =3 for the first re-transmission, 

rv X  =5 for the second re-transmission, rv X  =1 for the third re-transmission, and rv X  =1 for the more

re-transmission(up to seventh re-transmission),

[16]For pre-delivery only: [UE and eNB shall be configurable for mode1 and mode2:mode1: no HARQ retransmission for UL and DL, DL up to 8 HARQ processes.

eNB may send initial transmissions only(coding and signaling on PDCCH as thisspecification defined.)

mode2:UL and DL HARQ, with restrict max number of HARQ process 1 for S0.1(HARQid=0),can be sent in any DL subframe.]

7.1.1.9 New Data Indicator

 The new data indicator field indicates to the UE whether the transmission on PDSCH in thecurrent subframe (TTI) is an initial transmission or a retransmission of a codeword (transportblock):

- 0=nd  X  : retransmission of codeword on PDSCH,

- 1=nd  X  : initial transmission of codeword on PDSCH.

 The UE shall clear its soft buffer when a new transmission is indicated.

7.1.1.10 UE Identity

A 16bits UE identifier is used: 16,2,1, ,,, ueueueue x x x X  K= , where 1,ue x denotes the MSB and

16,ue x denotes the LSB. It is given by the Radio Network Identifier RNTI.

 The RNTIs shall statically be configured in the UEs according to 0,1,….

7.1.2 Coding, Modulation and Physical Resource Mapping

 The coding, modulation and physical resource mapping for DL or UL scheduling grantstransmitted on PDCCH is illustrated in Figure 8. The coding and physical resource mapping

are not compliant with 3GPP Rel. 8.

Page 31: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 31/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 28/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

R’

S

Q

Z

Y

XUE 

X

Payload mux

Channel coding

UE specific CRC

attachement

Rate matching

Block interleaver 

PDCCH control

channel element

Physical resource

mapping

QPSK modulation

Cell-specific

scrambling

Figure 8: PDCCH coding, modulation and physical resource mapping.

7.1.2.1 Payload Mux

 The payload after multiplexing the information elements of a DL or UL scheduling grant

message consists of 36 bits denoted by .,,, 3621 x x x X K=

 

Page 32: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 32/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 29/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 7.1.2.2 UE Specific CRC Attachment

From the sequence  X  a 16bit CRC is calculated as in §4.2.1.1 of [4]. This gives a

sequence of bits 1621 ,,, ccc K , where

.16,2,1)17(K

== − k  pc k imk    This sequence of bits is then masked with the UE identity 16,2,1, ,,,

ueueueUE  x x x X  K= (where

1,ue x denotes the MSB and 16,ue x denotes the LSB) and then appended to the sequence  X   

to form the sequence ,,,, 5221 y y yY  K= where:

.52,,38,372mod )(

,36,,2,1

36,36 K

K

=+=

==

−− i xc y

i x y

iueii

ii 

7.1.2.3 Channel Coding

Rate 1/3 convolutional coding, as described in §4.2.3.1 of [4], is applied to the sequence .Y    This gives a sequence .,,, 18021 z z z Z  K= Note that the last 24 bits of the sequence  Z  result

from the termination of  9=K  convolutional coding being fully applied.

7.1.2.4 Rate Matching

Puncturing is applied to obtain the sequence .,,, 15021 qqqQ K= The 30bits to be punctured

from the input sequence  Z  are given by1 5

, 0,1, , 29.k  z k + = K In other words, puncturing is

applied with a distance of 6bits, starting with the first bit 1 z , until 30bits are punctured. Aim

of this puncturing technique is to spread the punctured bits approximately equally over the

full sequence length.

 The effective code rate for the UL/DL scheduling grants is then about 0.35 (52/150).(1CCE=75subcarriers, QPSK=> M=2, effective resource = 75*2=150)

Note that the above rate matching is equivalent with using the Rel. 6 rate matching forconvolutional coding as described in §4.2.7.2.2.2 and §4.2.7.5 of [4].

7.1.2.5 Block Interleaver

Aim of the block interleaver is to provide frequency diversity, i.e. distribute the coded bitswell over the available subcarriers.

 The size of the block interleaver is 13bits x 12bits = 156bits.

Writing is column-by-column, where the order of columns is given by the following sequenceof column indices (this is similar to an inter-column permutation):

<0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11>. The columns are always written from top to bottom, i.e. the order of rows is given by thesequence <0, 1, 2, …>.

 The bits are read out from the interleaver matrix row-by-row (i.e. with sequence <0, 1,2, …>). Pruning is applied to the last six columns of the last row.

Page 33: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 33/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 30/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 ReadingWriting

=q83

q84

q85

q86

q87

q133

q134

q135

q136

q137

 

q45

q46

q47

q48

q49

 

q95

q96

q97

q98

q99

q145

q146

q147

q148

q149

 

q77

q78

q79

q80

q81

q82

q127

q128

q129

q130

q131

q132

q39

q40

q41

q42

q43

q44

q89

q90

q91

q92

q93

q94

q139

q140

q141

q142

q143

q144

q8

q9

q10

q11

q12

q58

q59

q60

q61

q62

q108

q109

q110 

q111

q112

q21

q22

q23

q24

q25

q71

q72

q73

q74

q75

q121

q122 

q123

q124

q125

q34

q35

q36

q37

q38

q1

q2

q3

q4

q5

q6

q7

q51

q52

q53

q54

q55

q56

q57

q101

q102

q103

q104

q105

q106

q107

q14

q15

q16

q17

q18

q19

q20

q64

q65

q66

q67

q68

q69

q70

q114

q115

q116

q117

q118

q119

q120

q27

q28

q29

q30

q31

q32

q33

q88 q138 q50 q100 q150

q13 q63 q113 q26 q76 q126

r85

r97

r109

r121

r133

r91

r103

r115

r127

r139

r1

r13

r25

r37

r49

r61

r73

r7

r19

r31

r43

r55

r67

r79

r145

7 8 9 10 110 1 2 3 4 5 6 7 8 9 10 110 1 2 3 4 5 6

7

8

9

10

11

0

1

2

3

4

5

6

12

7

8

9

10

11

0

1

2

3

4

5

6

12

index index

r92

r104

r116

r128

r140

r8

r20

r32

r44

r56

r68

r80

r93

r105

r117

r129

r141

r9

r21

r33

r45

r57

r69

r81

r94

r106

r118

r130

r142

r10

r22

r34

r46

r58

r70

r82

r95 

r107

r119

r131

r143

r11

r23

r35

r47

r59

r71

r83

r96

r108

r120

r132

r144

r12

r24

r36

r48

r60

r72

r84

r86

r98

r110

r122

r134

r2

r14

r26

r38

r50

r62

r74

r146

r87

r99

r111

r123

r135

r3

r15

r27

r39

r51

r63

r75

r147

r88

r100

r112

r124

r136

r4

r16

r28

r40

r52

r64

r76

r148

r89

r101

r113

r125

r137

r5

r17

r29

r41

r53

r65

r77

r149

r90

r102

r114

r126

r138

r6

r18

r30

r42

r54

r66

r78

r150

Figure 9: PDCCH block interleaver.

7.1.2.6 Cell-Specific Scrambling

 The scrambling sequence generation uses Gold sequences as agreed during 3GPPRAN1#51bis meeting in Sevilla.

 The initialization of the Gold sequences is as agreed during 3GPP RAN1#52 meeting inSorrento (cf. 3GPP R1-081106), but time-variant input variables are avoided to reduce test

effort (i.e. the variable <Subframe_Num> is replaced by <Cell_ID>).

 The inputs of the cell-specific scrambling are given by:

- the sequence of bits 15021 ...,, r r r  obtained from the PDCCH block interleaver,

- the cell identity 16,2,1, ,,, cellcellcellcell x x x X  K= , }14,...,1,0{∈cell X  , where we use the

index 1 to indicate the LSB, and the index 16 to indicate the MSB, in unsignedbinary representation.

 The cell-specific scrambling is defined by:

,150,...,2,1,2mod )( 1 =+=′ − k cr r  k k k  

where the }1,0{∈′k r  denote the output bits of the cell-specific scrambling, and the

}1,0{)(1 ∈== − nccc k ndenote a Gold sequence generated by modulo-2 addition of the

output sequences )(1 n x and )(2 n x of two feedback shift registers of length 31,

,149,,0},1,0{)(,2mod ))()(()( 21 K=∈+= nncn xn xnc  

and the generator polynomials of the binary sequences )(1 n x and )(2 n x are given by

1331 ++ x x and 1

2331 ++++ x x x x , respectively. The generation of the Gold sequence isdepicted in Figure 10.

Page 34: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 34/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 31/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

x1(n) 

x2(n) 

c(n) 

Init x1:  ... 

Init x2:

 ... 

MSB  LSB 

... 0  xcell,9

(MSB)xcell,1

(LSB)0 

0  0 

xcell,4...1

(MSB...LSB)

 

Figure 10: Feedback shift register for cell-specific scrambling.

 The 31 entries of the first shift register are initialized according to:

0,1)(1 == nn x (LSB, green in Figure 10),

,300,0)(1 ≤<= nn x (grey in Figure 10).

 The second shift register is initialized with

,29

cellcell X  X  ′′+′  

where:

- 9,2,1, ,,,cellcellcellcell x x x X  K=′ denotes a shortened 9bit cell identifier (blue in Figure 10),

- 4,2,1, ,,,cellcellcellcell x x x X  K=′′ denotes a shortened 4bit cell identifier (yellow in Figure

10), andwhere we use the index 1 to indicate the LSB. Note that the remaining positions are

initialized with zeros: 3012,0)(2 ≤<= nn x (grey in Figure 10).

 The outputs of the shift registers ,30),(),( 21 >nn xn x are iteratively obtained according to:

,2mod ))()3(()31( 111 n xn xn x ++=+  

.2mod ))()1()2()3(()31( 22222 n xn xn xn xn x ++++++=+  

7.1.2.7 QPSK Modulation

QPSK modulation is applied to pairs of bits ,, 1+′′

ii r r  where i is odd. The QPSK modulationmapping is defined in §7 of [1]. The sequence of QPSK modulated complex-valued symbols

is denoted by .,,, 7521 sssS  K=  

7.1.2.8 Physical Resource Mapping

We define N PDCCH control channel elements (#0…#N-1) located in the second OFDMsymbol of a subframe, where:

- 8= N  in 10MHz BW case.

 The PDCCH control channel element i# is defined as the set of resource elements given by

the active subcarrier indices .74,,1,0,K

=+= n Nnik   

Page 35: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 35/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 32/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The DL (or UL) scheduler decides which PDCCH control channel element i# ,

,1,,1,0 −= N i K to use to transmit the DL (or UL) scheduling grant. Note that a DL

scheduling grant can be transmitted on any of the available N PDCCH control channelelements (#0…#N-1).

Given the selected PDCCH control channel element i# , the sequence of modulationsymbols S  is mapped to the respective PDCCH resource elements with increasing active

subcarrier index k .

 The definition of the PDCCH control channel elements and the physical resource mappingof the modulated sequence S  is illustrated in the Appendix.

7.1.3 Repetit ion Option for Coverage Extension

 To increase the reliability and coverage of the DL/UL scheduling grants a repetition option

shall be configurable.

If the repetition option is configured, a DL/UL scheduling grant is transmitted by using twoadjacent PDCCH control channel elements #i and #(i+1), where i is even, and in both control

channel elements identical QPSK modulated complex-valued symbols 7521 ,,, sssS  K= , as

specified in Section 7.1.2, are transmitted.

With the repetition option, the number of available PDCCH control channel elements is N=4in 10MHz BW case, and the effective code rate for the UL/DL scheduling grants is about0.17 (52/150/2).

7.2 Uplink Scheduling Grants

An UL scheduling grant transmitted within a subframe informs a UE (or a group of Ues) thatit shall trigger the transmission of a transport block on PUSCH within an UL subframecharacterised by a specific timing offset with respect to the DL subframe.

Further, the UL scheduling grant contains exact information that shall be followed by the UEfor formatting the transport block to be transmitted on PUSCH.

UL scheduling grants shall be used to schedule initial transmissions only. Retransmissions

are triggered by DL NACKs.

 The timing of the UL scheduling grants is described within the general UL timing of thecorresponding detailed UL specification, cf. Section 7.1 of [11].

 The eNB shall regularly transmit an UL scheduling grant to each UE in the cell.

7.2.1 Message Contents

 The following information is transmitted within an UL scheduling grant on PDCCH:

- Message type indicator (2bits): 2,1, ,mtimtimti x x X  =  

Page 36: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 36/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 33/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- Resource assignment (12bits): 6,2,1,6,2,1, ,,,,,,, ralralralrasrasrasra x x x x x x X  KK=  

- Duration of assignment (3bits): 3,2,1, ,, doadoadoadoa x x x X  =  

- Scheduling information request (1bit): 1,sir sir  x X  =  

- Modulation scheme (1bit): 1,msms x X  =  

- Payload size (6bits): 6,2,1, ,,, ps ps ps ps x x x X 

K=  

- MU-MIMO pairing indicator (2bits): 2,1, ,mpimpimpi x x X  =  

-  Transmission power (4bits): 4,2,1, ,,,txptxptxptxp x x x X  K=  

- ACK/NACK indicator (5bits): 5,2,1, ,,, anianianiani x x x X  K=  

- UE identity (16bits): 16,2,1, ,,, ueueueue x x x X  K=  

 The payload of an UL scheduling grant transmitted on PDCCH has a size of 36bits. It isobtained by multiplexing the above information elements (except for the UE identity)

according to:.,,,,,,, 5,1,2,1,3621 anirasmtimti x x x x x x x X  KK ==  

Note that we use the index 1 to indicate the MSB, and the highest indices to indicate the

LSB, in unsigned binary representation, e.g. 2=mti X  corresponds to 0,1 2,1, == mtimti x x (as

in HS-SCCH coding chain of 3GPP Rel. 6 [4]).

7.2.1.1 Message Type Indicator

An UL scheduling grant is indicated to the UE by .1=mti X   

7.2.1.2 Resource Assignment

 The resource assignment field indicates to the UE which resource units are to be used forPUSCH transmission.

 The resource assignment for PUSCH is restricted to using a contiguous set of RUs. .

Resource units for PUSCH are numbered from RU #0 … #N-1, where N denotes the totalnumber of available resource units over the full system BW.

 The first six bits 6,2,1, ,,, rasrasrasras x x x X  K=  of the resource assignment field indicate that the

first RU (with smallest index) to be used for PUSCH transmission is given by RU ras X #.

 The remaining six bits 6,2,1, ,,,ralralralral x x x X  K= of the resource assignment field indicate

that the number of RUs to be used for PUSCH transmission is given by #RUs =ral X  .

 The value range for ras X   and ral X  is 0…N-1, where N=50 in 10MHz BW.

Page 37: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 37/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 34/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7.2.1.3 Duration of Assignment

At LTE TDD Demo S0, UL grant will be given in subframe 8 only.. The Duration of Assignment field is set to zero only, it indicates to the UE that the received UL schedulinggrant is valid for 1 subframe (uplink subframe 2 in next frame) only, refer to section 9.1.

7.2.1.4 Scheduling Information Request

 The scheduling information request field indicates whether a transport block on PUSCHshall be used to carry data and scheduling information or to carry scheduling informationonly. Further it indicates the maximum number of retransmissions of the respective PUSCHtransport blocks.

 The interpretation of the scheduling information request field is defined as:

- 0=sir  X  : data and scheduling information

- 1=sir  X  : scheduling information only

In the 1=sir  X  case, the UE shall fill the PUSCH PDU with padding.

At LTE TDD Demo S0,sir  X  is set to zero only.

 The maximum number of retransmissions (cf. §7.5.5 of [2]) is tied to the schedulinginformation request field as follows:

- 0=sir  X  : max

)0(

max RSN  RSN  = (default 3)

- 1=sir  X  : )1(

max RSN  (default 1)

where )(max

 j RSN  shall denote the maximum number of retransmissions in case of   j X sir  = .

In the 1=sir  X  case, the duration of assignment field shall be restricted to 03, =doa X  .

eNode B may transmit data and scheduling info request periodically if no grant is requestedfrom UE in order to maintain the TA loop..

7.2.1.5 Modulation Scheme

 The modulation scheme field indicates the modulation scheme to be applied for PUSCHtransmission in the indicated subframes.

 The interpretation of the modulation scheme field is defined as:

- 0=ms X  : QPSK 

- 1=ms X  : 16QAM

7.2.1.6 Payload Size

 The payload size field indicates the transport block size to be used for PUSCH transmissionin the indicated subframes.

 The transport block size is determined as described in Section 7.1.1.6.

Page 38: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 38/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 35/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 7.2.1.7 MU-MIMO Pairing Indicator

 The MU-MIMO pairing indicator fieldmpi X   indicates which Zadoff-Chu shift value }1,0{∈v  

shall be used by the UE for the generation of the UL demodulation reference signal in the

indicated subframes.

 The coding of the MU-MIMO pairing indicator field is summarised in Table 10. (Note that the

first bit 1,mpi x of the MU-MIMO pairing indicator is unused and always set to zero.)

If UL MIMO is not used,mpi X   is set to zero. 

 Table 10: Coding of MU-MIMO pairing indicator.

mpi X    Zadoff-Chu

shift value0 0=v  1 1=v  

2 n.a.3 n.a.

7.2.1.8 Transmission Power

 The transmission power field includes information that is used by the UE to compute thetransmission power to be used for PUSCH transmission in the indicated subframes.

 The UE shall compute the PUSCH transmit power for the next PUSCH per resource elementas (similar as in [8]):

, _  _  _  _  _  _  _ 

 _  _  _  _ 

dBTF PtxdBmref  perRE PtxdBOffset Ptx

dBPathLossdBdBm perRE Ptx

×++++×+Γ=

 β 

α  

where:

- dB _ Γ denotes a target SINR in dB, set via configuration (default value 6dB).

- }0.1,,2.0,1.0,0.0{ K∈α  is set via configuration (default value 1.0).

- dBPathLoss _  is the time-averaged path loss in dB, measured by the UE based on

the reference signal transmitted from either eNB antenna port #0 or #1, dependingon which eNB antenna port is configured in the UE (default 100ms measurementinterval). The expected accuracy due to systematic errors of this measurement iswithin 2± dB. The transmission power of the reference signal transmitted from the

respective eNB antenna port is known in the UE via configuration (in 0.1dB units). The reference points are the antenna connectors of eNB and UE.

- dBOffset Ptx  _  _  denotes a power offset in dB.

- dBmref  perRE Ptx  _  _  _  denotes an absolute reference power per resource element

for transmission of PUSCH, set via configuration (in 1.0dB units, default value tbc.).- dBTF Ptx  _  _  denotes a power offset specific for the indicated transport format.

 These transport format-specific power offsets are to be provided by ALU based onlink level simulation results for AWGN case. They shall be memorised by the UE e.g.as part of the transport format table. They are not expected to change frequently, sothey can be hard coded.

- }1,0{∈ β  is set via configuration (default value 1).

Page 39: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 39/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 36/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The power offset dBOffset Ptx  _  _  shall be derived by the UE from the transmission power

fieldtxp X  signalled within the UL scheduling grant on PDCCH, where absolute (default

mode) and accumulative power control modes shall be configurable in UE and eNB, asdescribed in the sequel.

Notes:- In 3GPP discussions, often the term power spectral density is used to denote the

power per resource element.-  The UE may alternatively use as configuration parameter a reference power over the

full system bandwidth, denoted by dBmref Ptx  _  _  , and derive

dBmref  perRE Ptx  _  _  _  internally according to

),log(10 _  _  _  _  _  UL

 BW  N dBmref PtxdBmref  perRE Ptx −=  

where UL

 BW  N  denotes the number of resource elements over the full system

bandwidth ( 600=UL

 BW  N  in 10MHz BW).

7.2.1.8.1 Absolute Closed Loop Power Control

With absolute closed loop power control, the power offset dBOffset Ptx  _  _  shall be derived

by the UE from the transmission power field txp X  signalled within the UL scheduling grant

on PDCCH according to

),7( _  _  _  _  −×= txp X dBStepSizePtxdBOffset Ptx  

where }0.1,5.0{ _  _  ∈dBStepSizePtx in dB units denotes the power control step size, set

via configuration (default step size 1.0dB).

Notes:-  The eNB is capable of correcting the UL transmission power by –3.5dB, -3dB, …,

+4.0dB for 0.5dB step size (and –7.0dB, -6dB, …, +8.0dB for 1.0dB step size).- For 1.0dB step size, the eNB can constrain the used range of UL transmission power

correction to the set {-4.0dB, -1.0dB, +1.0dB, +4.0dB}. In this case, the PUSCHpower control is compliant with §5.1.1 of [8] for the absolute power correction option.

-  The power offset controlled by the eNB is an absolute value that shall be used by theUE only for the indicated subframes and then be discarded by the UE.

7.2.1.8.2 Accumulated Closed Loop Power Control

Accumulative closed loop power control is the preferred method at LTE TDD Demo S0.With accumulative closed loop power control, the power offset dBOffset Ptx  _  _  shall be

stored in the UE and be updated with every UL scheduling grant received by the UEaccording to

,)1( _  _ )( _  _ PUSCH idBOffset PtxidBOffset Ptx Δ+−=  

where:- )1( _  _  −idBOffset Ptx denotes the power offset stored in the UE,

- )( _  _  idBOffset Ptx denotes the power offset updated with the latest received UL

scheduling grant and applied by the UE for the current PUSCH transmission,

- }3,1,0,1{−∈Δ PUSCH in dB units denotes applicable the power step size.

Page 40: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 40/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 37/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The value of  PUSCH Δ to be applied for accumulative power correction shall be derived by the

UE from the transmission power fieldtxp X  signalled within the UL scheduling grant on

PDCCH according to Table 11:.

 Table 11: Power offset signalling for accumulated PUSCH power control.

txp X    PUSCH Δ  

0 -1dB1 0dB2 +1dB3 +3dB

4 – 15 n.a.

Notes:

- 4,2,1, ,,, txptxptxptxp x x x X  K= , where index 1 denotes the MSB, i.e. 02,1, == txptxp x x .

-  The UL transmission power correction method based on accumulation is compliantwith §5.1.1 of [8].

7.2.1.9 ACK/NACK Indicator

 The ACK/NACK indicator field signals explicitly to the UE that the DL ACK/NACK control

channel element i# , whereani X i = , will be used by eNB to convey the DL ACK/NACK 

messages in reply to transport blocks transmitted on PUSCH in the indicated subframes.

 The value range of the ACK/NACK indicator field is given by:

- }23,,1,0{ K∈ani X  in 10MHz BW case,

7.2.1.10 UE Identity

A 16bits UE identifier is used as described in Section 7.1.1.10.

Note that the same UE identifier (RNTI) shall be used for PDSCH and PUSCH transmission.

7.2.2 Coding, Modulation and Physical Resource Mapping

 The coding, modulation and physical resource mapping is identical for DL and ULscheduling grants and specified in Sections 7.1.2 and 7.1.3.

7.3 Uplink Time Advance Correct ion

For pre-delivery:[Fixed but configurable TA in the UE. Even if the eNodeB send UL timing advance correctionmessage to the UE, the UE will ignore it. UL timing advance correction messages canappear on PDCCH.][16]

Page 41: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 41/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 38/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

7.3.1 Message Contents

 The following information is transmitted within an UL time advance correction message on

PDCCH:- Message type indicator (2bits): 2,1, , mtimtimti x x X  =  

-  Time adjust #0 (8bits): 8,02,01,00 ,,, tatatata x x x X  K=  

-  Time adjust #1 (8bits): 8,12,11,11 ,,,tatatata x x x X  K=  

-  Time adjust #2 (8bits): 8,22,21,22 ,,,tatatata x x x X  K=  

-  Time adjust #3 (8bits): 8,32,31,33 ,,,tatatata x x x X  K=  

- Spare bits (2bits): 2,1, ,sss x x X  =  

- UE group identity (16bits): 16,2,1, ,,,uegueguegueg x x x X  K=  

 The payload of an UL time advance correction message transmitted on PDCCH has a sizeof 36bits. It is obtained by multiplexing the above information elements (except for the UEidentity group) according to:

.,,,,,,,,, 2,1,8,31,02,1,3621 sstatamtimti x x x x x x x x x X  KK ==  

Note that we use the index 1 to indicate the MSB, and the highest indices to indicate the

LSB, in unsigned binary representation, e.g. 2=mti X  corresponds to 0,1 2,1, == mtimti x x (as

in HS-SCCH coding chain of 3GPP Rel. 6 [4]).

7.3.1.1 Message Type Indicator

An UL time advance correction message is indicated to the UE by .2=mti X   

7.3.1.2 Time Adjust

 The time adjust parameters ,30, K=i X taisignal a one-step time adjust relative to the UL

frame timing currently applied by the UE i# of a UE group according to:

)2(52.0)#()#( 7

,, −+=taiused  Acorrected  A

X siUE T iUE T  μ  .

 The maximum time adjust corresponds to ss 04.6656.66 +− K . (A propagation delay of 

such magnitude corresponds to a distance of about 20km.)

If a call is established, the valid value range of tai X  is given by { }3,,2,327

K−−+ .

7.3.1.3 Spare Bits

 The spare bit field is not used and set to zero, 0=s X  .

7.3.1.4 UE Group Identity

A 16bits UE group identifier is used: 16,2,1, ,,,uegueguegueg x x x X  K= , where 1,ueg x denotes the

MSB and 16,ueg x denotes the LSB.

Page 42: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 42/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 39/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

 The UE group identity is derived from the UE identity (RNTI) according to ⎣ ⎦.4/ueueg X  X  =  

In S0 only RNTI 0...3 will be used. UE group identity will be 0 for all used RNTIs

 The UE number ,10,# K=ii within a UE group is derived from the UE identity (RNTI)

according to .2mod UE  X i =  

7.3.2 Coding, Modulation and Physical Resource Mapping

 The coding, modulation and physical resource mapping is identical as for DL and ULscheduling grants and specified in Sections 7.1.2 and 7.1.3, with the exception that the UEgroup identifier is used as an input to the CRC attachment (instead of the UE identifier).

An UL time advance correction message can be mapped to any of the available PDCCH

control channel elements (and to any pair of PDCCH control channel elements i# and1# +i if the repetition option is configured).

7.4 System Frame Number Update

 The eNB transmits a system frame number (SFN) with period 10×SFN P ms (default value

4=SFN P ) by using a dedicated message on PDCCH. SFN is only transmitted on subframe 0

in S0.

7.4.1 Message Contents

 The following information is transmitted within an SFN update message on PDCCH:

- Message type indicator (2bits): 2,1, ,mtimtimti x x X  =  

- Message purpose indicator (2bits): 2,1, ,mpimpimpi x x X  =  

- SFN (10bits): 10,2,1, ,,, sfnsfnsfnsfn x x x X  K=  

- Spare bits (22bits): 22,2,1, ,...,, ssss x x x X  =  

- Cell identity (16bits): 16,2,1, ,,,cellcellcellcell x x x X  K=  

 The payload of an SFN update message transmitted on PDCCH has a size of 36bits. It isobtained by multiplexing the above information elements (except for the cell identity)according to:

.,,,,,,, 22,1,2,1,3621 smpimtimti x x x x x x x X  KK ==  

Note that we use the index 1 to indicate the MSB, and the highest indices to indicate the

LSB, in unsigned binary representation, e.g. 2=mti X  corresponds to 0,1 2,1, == mtimti x x (as

in HS-SCCH coding chain of 3GPP Rel. 6 [4]).

Page 43: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 43/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 40/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7.4.1.1 Message Type and Purpose Indicators

 The message type indicator 3=mti X  is used to indicate a special purpose message to the

UE. A special purpose message is further characterized by the message purpose indicator

.mpi X   

An SFN update message is indicated to the UE by .0=mpi X   

7.4.1.2 System Frame Number

 The 10bit SFN is indicated to the UE by thesfn X  field.

 The SFN is incremented by eNB in each frame, modulo 102 (period of 10.24s).

7.4.1.3 Spare Bits

 The spare bit field is not used and set to zero, 0=s X  .

7.4.1.4 Cell Identity

A 16bits cell identifier is used: 16,2,1, ,,,cellcellcellcell x x x X  K= , where 1,cell x denotes the MSB

and 16,cell x denotes the LSB.

In the trial network, the cell identifier is confined to }14,...,1,0{∈cell X  , and it shall be derived

by the UE from the synchronisation signals [9].

7.4.2 Coding, Modulation and Physical Resource Mapping

 The coding, modulation and physical resource mapping is identical as for DL and ULscheduling grants and specified in Sections 7.1.2 and 7.1.3, with exception that the cellidentifier is used as an input to the CRC attachment (instead of the UE identifier).

An SFN update message shall always be mapped to the PDCCH control channel element#0 (and to PDCCH control channel elements #0 and #1 if the repetition option is configured). This is to reduce the search complexity of the UE.An SFN update message and an UL time advance correction message shall not betransmitted in the same subframe.

7.5 DL ACK/NACK

Upon receiving a transport block on PUSCH, the eNB performs a CRC check. The CRCPASS/FAIL result is transmitted with a specific timing offset as a DL ACK/NACK on PDCCH.

DL ACK/NACKs are transmitted in a frequency-diverse manner, and DL ACK/NACKs of different Ues in a cell are multiplexed by using FDM. Further UE-specific spreading isapplied for inter-cell interference mitigation.

 The timing of the DL ACK/NACK is described within the general UL timing of the

corresponding detailed UL specification, cf. Section 7.1 of [11].

Page 44: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 44/131

Page 45: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 45/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 42/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- Let eff  N  denote the number of resource elements in the first OFDM symbol not

occupied by reference symbols, where 400=eff  N  in 10MHz BW.

-  These resource elements are denoted by the effective subcarrier indices

1,,1,0 −= eff eff  N k  K  

- For 0=hop f  , the effective subcarrier indices correspond to the active subcarrierindices K,8,7,5,4,2,1=k  , i.e. active subcarrier indices with 03mod  =k  are

discarded.

- For 0>hop f  , the effective subcarrier indices correspond to the active subcarrier

indices K,8,7,5,4,2,1=− hop f k  , i.e. active subcarrier indices with

03mod )( =− hop f k  are discarded. In other words, the DL ACK/NACK channel

elements are simply shifted byhop f  subcarriers towards higher active subcarrier

indices.

- 24=a N  in 10MHz BW for L=16 (a N  is upper bounded by  L N eff 

/ ).

-  The DL ACK/NACK control channel element ,1,,1,0,# −= a N iiK

in the first OFDM

symbol (l=0) is defined as the frequency-diverse set of resource elements given by

the effective subcarrier indices .1,,1,0, −=++= Lnn N i f k  ahopeff K  

 The active subcarrier indices k for the DL ACK/NACK channel elements are summarised in

 Table 13 for 10MHz BW, where 0=hop f  is assumed. If  0>hop f  , the active subcarrier

indices k for the DL ACK/NACK channel elements can be computed from the tabulated

indices by addinghop f  . Note that the resource elements forming a DL ACK/NACK channel

element have a regular spacing of 36 active subcarriers in 10MHz BW.

 Table 13: Active subcarrier indices k for DL ACK/NACK channel elements in 10MHz BW.

i#   active subcarrier indices k for  15,1,0, ,,iii aaa K for  0=hop f   

0 1 37 73 109 145 181 217 253 289 325 361 397 433 469 505 5411 2 38 74 110 146 182 218 254 290 326 362 398 434 470 506 5422 4 40 76 112 148 184 220 256 292 328 364 400 436 472 508 5443 5 41 77 113 149 185 221 257 293 329 365 401 437 473 509 5454 7 43 79 115 151 187 223 259 295 331 367 403 439 475 511 5475 8 44 80 116 152 188 224 260 296 332 368 404 440 476 512 5486 10 46 82 118 154 190 226 262 298 334 370 406 442 478 514 5507 11 47 83 119 155 191 227 263 299 335 371 407 443 479 515 5518 13 49 85 121 157 193 229 265 301 337 373 409 445 481 517 5539 14 50 86 122 158 194 230 266 302 338 374 410 446 482 518 55410 16 52 88 124 160 196 232 268 304 340 376 412 448 484 520 55611 17 53 89 125 161 197 233 269 305 341 377 413 449 485 521 55712 19 55 91 127 163 199 235 271 307 343 379 415 451 487 523 55913 20 56 92 128 164 200 236 272 308 344 380 416 452 488 524 56014 22 58 94 130 166 202 238 274 310 346 382 418 454 490 526 562

15 23 59 95 131 167 203 239 275 311 347 383 419 455 491 527 563

Page 46: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 46/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 43/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

16 25 61 97 133 169 205 241 277 313 349 385 421 457 493 529 56517 26 62 98 134 170 206 242 278 314 350 386 422 458 494 530 56618 28 64 100 136 172 208 244 280 316 352 388 424 460 496 532 56819 29 65 101 137 173 209 245 281 317 353 389 425 461 497 533 56920 31 67 103 139 175 211 247 283 319 355 391 427 463 499 535 571

21 32 68 104 140 176 212 248 284 320 356 392 428 464 500 536 57222 34 70 106 142 178 214 250 286 322 358 394 430 466 502 538 57423 35 71 107 143 179 215 251 287 323 359 395 431 467 503 539 575

7.6 UE Procedures

 This section briefly describes the procedures the UE shall perform upon receiving DL/ULscheduling grants and ACK/NACK on PDCCH.

7.6.1 Scheduling Grants

 The UE shall search for N scheduling grants within the second OFDM symbol per downlinksubframe, where N=8 in 10MHz BW case.

In single-stream case (SISO, 2Tx diversity or MU-MIMO), the UE can receive one or twoscheduling grants within a subframe, a DL scheduling grant, an UL scheduling grant or both.

Dual-stream 2-codeword SU-MIMO is not supported at LTE TDD Demo S0.

In case of dual-stream 2-codeword SU-MIMO, the UE can within a subframe receive twoseparate DL scheduling grants, one for either of the two MIMO streams, and/or a single UL

scheduling grant.

In order to detect whether eNB has sent a scheduling grant on PDCCH to the UE, the UEshall reverse the full coding chain, i.e. decode the convolutional code and perform a UE-specific CRC check.

 The UE shall start the decoding with the first PDCCH control channel element #0 persubframe and continue the decoding of further PDCCH control channel elements #1,#2,…,until either two (or three in SU-MIMO case) (one or two for S0 configuration 5, no SU-MIMO,only subframe #8 could include both UL scheduling grant and DL scheduling grant,otherwise only DL scheduling grant could be transmitted in ‘D’ subframe) scheduling grantshave been identified for the UE or until all N scheduling grants were decoded.

A scheduling grant is found for the UE if the UE-specific CRC results in CRC PASS.

In this case, the UE shall first check the Message Type Indicator which indicates whether aDL scheduling grant or an UL scheduling grant was received.

If a DL scheduling grant was received in a subframe, the UE shall demodulate and decodethe transport block received on PDSCH in the same subframe by using the contents of thescheduling grant.

If an UL scheduling grant was received in a subframe, the UE shall transmit with a specifiedtiming offset(refer to 9.1) a transport block on PUSCH and apply the transport format,coding, modulation, physical resource mapping and transmission power as indicated in the

Page 47: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 47/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 44/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

UL scheduling grant. The UE shall select the HARQ process to be used for PUSCHtransmission based on the uplink subframe sequence, i.e. the HARQ process number usedby the UE is incremented by 1 in each up link subframe (irrespective whether PUSCH is

transmitted in this subframe or not), modulo UL

 HARQ N  , where 1=UL

 HARQ N  for configuration 5.

In case that the repetition option is configured for the DL/UL scheduling grants, the UE shallprior to the decoding perform soft combining of the modulation symbols of two adjacentPDCCH control channel elements #i and #(i+1), where i is even.

As the PDSCH transport formats are static in SU-MIMO case, the UE can determine thePDSCH transport formats via the PDCCH, or alternatively the PDSCH transport formats canbe configured.

7.6.2 UL Time Advance Correct ion

For pre-delivery:[

Fixed but configurable TA in the UE. Even if the eNodeB send UL timing advance correctionmessage to the UE, the UE will ignore it. UL timing advance correction messages canappear on PDCCH.][16]In addition to searching for UL/DL scheduling grants, the UE shall search for an UL timingadvance correction message.

 The search procedure is as described for UL/DL scheduling grants in the previoussubsection, except that the UE performs the CRC check by using its UE group identifier.

In case of CRC PASS, the UE shall check the message type indicator to verify that it hasreceived an UL time advance correction message.

If an UL time advance correction message was received, the UE shall adjust the UL timeadvance as signalled within the respective time adjust field. UL time adjustments shall notbe performed by the UE within UL subframe boundaries.

If a call is established, the UE shall discard the received time advance correction message if 

the received value of tai X  falls outside the range { }3,,2,327

K−−+ .

In case that the repetition option is configured for the TA, the UE shall prior to the decodingperform soft combining of the modulation symbols of two adjacent PDCCH control channelelements #i and #(i+1), where i is even.

7.6.3 System Frame Number Update

In addition to searching for UL/DL scheduling grants and UL timing advance correctionmessages the UE shall search for an SFN update message.

 The search procedure is as described for UL/DL scheduling grants in Section 7.6.1, exceptthat the UE performs the CRC check by using the identifier of the cell from which the UEreceives the SFN update message. The cell identifier is derived by the UE from thesynchronisation signals [9].

In case of CRC PASS, the UE shall check the message type and purpose indicators to verify

that it has received an SFN update message.

Page 48: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 48/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 45/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 If an SFN update message was received, the UE shall adapt its internal SFN counter to theSFN value received.

Note: When searching for a message on PDCCH, the UE can decode the convolutionalcode for a given PDCCH channel element, and then perform three CRC checks:

1. Cell-specific CRC check to search for an SFN update message,2. UE group-specific CRC check to search for an UL time advance correction message,3. UE-specific CRC check to search for an UL/DL scheduling grant.

 The UE can stop the search process in a subframe, if the maximum number of messageswas found. In order to limit the search complexity of the UE, the eNB shall not transmit anUL time advance correction message in a subframe in which the SFN update message istransmitted.

In case that the repetition option is configured for the SFN update, the UE shall prior to thedecoding perform soft combining of the modulation symbols of two adjacent PDCCH controlchannel elements #i and #(i+1), where i is even.

7.6.4 DL ACK/NACK

If the UE receives an UL scheduling grant, it shall check the ACK/NACK Indicator field todetermine the channel element that will be used by eNB to convey the DL ACK/NACK.

If a NACK is received in the indicated DL ACK/NACK control channel element, the UE shalltrigger a retransmission of the transport block transmitted on PUSCH in the correspondingHARQ process. A retransmission on PUSCH is performed by using the same transport blocksize, modulation scheme, resource allocation and transmission power offset as for the initial

transmission of the transport block.

An exception is if a NACK is received by the UE for a HARQ process, and the maximumnumber of retransmissions for this HARQ process was already reached with the previousretransmission for this HARQ process. In this case, a NACK shall be reported to higherlayers for this HARQ process, and the HARQ buffer shall be cleared. Note that in such case,the eNB may transmit a DL NACK and an UL scheduling grant within the same subframe tothe UE, and the UE shall in this case trigger a new transmission for the HARQ process. Notethat this is the only case in which eNB is allowed to transmit a DL NACK and an ULscheduling grant within the same subframe to the UE.

If a DL NACK is received while the UE simultaneously has a valid UL scheduling grant for

the same HARQ process, the UE shall act as follows:- If a DL NACK and an UL scheduling grant are received by the UE within the same

subframe:o if the maximum number of retransmissions was reached for this HARQ

process, then a NACK shall be reported to higher layers for this HARQprocess, the HARQ buffer shall be cleared, and a new transmission shall beformatted using the contents of the UL scheduling grant,

o else if the maximum number of retransmissions is not yet reached for thisHARQ process, it is assumed that an ACK ÆNACK transmission error hasoccurred, an ACK shall be reported to higher layers for this HARQ process,the HARQ buffer shall be cleared, and a new transmission shall be formattedusing the contents of the UL scheduling grant.

Page 49: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 49/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 46/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

o The case that a DL NACK is received while the UE has a valid UL scheduling

grant for the same HARQ process due to 0>doa X  is not possible at LTE

 TDD Demo S0, becausedoa X  is always set to zero.

If an ACK is received in the indicated DL ACK/NACK control channel element, the UE shall

report an ACK to higher layers and clear its corresponding HARQ transmission buffer.

8 PHYSICAL DOWNLINK SHARED CHANNEL

 The PDSCH carries data from higher protocol layers.

For PDSCH transmission, the following schemes shall be supported:- SISO:

o PDSCH is transmitted from antenna port #0 only (antenna port #1 of eNB is

not used for downlink transmission).o The UE shall be configured to use the reference signal transmitted from eNB

antenna port #0.o A single codeword (or transport block) is transmitted to a UE per downlink

subframe (or TTI).o The transport format can change on a subframe basis and it is signalled on

PDCCH.o QPSK, 16QAM and 64QAM modulation shall be supported.o The UE may use one or two receive antennas, where 2Rx diversity shall be

applied in the latter case.o The UE shall determine the PDSCH transport format by decoding the

PDCCH.

At LTE TDD Demo S0, the following PDSCH transmission schemes are not supported:- 2Tx diversity SFBC (MISO):

o PDSCH is space-frequency block coded (SFBC) and transmitted fromantenna ports #0 and #1.

o The UE shall be configured to use the reference signals transmitted fromeNB antenna ports #0 and #1.

o A single codeword (or transport block) is transmitted to a UE per subframe(or TTI).

o The transport format can change on a subframe basis and it is signalled onPDCCH.

o QPSK, 16QAM and 64QAM modulation shall be supported.o The UE may use one or two receive antennas, where 2Rx diversity shall be

applied in the latter case.o The UE shall determine the PDSCH transport format by decoding the

PDCCH which in this case is also SFBC encoded and transmitted on bothantenna ports #0 and #1.

- Dual-stream 2-codeword multi-user MIMO (MU-MIMO):o PDSCH is transmitted to two UEs #0 and #1 simultaneously using the same

physical resources in the time-frequency grid, and a single codeword (ortransport block) is transmitted to a UE per subframe (or TTI).

o Codeword #0 of UE#0 is transmitted from antenna port #0 and codeword #0of UE#1 is transmitted from antenna port #1.

o

The transport formats of UE #0 and #1 are static and signalled on PDCCH.

Page 50: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 50/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 47/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

o QPSK, 16QAM and 64QAM modulation shall be supported.o It is sufficient for the UE to use a single receive antenna and single-user

detection algorithms. UEs #0 and #1 shall be configured to use the referencesignals transmitted from eNB antenna ports #0 and #1, respectively.

o The UE shall determine the PDSCH transport format by decoding thePDCCH.

- Dual-stream 2-codeword single-user MIMO (SU-MIMO):

o Two codewords are transmitted to the same UE per subframe, and bothcodewords are encoded separately of each other.

o Codeword #0 is transmitted from antenna port #0 and codeword #1 istransmitted from antenna port #1.

o Codewords #0 and #1 can change on a subframe basis and they can usedifferent transport formats, and the transport formats are signalled onPDCCH.

o Codewords #0 and #1 use identical mapping of modulation symbols toresource elements in the time-frequency grid.

o

The UE shall be configured to use the reference signals transmitted fromboth eNB antenna ports #0 and #1.o QPSK, 16QAM and 64QAM modulation shall be supported.o The UE shall use two (or more) receive antennas and multi-user detection

algorithms to enable the MIMO detection.o The UE shall determine the PDSCH transport format by decoding the

PDCCH.

Scheduled PDSCH transmission with asynchronous HARQ shall be supported, where thePDSCH transmission parameters are signalled on the PDCCH, and ACK/NACK and CQIinformation are signalled on PUCCH in UL.

 The number of UEs connected with eNB shall be 1 or 2.

8.1 Resource Assignment and User Multip lexing

PDSCH is transmitted in each ‘D’ subframe.. PDSCH on Special subframe is not supportedin S0.

 The first and the second OFDM symbols of each ‘D’’ subframe are used by PDCCH(ULgrant, DL grant, ACK/NACK…etc.). In S0, DwPTS is used for P-SCH only.

In S0, RUs carrying P-SCH or S-SCH signals are not used for PDSCH, but used for PDCCH.

PDSCH is transmitted using resource elements not occupied by reference signals,synchronisation signals or PDCCH.

 The number of resource elements per resource unit in DL subframe (not special subframe)used for PDSCH transmission is given by 12x(14-2)-12 = 132.

8.2 RLC/MAC PDU Formats

 The formats of the RLC/MAC PDUs are described in [2].

Page 51: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 51/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 48/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The MAC PDU header has a fixed size of 4 bytes and there is no RLC PDU header.

 The size of the MAC PDU is called the transport block size (TBS). The TBS is confined tointeger multiples of bytes.

Padding is included in the MAC PDU only if there is not enough buffered data to fill the PDUfor the selected transport format.

RLC retransmissions are not supported, neither are re-segmentations of RLC PDUs.

At S0, the RLC/MAC PDU header structure as Figure 11 should be used.SN in MAC PDU Header changed from 11 to 10 Bit, the MSB bit of original 11 bit SN will befixed as zero[16].

si5 si1 

si2 si3 

si4 

sn (10bits)  n (5bits) si (5bits) r (11bits) 

MSB  LSB2bytes  2bytes

 

Figure 11: RLC/MAC PDU header.

8.3 Transport Formats

 The transport formats are signalled to the UE within the DL scheduling grant on PDCCH.

 The transport formats can change on a subframe basis.

In MU-MIMO and SU-MIMO case, the transport formats are static.

Several transport formats shall be supported, covering code rates from very small values<1/3 to about 1.0 for QPSK, 16QAM and 64QAM modulation schemes. The transport block

sizes shall be confined to integer multiples of bytes.

A detailed set of transport formats for PDSCH transmission is found in [3].

8.4 Coding Chain

Figure 12 illustrates the PDSCH coding chain. This figure is taken from the HS-DSCHcoding chain of 3GPP Rel. 6 [4] with naming of some blocks modified and with the numberof physical channels at the output reduced to 1 (instead of P for each transmitted HS-PDSCH code).

Page 52: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 52/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 49/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The coding chain for PDSCH uses building blocks of the coding chain same as LTE FDDD2.4, for the following steps are also same:

- the code block segmentation and channel coding (Turbo code internal QPPinterleaver) which are compliant with 3GPP Rel. 8 [5],

- the physical resource segmentation and the block interleaver which are proposed byALU [6],

- and the physical channel mapping which is replaced by a physical resourceconcatenation block.

 Table 14 exemplifies the respective block sizes for a TBS of 9200bits (25 RUs, 16QAM,code rate 0.7).

CRC attachment

a im1 ,a im2,aim3,...aimA

Code block segmentation

Channel Coding

Physical resourcesegmentation

PhCH#1

Physical Layer Hybrid-ARQfunctionality

d im1 ,d im2,dim3,...dimB

o ir1 ,o ir2,oir3,...oirK 

c i1 ,c i2,ci3,...ciE

v p,1 ,v p,2,vp,3,...vp,U

u p,1 ,u p,2,up,3,...up,U

w 1 ,w2,w3,...wNdata

PDSCHInterleaving

Bit Scrambling

b im1 ,b im2,bim3,...bimB

Physical resourceconcatenation

r 1 , r 2, r3,... rNdata

 

Figure 12: Coding chain for PDSCH (modified from [4]).

Page 53: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 53/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 50/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Table 14: Example block sizes in coding chain.

Function Number of bits Comments

 Transport block size 1x9200 MAC PDU sizeCRC attachment 1x9224 24bit CRCBit Scrambling 1x9224

Code Block Segmentation 1x4672 +1x4608 2 code blocks <=6144bitsmatched to QPP interleaver size

Channel Encoding 1x14028 +1x13836 =27864 Rate 1/3 per code block plus 12tail bits per code block

HARQ first RM 1x27864 Transparent (infinite virtual IRbuffer)

HARQ second RM 1x13200 Output block size matched toavailable physical resource(=4x3300bits with 16QAM and25 RUs allocated)

Resource Segmentation 4x2x(25x34-26) +4x2x(25x34-24) =4x1648 +4x1652

P=8 segments matched toPDSCH interleaver size

PDSCH Interleaver 4x2x(25x34-26) +4x2x(25x34-24) =4x1648 +4x1652

Segment-by-segmentinterleaving with 2 parallel(16QAM) basic interleavers of size 25x34 bits and 26bit/24bitpadding per basic interleaver

Physical ResourceConcatenation

1x13200 Concatenation of segments

8.4.1 CRC Attachment

A 24 bit CRC is used as specified in §4.5.1 of [4].

8.4.2 Bit Scrambl ing

Bit scrambling shall be transparent.

Note that in 3GPP Rel. 8, the position of the scrambling entity is shifted to the input of themodulation mapper.

8.4.3 Code Block Segmentation

Code block segmentation is used as specified in §5.1.2 of [5].

 The maximum code block size that can be used is 6144bits.

8.4.4 Channel Encoding

A Rate 1/3 Turbo encoder is used and there is only a single transport block per TTI asspecified in §5.1.3 of [5].

 The QPP Turbo code internal interleaver as specified in §5.1.3.2.3 of [5] is applied.

Note that 12 tail bits are appended to each code block for trellis termination.

Page 54: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 54/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 51/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

8.4.5 Hybrid ARQ (Rate Matching)

 The Hybrid ARQ entity performs the rate matching as specified in §4.5.4 of [4].

HARQ bit separation is as specified in §4.5.4.1 of [4].

HARQ first rate matching is as specified in §4.5.4.2 of [4]. The first rate matching stage shallbe transparent. This can be achieved by using a sufficiently large virtual IR buffer.

HARQ second rate matching is as specified in §4.5.4.3 of [4] and uses variable RVparameters }1,0{∈s (indicates whether systematic bits are prioritized) and }1,0{∈r  .

HARQ bit collection is as specified in §4.5.4.4 of [4].

13= DL

 HARQ N  (for TDD UL/DL allocation configuration 5, without data on special subframe)

HARQ processes per UE shall be supported(refer to section 9.1). The HARQ processes of a

UE have equal memory sizes given by the total HARQ buffer size /  HARQ N  . Per HARQprocess 95880 samples needs to be stored to enable TFRC #69 [3] (equals to the numberof samples after 1st RM). In another word, HARQ buffer size of the UE needs to be larger

than (95880 samples *Number of soft bits per sample * HARQ N  *Number of code streams) bits.

In step 0, TFRC #51 will be used.[16]

8.4.6 Resource Segmentation

A detailed proposal for resource segmentation is given in [6].

 The input bits into the resource segmentation (i.e. the output bits of the HARQ second rate

matching stage) are denoted bydata N www ,,, 21 K .

 The number of segments P is variable depending on the number of input bitsdata N  . The

segment sizes are approximately equal and matched to the size of the PDSCH interleaver.

 The number of segments is given by:

⎣ ⎦min)1( N  M m

 N dataP ⋅⋅+= ,

where:

,34= M   

( ) ⎣ ⎦),min(21

32

1min +=⋅+

 M  M m

 N data N  ,

⎪⎩

⎪⎨

=

.64,2

,16,1

,,0

QAM 

QAM 

QPSK 

m  

 The segment size may assume two different values, a first value Ua for the first P1 segments(first interleaver cycles or first runs) and a second value Ub for the remaining P-P1 segments(last interleaver cycles or last runs).

Page 55: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 55/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 52/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The numberP1 is given by:

⎥⎦

⎤⎢⎣

⎡⋅−

+⋅= min _ 

 _ 

1)1(2

1 fill

total fill N P

m

 N P ,

where:

Pm N 

 fill

total fill N  ⋅+⋅⋅= )1(2min _  _ 2 ,

datatotal fill N mP M  N  N  −+⋅⋅⋅= )1( _  ,

⎡ ⎤ min N  N  M Pr  += ⋅ ,

min1N  M Pr 

m

 N data ⋅⋅−=+ .

 The segment sizes are given by ))2()(1( min _  +−⋅+= filla N  M  N mU  and

))(1( min _  fillb N  M  N mU  −⋅+= .

 The output bits of the resource segmentation for the p-th segment (p=1,2,…, P) are denotedby

 pU  p p p uuu ,2,1, ,,, K , where Up stands for the size of the p-th segment and takes on either

the value Ua orUb.

Note: N and M denote the number of rows and columns of the basic block interleaver,respectively, cf. next section.

8.4.7 PDSCH Interleaving

A detailed proposal for PDSCH interleaving (block interleaving) is given in [6].

 The block interleaver is applied to each segment. Let Up denote the size of the p-th segment(p=1,2,…P) and let the corresponding input bits to the interleaver be denoted by

.,,, ,2,1,  pU  p p p uuu K  

In analogy with the Rel. 6 block interleaver for HS-DSCH, the PDSCH block interleaver usesm+1 parallel basic interleavers, where m=0 for QPSK, m=1 for 16QAM and m=2 for 64QAM. The output bits from the physical channel segmentation are divided two by two between thebasic interleavers and bits are collected two by two from the basic interleavers.

 The interleaver structure is exemplified in Figure 13 for 64QAM. With 64QAM, bits up,k and

up,k+1 go to the first interleaver, bits up,k+2 and up,k+3 go to the second interleaver and bits up,k+4 and up,k+5 go to the third interleaver. Bits vp,k and vp,k+1 are obtained from the first interleaver,bits vp,k+2 and vp,k+3 are obtained from the second interleaver, and bits vp,k+4 and vp,k+5 areobtained from the third interleaver where k mod 6=1.

Page 56: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 56/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 53/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Interleaver

(N x M)up,k up,k+1  vp,k vp,k+1 

Interleaver(N x M)

up,k+2 up,k+3  vp,k+2 vp,k+3 

Interleaver(N x M)

up,k+4 up,k+5  vp,k+4 vp,k+5 

up,k,up,k+1,...up,k+5 

Figure 13: PDSCH interleaver structure for 64QAM.

 The basic interleaver (denoted as ALU version v2) has a variable number of rows  N  and a

fixed number of columns .34= M   

 The PUSCH interleaver is designed to have approximately square basic block interleaver

structure with matrix sizes similar to 3GPP Rel. 6 (except for small number of input bits). Thenumber of rows N is computed as described in the previous section.

 The maximum number of bits that can be stored in the basic interleaver matrix is given by N  M × , i.e. an entry of the basic interleaver matrix corresponds to a single bit of the input

sequence.

 The input bits are written into the basic interleaver matrix column by column, as illustrated inFigure 14. The number of interleaver runs illustrated in Figure 14 corresponds to the numberof segments P.

Page 57: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 57/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 54/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

write

order 

read order read order 

 Number of 

first runs: P1

 Number of 

last runs: P-P1

Number of 

runs/segments

1 1 8 35 52 10 27 44 61

2 1 9 36 53 11 28 45 62

3 20 37 54 12 29 46 63

4 2 1 38 55 13 30 47 64

5 2 2 39 56 14 31 48 65

6 2 3 40 57 15 32 49 66

7 2 4 41 58 16 33 50 67

8 2 5 42 59 17 34 51 68

9 26 43 60

1 19 37 54 10 28 46 63

2 20 38 55 11 29 47 64

3 21 39 56 12 30 48 65

4 22 40 57 13 31 49 66

5 23 41 58 14 32 50 67

6 24 42 59 15 33 51 68

7 25 43 60 16 34 52 69

8 26 44 61 17 35 53 70

9 27 45 62 18 36

 Number of runs: P

m+1 parallel basic

interleavers

 Nfill_min filling bits

 

 Nfill_min+2

filling bits

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

index

write

order 

0

1

2

3

4

5

6

7

8

index

Example parameters:- m=2

- P=6 and P1=4- NxM=9x8

- Nfill_min=2

- write order of columns:

<0, 4, 1, 5, 2, 6, 3, 7>

Figure 14: PDSCH block interleaver structure.

Possibly some entries in the basic interleaver matrix are not filled with data bits and insteadfilling bits are inserted. The filling bits are inserted into the last columns of the last row of thebasic interleaver matrix, as illustrated in grey colour in Figure 14. The filling bits have to bepruned during readout. The number of filling bits per basic interleaver is given by

( 2min _  + fill N  ) in the first P1 interleaver runs and by min _  fill N  in the last P-P1 interleaver runs,

where min _  fill N  is defined in the previous section.

 The input bits are written into the basic interleaver matrix column by column, where theorder of columns is given by the following sequence of column indices (this is similar to aninter-column permutation):

- <0, 5, 10, 15, 20, 25, 30, 1, 6, 11, 16, 21, 26, 31, 2, 7, 12, 17, 22, 27, 32, 3, 8, 13, 18,23, 28, 33, 4, 9, 14, 19, 24, 29>. 

 The columns are always written from top to bottom, i.e. the order of rows is given by thesequence <0, 1, 2, …>.

(Note that the column write order <0, 4, 1, 5, 2, 6, 3, 7> is exemplified in Figure 14.)

 The output of the basic interleaver is the bit sequence read out row by row (i.e. withsequence <0, 1, 2, …>) from the  M  N × matrix.

Page 58: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 58/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 55/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

8.4.8 Physical Resource Concatenation for PDSCH

 This function block simply concatenates the block interleaved segments according to

Pdata U PU  N  vvvvvvr r r  ,2,21,2,12,11,121 ,,,,,,,...,,1

KK=  

to obtain a bit sequence of lengthdata N  .

8.5 Modulation and Physical Resource Mapping

 The output signal of the coding chain is further processed by means of UE-specificscrambling, constellation re-arrangement for 16QAM/64QAM, modulation mapping, spatialmultiplexing (MIMO precoder) and physical resource mapping.

8.5.1 UE-Specific Scrambl ing

 The scrambling sequence generation uses Gold sequences as agreed during 3GPPRAN1#51bis meeting in Sevilla.

 The initialization of the Gold sequences is as agreed during 3GPP RAN1#52 meeting inSorrento (cf. 3GPP R1-081106), but time-variant input variables are avoided to reduce testeffort (i.e. the variable <Subframe_Num> is replaced by <Cell_ID>).

 The inputs of the UE-specific scrambling are given by:

- the sequence of bitsdata N r r r  ...,, 21 obtained from the PDSCH coding chain,

- the UE identity 16,2,1, ,,, ueueueue x x x X  K= ,

-

the cell identity 16,2,1, ,,, cellcellcellcell x x x X K=

,- the stream identity 1,marimari x X  = (cf. Section 7.1.1),

where we use the index 1 to indicate the LSB, and the index 16 to indicate the MSB, inunsigned binary representation.

 The UE-specific scrambling is defined by:

,,...,2,1,2mod )( 1 datak k k  N k cr r  =+=′ −  

where the }1,0{∈′k r  denote the output bits of the UE-specific scrambling, and the

}1,0{)(1 ∈== − nccc k ndenote a Gold sequence generated by modulo-2 addition of the

output sequences )(1 n x and )(2 n x of two feedback shift registers of length 31,

,1,,0},1,0{)(,2mod ))()(()( 21 −=∈+= data N nncn xn xncK

 

and the generator polynomials of the binary sequences )(1 n x and )(2 n x are given by

1331 ++ x x and 12331 ++++ x x x x , respectively. The generation of the Gold sequence isdepicted in Figure 15 (cf. R1-080318).

Page 59: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 59/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 56/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

x1(n) 

x2(n) 

c(n) 

Init x1:  ... 

Init x2:

 ... xUE,16

(MSB)

MSB  LSB 

... xcell,9

(MSB)xcell,1

(LSB)0 

0  0 

xcell,4...1

(MSB...LSB)x

mari,1

xUE,1

(LSB)

 Figure 15: Feedback shift register for UE-specific scrambling sequence.

 The 31 entries of the first shift register are initialized according to:0,1)(1 == nn x (LSB, green in Figure 15),

,300,0)(1 ≤<= nn x (grey in Figure 15).

 The second shift register is initialized with

,222 14139

UE maricellcell X  X  X  X  ++′′+′  

where:

- 9,2,1, ,,,cellcellcellcell x x x X  K=′ denotes a shortened 9bit cell identifier (blue in Figure 15),

- 4,2,1, ,,,cellcellcellcell x x x X  K=′′ denotes a shortened 4bit cell identifier (yellow in Figure

15),

- 1,marimari x X  = denotes the 1bit stream identifier (pink in Figure 15), and

- 16,2,1, ,,, UE UE UE UE  x x x X  K= denotes the 16bit UE identifier (red in Figure 15),

where we use the index 1 to indicate the LSB. Note that one position is initialized with zero:

0)(2 =n x for 30=n (grey in Figure 15).

 The outputs of the shift registers ,30),(),( 21 >nn xn x are iteratively obtained according to:

,2mod ))()3(()31( 111 n xn xn x ++=+  

.2mod ))()1()2()3(()31( 22222 n xn xn xn xn x ++++++=+  

8.5.2 Constellation Re-Arrangement for 16QAM/64QAM

Constellation re-arrangement for 16QAM is as specified in §4.5.7 of [4].

Constellation re-arrangement for 64QAM is defined as follows:-  The bits of the input sequence are mapped in groups of 6 according to r’p,k, r’p,k+1,

r’p,k+2, r’p,k+3 , r’p,k+4, r’p,k+5 , where k mod 6 = 1.-  The groups of 6 input bits are mapped to groups of 6 output bits sp,k, sp,k+1, sp,k+2,

sp,k+3, sp,k+4, sp,k+5 , where k mod 6 = 1.-  The mapping of input bits to output bits is controlled by the constellation version

parameter b as defined in Table 15.

Page 60: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 60/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 57/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Table 15: Constellation re-arrangement for 64QAM.

Constellationversion parameter b 

Output bit sequencesp,k, sp,k+1, sp,k+2, sp,k+3, sp,k+4, sp,k+5 

Operation

0 r’p,k r’p,k+1 r’p,k+2 r’p,k+3 r’p,k+4 r’p,k+5 None1 r’p,k+4 r’p,k+5 r’p,k r’p,k+1 r’p,k+2 r’p,k+3 Right cyclic shift of 2 bits

2 r’p,k+2 r’p,k+3 r’p,k+4 r’p,k+5 r’p,k r’p,k+1 Left cyclic shift of 2 bits

3 r’p,k+4 r’p,k+5 r’p,k+2 r’p,k+3 r’p,k r’p,k+1 Swapping MSBs with

LSBs

For QPSK, the constellation re-arrangement is transparent.

8.5.3 Modulation Mapper 

QPSK, 16QAM and 64QAM modulation shall be supported.

 The modulation mapper is as specified in §7 of [1].

(Note that for QPSK and 16QAM modulation, the modulation mapping of 3GPP Rel. 8 [1] isidentical to the modulation mapping of 3GPP Rel. 6 (TS25.213). For 64QAM modulation, themodulation mapping of 3GPP Rel. 8 [1] is identical to the modulation mapping used in thestudy item phase of HSDPA (TR25.848 V4.0.0).)

8.5.4 Spatial Multiplexing

8.5.4.1 SISO Case

In SISO case, the codeword is transmitted via antenna port #0.

8.5.4.2 2Tx Diversity (MISO)

2 Tx Diversity (MISO) is not supported at LTE TDD Demo S0.In 2Tx diversity case, the codeword is SFBC encoded and transmitted simultaneously viaantenna ports #0 and #1.

 The SFBC encoding is compliant with 3GPP Rel. 8 (TS36.211 V1.2.0) and defined asfollows:

- Let 1, +ii d d  denote two consecutive complex-valued modulation symbols.

- On antenna port #0, the first modulation symbol id  is mapped to a first subcarrierwith index

 jk  , and the second modulation symbol 1+id  is mapped to the adjacent

subcarrier with index 1+ jk  . In other words, the SFBC encoding for antenna port #0 is

transparent.

- On antenna port #1, the modulation symbol *

1+− id  is mapped to the subcarrier with

index  jk  , and the modulation symbol *

id  is mapped to the adjacent subcarrier with

index 1+ jk  , where *

id  denotes the conjugate complex of id  .

If 2Tx diversity is configured, SFBC encoding is applied to both PDSCH and PDCCH (DL

ACK/NACK and scheduling messages, tbd.).

Page 61: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 61/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 58/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Note that in case of scheduling messages on PDCCH (tbd.), the number of modulationsymbols is odd (75 modulation symbols). In this case, a zero shall be appended to obtain asequence of 76 modulation symbols, and the respective SFBC encoded symbols to bemapped to the 76th subcarrier shall not be transmitted.

8.5.4.3 MIMO Precoding

Both SU-MIMO and MU-MIMO are not supported at LTE TDD Demo S0.

In SU-MIMO case, codeword #0 is transmitted via antenna port #0 and codeword #1 istransmitted via antenna port #1.

In MU-MIMO case, codeword #0 of UE #0 is transmitted via antenna port #0 and codeword#0 of UE #1 is transmitted via antenna port #1.

8.5.5 Physical Resource Mapping

PDSCH is transmitted in each ‘D’ subframe.

Resource elements not used (or reserved) for reference signals, synchronisation signals orPDCCH shall be used for transmission of PDSCH.

 The physical resource mapping for PDSCH can be called “in frequency first over allallocated resource units”:

-  The sequence of modulation symbols is mapped to resource elements withincreasing active subcarrier index k over all resource units allocated for the user,

starting in OFDM symbol l=2 of the first slot of a subframe until all allocated resourceelements in the OFDM symbol are filled.-  The mapping is continued in the next OFDM symbols (in sequence of 

l=2,3,4,5,6,0,1,2,3,4,5,6 in downlink subframe (not special subframe) also withincreasing active subcarrier index.

-  The OFDM symbols l=0,1 of the first slot of a subframe are not used for PDSCHtransmission as they carry the PDCCH.

 The physical resource mapping for PDSCH is illustrated in the Appendix.

9 DOWNLINK TIMING

 The process UE corrects its transmission timing advance based on uplink time advancecorrection message in PDCCH is described in section 8.3[11]. This section clarifies thetiming issues related to DL HARQ.

9.1 HARQ Timing

At LTE TDD Demo S0, only uplink-downlink allocations configuration 5 is supported, aslisted in section 4.1 Table 3.

Page 62: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 62/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 59/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Number of HARQ processes and HARQ RTT depend on TDD configurations as shown in Table 16 according to [13].

 Table 16: Maximum number of UL/DL HARQ processes

configuratio

n

Subframe No. No. of DL

HARQprocesses(with dataonDwPTS)

No. of DL

HARQprocesses(w/o dataonDwPTS)

Max DL

HARQRTT(ms, w/odata onDwPTS)

No. of UL

HARQprocesses

Max

ULHARQRTT(ms)

5 DSUDDDDDDD 15 13 17 1 10

In Table 16, ‘Data Transmission in DwPTS’ means that PDSCH is transmitted in DwPTS of special subframe. And it assumes that the data should be re-transmitted in the specialsubframe (i.e. DwPTS) if the feedback is NACK.

 The eNB shall use

-  13 DL

 HARQ N  = HARQ processes for PDSCH, configuration 5;

[16]For pre-delivery only: [UE and eNB shall be configurable for mode1 and mode2:mode1: no HARQ retransmission for UL and DL, DL up to 8 HARQ processes.

eNB may send initial transmissions only(coding and signaling on PDCCH as thisspecification defined.)

HARQ IDs may be in the range 0...7 (4 bits used for signaling as this specificationdefined)

A single 1-bit ACK will be sent by the UE for all 8 HARQ processes from an &-operation.

mode2:UL and DL HARQ, with restrict max number of HARQ process 1 for S0.1(HARQid=0),can be sent in any DL subframe.

UE should feedback the ACK/NACK in the way defined in 6.3.1 of [11].]

9.1.1 DL HARQ Timing Relationship

For TDD UL/DL configurations 5, the UE shall upon detection of a PDCCH UL grant insubframe n (n=8 only) intended for the UE, adjust the corresponding PUSCH transmission insubframe n+k, with k given in Table 17.

 Table 17: k for TDD configuration 5

DL subframe number nTDD UL/DLConfiguratio

n 0 1 2 3 4 5 6 7 8 9

5 4

 

Page 63: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 63/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 60/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

For TDD[14], the UE shall upon detection of a PDSCH transmission in subframe n intendedfor the UE and for which an ACK/NACK shall be provided, transmit the ACK/NACK responsein UL subframe n+k, with where k depends on the subframe n according to k>3.

 Table 18:Uplink ACK/NACK timing indexk for TDD

Subframe nConfiguration0 1 2 3 4 5 6 7 8 9

5 12 11 - 9 8 7 6 5 4 13

At LTE TDD Demo S0, no PDSCH transmitted on subframe 1.

Given TDD UL/DL configuration 5, up to 13 DL Hybrid ARQ processes #0 till #12 aresupported in case of no PDSCH transmitted on special subframe, as shown in Figure 16.Note that the HARQ process number #0 …#12 shown in Figure 16 is just for example.Actually, TDD DL HARQ process number is dynamically scheduled by eNB. Figure 16represents TDD UL/DL configuration 5 in S0, and max 13 HARQ processes are used in S0.

Subframe No. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

D S U D D D D D D D D S U D D D D D D D D S U D D D D D D D

PDSCH 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 12 7 8 9 10

PDCCH: DL grant

70 8

1 9

2 10

3 11

4 0

5 1

6 2

 ACK/NACK

on UL

TDD Configuration 5

1 radio frame(10ms)

Max DL HARQ Round Trip Time =17ms

 

Figure 16: HARQ process number for uplink-downlink allocations configuration 5

For TDD UL/DL allocation configuration 5, the use of a single uplink subframe for providingHARQ feedback for multiple PDSCH transmission is supported by distinguishing all thecorresponding individual PDSCH transmission ACK/NACKs with different Hadamardspreading sequences and Zadoff-Chu spreading sequences as said in section 6.3.1[11].

In case of DL scheduling grant, we assume that in subframe i# , the UE receives a transport

block on PDSCH, transmitted by the eNB with HARQ process number n# . The DLscheduling grant on PDCCH indicating the PDSCH transport block to the UE is transmitted

by eNB within the same subframe i# .

 The HARQ process number n# for the PDSCH transport block transmitted in subframe i#  is selected by the eNB scheduler and explicitly signalled to the UE within the DL schedulinggrant on PDCCH. The eNB shall in this case not use the same HARQ process number n#  for the transmission of a PDSCH transport block before receiving the correspondingACK/NACK + 3 ms. The mapping of HARQ process ID to the DL subframe number iscompletely flexible (due to asynchronous HARQ in DL) but considering this timing constraint. The earliest subframe in which eNB is allowed to use the same HARQ process number n#  

for the transmission of a PDSCH transport block is subframe #( ) HARQi K + .

- In case of configuration 5, HARQK  is given in Table 19

Page 64: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 64/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 61/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- Table 19:  HARQK  for for uplink-downlink allocations configuration 5

DL subframe index of configuration 5

i   0 1 2 3 4 5 6 7 8 9

 HARQK   16 20* 13 12 11 10 9 8 7

*If HARQ #n is in special subframe(not supported at S0), its retransmission should be innext special subframe only.

Page 65: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 65/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 62/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l . 10 GLOSSARY

 Acronym Defini tion

BW Bandwidth

CRC Cyclic Redundancy Check

DL Downlink

DwPTS Downlink Pilot Time Slot

eNB Enhanced Node B

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform

HARQ Hybrid ARQ

IFFT Inverse Fast Fourier Transform

MAC Medium Access Control

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MU-MIMO Multi-user MIMO

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

RU Resource unit

SCH Synchronisation Channel

SFBC Space Frequency Block Coding

SFN System Frame Number

SISO Single Input Single Output

SU-MIMO Single User MIMO

 TBS Transport Block Size

 TTI Transmission Time Interval

UE User Equipment

UpPTS Uplink Pilot Time Slot

Page 66: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 66/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 63/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l . 11 APPENDIX – RESOURCE MAPPING EXAMPLE

 The Figure 17 illustrates the time-frequency structure of the LTE TDD downlink (UL/DLconfiguration 5 and special subframe configuration8) and exemplifies the physical resource

mapping for the 10MHz BW case.

Note that 0=hop f  is assumed.

 The figure illustrates the resource allocation for antenna port #0, and it illustrates a subframenot carrying the synchronisation signal (i.e. subframe #3-#4 or #7-#9).

Reference symbols in positions R0 that are transmitted from antenna port p=0 are shown inred colour. They are filled with the reference sequence symbols )(nC  in the form:

- In the first slot of a subframe: )99(),...,1(),0( 99,01,00,0 C  RC  RC  R === in OFDM

symbol l=0 and )199(),...,101(),100(199,0101,0100,0

C  RC  RC  R === in OFDM symbol

l=4.

- In the second slot of a subframe: )299(),...,201(),200( 299,0201,0200,0 C  RC  RC  R ===  

in OFDM symbol l=0 and )399(),...,301(),300( 399,0301,0300,0 C  RC  RC  R === in OFDM

symbol l=4.

Reference symbols in positions R1 that are not transmitted from antenna port p=0 are shownin black colour. They are filled with zeros in 1Tx case.

Note that in the frequency domain, the distance between consecutive reference symbolscontained in the same OFDM symbol equals 6 subcarriers (6x15kHz), except around the DC

subcarrier where it equals 7 subcarriers (7x15kHz).

 The first two OFDM symbols (l=0 and l=1) of a subframe are used for PDCCH:-  The first OFDM symbol (l=0) of a subframe is reserved for carrying DL ACK/NACK 

information. In 10MHz BW case a number of 24 frequency-distributed DL ACK/NACK channel elements is supported (i=0…23), each channel element consists of 16resource elements ( j=0…15). The DL ACK/NACK channel elements occupy theresource elements not carrying reference symbols. They are indicated by the

symbols 15...0,23...0,, == jia  ji(yellow colours). Some resource elements at the

upper band edge are not used and zeros are filled in (white colour).-  The second OFDM symbol (l=1) of a subframe is used for carrying the PDCCH

control channel elements #0-#7. A PDCCH control channel element can be used tocarry a single DL/UL scheduling grant. The physical resource mapping for PDCCH isindicated by the running indices of the sequences s.

In this example, PDSCH is transmitted simultaneously to 2 Ues in the same subframe,where UE #0 allocates the resource units #0-#24 (dark green colour), and UE #1 allocatesthe resource units #25-#49 (light green colour). In this example, PDCCH control channelelements #0 and #1 (light turquoise colours) could be used to carry the DL schedulinggrants for the two PDSCH users (if no UL scheduling grants are transmitted in the samesubframe).

Page 67: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 67/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 64/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 The physical resource mapping for PDSCH is indicated by the running indices of thesequences d which denote the sequences of PDSCH modulation symbols for either of theusers.

812 599 S75

811 598 S75

810 597 S75 R199 R399

809 596 S75

808 595 S75

807 594 R99 S75 R299

806 593 S75

805 592 S75

804 591 S74 R198 R398

803 590 S74

802 589 S74

801 588 R98 S74 R298

524 311 a15,8 S39

523 310 a14,8 S39

522 309 S39 R151 R351

521 308 a13,8 S39

520 307 a12,8 S39

519 306 R51 S39 R251

518 305 a11,8 S39

517 304 a10,8 S39

516 303 S38 R150 R350

515 302 a9,8 S38

514 301 a8,8 S38

513 300 R50 S38 R250

511 299 a7,8 S38

510 298 a6,8 S38

509 297 S38 R149 R349 reference symbols

508 296 a5,8 S38

507 295 a4,8 S37 idle symbols = zeros (unused reference symbol positions)

506 294 R49 S37 R249

505 293 a3,8 S37 UE #0 data symbols

504 292 a2,8 S37

503 291 S37 R148 R348 UE #1 data symbols

502 290 a1,8 S37

501 289 a0,8 S37 PDCCH control channel element #0

500 288 R48 S37 R248 PDCCH control channel element #1

PDCCH control channel element #6

223 11 a7,0 S2 PDCCH control channel element #7

222 10 a6,0 S2

221 9 S2 R101 R301 DL ACK/NACK channel elements (ai,j; i=0…23, j=0…15)

220 8 a5,0 S2

219 7 a4,0 S1 dummy symbols = zeros (unused Res)

218 6 R1 S1 R201

217 5 a3,0 S1

216 4 a2,0 S1

215 3 S1 R100 R300

214 2 a1,0 S1

213 1 a0,0 S1

212 0 R0 S1 R200

  r  e  s  r  o  u  c  e

  u  n   i   t   0

  r  e  s  r  o  u  c  e

  u  n   i   t   2   4

  r  e  s  r  o  u  c  e

  u  n   i

   t   2   5

  r  e  s  r  o  u  c  e

  u  n   i   t   4   9

1slot=0.5ms(even) 1slot=0.5ms(odd)

1sub-frame = 1ms

 

Figure 17: normal downlink subframe(w/o sync signals) physical resource mappingexample for the 10MHz BW

 The Figure 18 illustrates the time-frequency structure of subframe#1 for the LTE downlinkand exemplifies the physical resource mapping for the 10MHz BW case.

In DwPTS, PDSCH and PDCCH are not transmitted. Only primary synchronisation signalsand reference signals are transmitted in DwPTS.

 The primary synchronisation signals occupy the centre 6RUs at OFDM symbol l=2 of 

subframe #1 and #6.

Page 68: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 68/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 65/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

812 599

811 598

810 597 R199

809 596

808 595

807 594 R99 R299

806 593

805 592

804 591 R198

803 590

802 589

801 588 R98 R298

560 347

559 346

558 345 R157

557 344

556 343

555 342 R57 R257

554 341

553 340

552 339 R156551 338

550 337

549 336 R56 R256

548 335

547 334

546 333 R155

545 332

544 331

543 330 R55 R255

542 329

541 328

540 327 R154

539 326

538 325

537 324 R54 R254

524 311

523 310

522 309 R151

521 308

520 307

519 306 R51 R251

518 305

517 304

516 303 R150

515 302

514 301

513 300 R50 R250

511 299 UpPTS

510 298

509 297 R149 reference symbols

508 296

507 295 idle symbols =zeros (unused reference symbol positions)

506 294 R49 R249

505 293 P-SCH

504 292

503 291 R148 Reserved symbols for P-SCH

502 290

501 289 dummy symbols =zeros (unused Res)500 288 R48 R248

487 275

486 274

485 273 R145

484 272

483 271

482 270 R45 R245

481 269

480 268

479 267 R144

478 266

477 265

476 264 R44 R244

475 263

  r  e  s  r  o  u  c  e  u  n   i   t   2   4

  r  e  s  r  o  u  c  e  u  n   i   t   2   5

  r  e  s  r  o  u  c  e  u  n   i   t   4   9

   i  n   d  e  x   k  :   F  r  e  q  u  e  n  c  y   (   6   0   0  s  u   b -  c

  a  r  r   i  e  r  s   )

1slot=0.5ms(even) 1slot=0.5ms(odd)

1sub-frame =1ms

  r  e  s  r  o  u  c  e  u  n   i   t   2   7

  r  e  s  r  o  u  c  e  u  n   i   t   2   2

  r  e  s  r  o  u  c  e  u  n   i   t   2   8

 Figure 18: Subframe1 physical resource mapping example for the 10MHz BW

Page 69: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 69/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 66/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The Figure 19 illustrates the time-frequency structure of subframe#6 for the LTE downlinkand exemplifies the physical resource mapping for the 10MHz BW case.

In this example, PDSCH is transmitted to one Ue#0 only in subframe #6, where UE #0allocates the resource units #0-#21 and #28-#49 (OFDM symbol 2~10) (light greencolour),except the centre 6 RUs(#22-#27) and other resource elements used by primarysynchronisation signals and reference signals.

 The primary synchronisation signals occupy the centre 6RUs at OFDM symbol l=2 of subframe #1 and #6.

Page 70: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 70/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 67/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

812 599 S75

811 598 S75

810 597 S75 R199 R399

809 596 S75

808 595 S75

807 594 R99 S75 R299

806 593 S75

805 592 S75

804 591 S74 R198 R398

803 590 S74

802 589 S74

801 588 R98 S74 R298

560 347 15,1 S44

559 346 14,1 S44

558 345 S44 R157 R357

557 344 13,1 S44

556 343 12,1 S43555 342 R57 S43 R257

554 341 11,1 S43

553 340 10,1 S43

552 339 S43 R156 R356

551 338 a9,1 S43

550 337 a8,1 S43

549 336 R56 S43 R256

548 335 a7,1 S42

547 334 a6,1 S42

546 333 S42 R155 R355

545 332 a5,1 S42

544 331 a4,1 S42

543 330 R55 S42 R255

542 329 a3,1 S42

541 328 a2,1 S42

540 327 S41 R154 R354

539 326 a1,1 S41

538 325 a0,1 S41

537 324 R54 S41 R254

524 311 a15, S39

523 310 a14, S39

522 309 S39 R151 R351

521 308 a13, S39

520 307 a12, S39

519 306 R51 S39 R251

518 305 a11, S39

517 304 a10, S39

516 303 S38 R150 R350515 302 a9,8 S38

514 301 a8,8 S38

513 300 R50 S38 R250

511 299 a7,8 S38

510 298 a6,8 S38

509 297 S37 R149 R349 reference symbols

508 296 a5,8 S38

507 295 a4,8 S37 idle symbols =zeros (unused

506 294 R49 S37 R249

505 293 a3,8 S37 P-SCH

504 292 a2,8 S37

503 291 S37 R148 R348 Reserved symbols for P-SCH

502 290 a1,8 S37

501 289 a0,8 S37 UE #1 data symbols

500 288 R48 S37 R248

PDCCH control channel elem

487 275 a15, S35 PDCCH control channel elem

486 274 a14, S35

485 273 S35 R145 R345

484 272 a13, S35 PDCCH control channel elem

483 271 a12, S34 PDCCH control channel elem

482 270 R45 S34 R245

481 269 a11, S34 DL ACK/NACK channel elem

480 268 a10, S34

  r  e  s  r  o  u  c  e  u  n   i   t   2   4

  r

  e  s  r  o  u  c  e  u  n   i   t   2   5

  r  e  s  r  o  u  c  e  u  n   i   t   4   9

  e  x   k  :   F  r  e  q  u  e  n  c  y   (   6   0   0  s  u   b -  c  a  r  r   i  e  r  s   )

1slot=0.5ms(even) 1slot=0.5ms(odd)

1sub-frame =1ms

  r  e  s  r  o

  u  c  e  u  n   i   t   2   7

  r  o  u  c  e  u  n   i   t   2   2

  r  e  s  r  o  u  c  e  u  n

   i   t   2   8

Page 71: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 71/131

 

LTE TDD Demo Downlink Specification(step 0)

ED  01  Release

MAD 

28.07.20083BK 11251 0313 DSZZA 68/68

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Figure 19: Subframe6 physical resource mapping example for the 10MHz BW

END OF DOCUMENT

Page 72: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 72/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 1/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Site 

Shanghai  ALCATEL-LUCENT MAD 

Originator(s) LTE TDD Demo Uplink

Specification Step 0

Domain  :  eNodeB

Rubric  :  LTE

Type  :  Sub System Implementation Proposal

Distribution Codes  Internal :   External :

PREDISTRIBUTION:

...

 ABSTRACT

 This document specifies the LTE uplink physical layer for LTE TDD demo system.S0 (step0) .

 This specification is developed based on LTE FDD Uplink Detailed Specification D2.4 andaims at a joint integration step with UE vendors by December 2008.

 The major uplink features of prototype phase are:

- LTE TDD Mode- 10MHz bandwidth- LTE TDD UL/DL allocation configuration 5- Adaptation of 3GPP numerology (1ms subframe, slot structure with long blocks)- Adaptation of Rel. 8 coding chain (QPP interleaver)- QPSK and 16QAM modulation- SISO/SIMO with scheduled transmission, link adaptation and HARQ:

o Link adaptation using channel sounding in UL not supported at S0o HARQ using ACK/NACK signalled in DLo TDM/FDM scheduling using UL scheduling grants in DL

- MU-MIMO with static transport formats not supported at S0- ACK/NACK and CQI in UL to support DL scheduling and HARQ

- Random access preamble for call setup not supported at S0- Up to 2 users in single cell with aggregate data rates of up to 1.824Mbps in uplink

(TFRC 50)-  Trial network with up to 1 eNB with up to 1 sector per eNB

 The higher layer protocol aspects are specified in a companion document.

Page 73: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 73/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 2/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Approvals  

Name

App.

Herold Bernd Zhang J ianlin Li Chunting

Name

App.

 TPL TPL R&D director

Page 74: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 74/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 3/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

REVIEW

HISTORY

Ed01P01 13-May-08 First proposal based on LTE FDD Uplink DetailedSpecification D2.4

Ed01P02 19-May-08 Modified according to internal commentsBecause the UL ACK/NACKs of one user for multipleHARQ processes are not sent in bundling style, newcoding and physical resource mapping method is definedat section [6.3] to support sending multiple processes’ ULACK/NACKs at one UL subframe by one user.

Ed01P03 6-J une-08 Modified according to Schuetz Thomas ‘s commentsdouble ACK/NACK resources, reduce CQI resources

Ed01P04 27-June-08 Modified according to “Memo of LTE TDD Demospecification step0”

Ed01Rel 28-J uly-08 Release based on Ed01P04

INTERNAL REFERENCED DOCUMENTS

Not applicable.

FOR INTERNAL USE ONLY

Not applicable.

Co-authors of this paper are:

Not applicable.

Page 75: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 75/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 1/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Sub System Implementation Proposal

TABLE OF CONTENTS

1  REFERENCED DOCUMENTS ........................................................................................4 

2  RELATED DOCUMENTS................................................................................................5 

3  OVERVIEW......................................................................................................................5  

3.1  Physical Layer Parameters ....................................................................................6 

3.2  Physical Channels and Signals .............................................................................6 

3.3  Uplink Transmission Chain ...................................................................................7 

4  UPLINK STRUCTURE.....................................................................................................8 

4.1  Time Domain Structure[14][15] .............................................................................9 

4.2  Time and Frequency Domain Structure..............................................................10 

5  REFERENCE SIGNALS ................................................................................................11 

5.1  Demodulation Reference Signal..........................................................................12 

5.1.1  Physical Resource Allocation...................................................................12 

5.1.2  Sequence Generation..............................................................................12 

5.1.2.1  Sequence Allocation over one Resource Block..............................13 

5.1.2.2  Sequence Allocation over two Resource Blocks ............................13 

5.1.2.3  Sequence Allocation over more than two Resource Blocks ...........14 

5.1.3  Sequence Allocation................................................................................14 

5.1.3.1  PUSCH Case..................................................................................14 

5.1.3.2  UL ACK/NACK Case on PUCCH....................................................15 

5.1.3.3  CQI Case on PUCCH .....................................................................15 

5.2  Sounding Reference Signal .................................................................................16 

5.2.1  Physical Resource Mapping....................................................................16 

5.2.2  Sequence Generation..............................................................................17 5.2.3  Sequence Allocation................................................................................17 

6  PHYSICAL UPLINK CONTROL CHANNEL .................................................................17 

6.1  Physical Resource Mapping ................................................................................18 

6.2  Spreading Sequences ..........................................................................................21 

6.3  UL ACK/NACK .......................................................................................................22 

6.3.1  Coding and Physical Resource Mapping.................................................22 

6.3.2  HARQ Exceptions....................................................................................24 

6.4  Channel Quality Indicator and Scheduling Request .........................................24 

6.4.1  CQI Definition...........................................................................................24 

6.4.1.1  SINR to CQI Mapping.....................................................................25 

6.4.1.2  Frequency Resolution.....................................................................25 

6.4.1.3  Measurement Interval and Timing..................................................26 

6.4.1.4  Subband Differential CQI................................................................26 

6.4.1.5  Scheduling Request........................................................................27 

6.4.1.6  Multiplexing of CQISR Reports.......................................................27 

6.4.2  CQI Coding and Modulation.....................................................................28 

6.4.3  Physical Resource Mapping....................................................................29 

6.4.3.1  CQI Channel Elements...................................................................29 

6.4.3.2  Spreading and Resource Mapping.................................................30 

6.4.4  CQI Transmission Strategies...................................................................30 

6.4.4.1  Mode 1: Wideband CQI ..................................................................30 

6.4.4.2  Mode 2: Frequency-Selective CQI..................................................30 

7  PHYSICAL UPLINK SHARED CHANNEL ....................................................................31 

Page 76: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 76/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 2/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

7.1  Resource Assignment and User Multiplexing....................................................31 

7.2  RLC/MAC PDU Formats........................................................................................31 

7.3  Scheduling Information Report ...........................................................................32 

7.4  Transport Formats ................................................................................................33 

7.5  Coding Chain ........................................................................................................33 

7.5.1  CRC Attachment......................................................................................35 

7.5.2  Bit Scrambling..........................................................................................35 

7.5.3  Code Block Segmentation .......................................................................35 

7.5.4  Channel Encoding....................................................................................35 7.5.5  Hybrid ARQ (Rate Matching) ...................................................................35 

7.5.6  Resource Segmentation..........................................................................36 

7.5.7  PUSCH Interleaving.................................................................................37 

7.5.8  Physical Resource Concatenation for PUSCH ........................................40 

7.6  Modulation and Physical Resource Mapping.....................................................40 

7.6.1  UE-Specific Scrambling...........................................................................40 

7.6.2  Constellation Re-Arrangement.................................................................41 

7.6.3  Modulation Mapper..................................................................................41 

7.6.4  Physical Resource Mapping....................................................................42 

8  UPLINK TIMING ............................................................................................................42 

8.1  HARQ Timing ........................................................................................................42 8.1.1  UL HARQ Timing Relationship ................................................................43 

8.2  CQI Timing.............................................................................................................43 

8.3  Switching Point .....................................................................................................44 

9  RANDOM ACCESS PREAMBLE ..................................................................................44 

9.1  Physical Layer Parameters ..................................................................................45  

9.2  Time and Frequency Structure ............................................................................45  

9.3  Preamble Sequence Generation..........................................................................46  

9.4  Baseband Signal Generation ...............................................................................47  

9.5  Resource Allocation .............................................................................................49  

9.5.1   Time-Frequency Allocation......................................................................49 

9.5.2  Sequence Allocation................................................................................49 9.6  Random Access Procedures ...............................................................................50  

9.7  Random access burst power control ..................................................................50  

9.8  Random access timing.........................................................................................51  

10  GLOSSARY ...................................................................................................................53 

11   APPENDIX – RESOURCE MAPPING EXAMPLE ........................................................54 

Page 77: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 77/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 3/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

LIST OF FIGURES

Figure 1: Transmit ter struc ture for SC-FDMA (modified from [2]). 8 

Figure 2: Localised physical resource mapping (from [2]). 8 

Figure 3: Frame struc ture type 2 (for 10 ms switch-point periodicity). 9 

Figure 4: 7.5kHz shi ft of subcarrier frequencies in 10MHz BW case. 11 

Figure 5: Definit ion of control channel resource. 21 Figure 6: UL ACK/NACK and CQI on PUCCH. 21 

Figure 7: Frequency-select ive CQI definition in 10MHz BW case. 26 

Figure 8: CQISR report ing in case of wideband CQI. 27 

Figure 9: CQISR report ing in case of frequency-selective CQI for 10MHz BW. 28 

Figure 10: Scheduling information report in RLC/MAC PDU header. 32 

Figure 11: Coding chain for PUSCH (modif ied from [5]). 34 

Figure 12: PUSCH interleaver structure for 16QAM. 38 

Figure 13: PUSCH block interleaver structure. 39 

Figure 14: Feedback shift register for UE-specific scrambling. 41 

Figure 15: Timing relationship for UL HARQ processes (configuration 5) 43 

Figure 16: Measurement interval and timing of CQI report (configuration 5) 44 Figure 17: LTE TDD UL-DL timing in air interface 44 

Figure 18: Time structure of random access burst. 45 

Figure 19: Transmitter structure for random access burst. 47 

Figure 20: Frequency-domain mapping of random access preamble. 48 

Figure 21: Random access timing for TDD configuration 5 and preamble format 0 52 

Figure 22: Random access timing for TDD configuration 0 and preamble format 0 52 

LIST OF TABLES

Table 1: Uplink physical layer parameters. 6 Table 2: Supported uplink physical channels and signals. 6 

Table 3: Configuration of special subframe (lengths of DwPTS/GP/UpPTS). 9 

Table 4: Uplink-downlink allocations. 10 

Table 5: Frequency domain parameters for LTE UL. 10 

Table 6: Demodulation reference sequence parameters. 13 

Table 7: DFT spreading sequences for demodulation reference signal in UL ACK/NACK case. 15 

Table 8: Allocation of sounding channel elements by UE groups. 16 

Table 9: PUCCH configuration parameters. 21 

Table 10: UL ACK/NACK channel element at subframe#n 22 

Table 11: Hadamard spreading sequences for UL ACK/NACK. 23 

Table 12: Mapping of SINR to CQI. 25 

Table 13: Definit ion of frequency-select ive CQI. 25 

Table 14: Coding for 2bit dif ferential CQI. 26 

Table 15: Coding for 2bit scheduling request. 27 

Table 16: Basis sequences for (20, A) code. 28 

Table 17: Assignment of  ),( v j parameters to CQI channel elements. 30 

Table 18: Coding for UL transmiss ion power headroom reporting. 33 

Table 19: Coding for UE total buffer status reporting. 33 

Table 20: Example block sizes in coding chain 34 

Table 21: RV parameters used with QPSK modulation. 36 

Table 22: RV parameters used with 16QAM modulation. 36 

Table 23: Maximum number of UL/DL HARQ processes 42 

Page 78: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 78/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 4/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Table 24: kDL_ACK for LTE TDD Demo 43 

Table 25: Physical layer parameters of random access burst(Preamble format 0). 45 

Table 26: Time domain parameters of random access burst. 45 

Table 27: Relation between shift parameter CS  N  , number of users and cell

radius(preamble format 0). 46 

12 REFERENCED DOCUMENTS

Page 79: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 79/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 5/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

[1] 3GPP TS 36.211 V8.1.0 (2007-11) "Physical Channels and Modulation (Release 8)”[2] 3GPP TR 25.814 V7.1.0 (2006-09) “Physical Layer Aspects for Evolved UTRA

(Release 7)”[3] D. Hartmann / F. Pelizza (ALU), LTE IP Traffic Concept, Phase D2.4, Ed01P03,

2007-12-03[4] LTE TDD Demo Transport Formats, Step 0, Ed01P01, 2008-06-11[5] 3GPP TS 25.212 V6.10.0 (2006-12) “Multiplexing and Channel Coding (Release 6)”[6] 3GPP TS 36.212 V1.0.0 (2007-03) “Multiplexing and Channel Coding (Release 8)”

[7] Alcatel-Lucent, Flexible Channel Interleaver for E-UTRA, 3GPP R1-071426, Mar.2007 and 3GPP R1-072046, May 2007

[8] V. Braun (ALU R&I), LTE Downlink, Prototype Phase D2.4, Detailed Specification,Ed02P02, 2008-02-21 

[9] V. Braun (ALU R&I), LTE Cell Planning, Prototype Phase D2.4, Ed01P07, 2008-02-06

[10] V. Braun (ALU R&I), LTE UL DRS, Prototype Phase D2.4, Ed01P01, 2007-10-16

[11] 3GPP TS36.213 V8.1.0 (2007-11) “Physical Layer Procedures (Release 8)”

[12] LTE TDD Demo Downlink Specification (Step 0) ED01Rel

[13] 3GPP TS36.104 V8.1.0 (2008-03),” Base Station (BS) radio transmission

and reception (Release 8)”

[14] 3GPP TS 36.211 V8.2.0 (2008-3) "Physical Channels and Modulation(Release 8)”

[15] 3GPP R1-082239 ,” Correction of the description of frame structure type 2”

[16] Memo of LTE TDD Demo specification step0

13 RELATED DOCUMENTS

 The following related documents will be provided during the LTE prototype Phase D2.

[R1] V. Braun (ALU R&I), LTE Downlink, Prototype Phase D2, Top Level Specification[R2] “, LTE Uplink, Prototype Phase D2, Top Level Specification[R3] “, LTE Feature List, Prototype Phase D2 (Excel sheet)[R4] ALU, RLC/MAC Design for LTE, Prototype Phase D2.x, Detailed Specification

14 OVERVIEW

 The major uplink features of prototype phase are:- LTE TDD Mode- LTE TDD UL/DL allocation configuration 5- Special subframe configuration 8- 10MHz bandwidth- Adaptation of 3GPP numerology (1ms subframe, slot structure with long blocks)- Adaptation of Rel. 8 coding chain (QPP interleaver)- QPSK and 16QAM modulation- SISO/SIMO with scheduled transmission, link adaptation and HARQ:

o Link adaptation using channel sounding in UL not supported at S0o HARQ using ACK/NACK signalled in DLo TDM/FDM scheduling using UL scheduling grants in DL

- MU-MIMO with static transport formats not supported at S0- ACK/NACK and CQI in UL to support DL scheduling and HARQ- Random access preamble for call setup not supported at S0- Up to 2 users in single cell with aggregate data rates of up to 1.824Mbps in

uplink(TFRC 50)

Page 80: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 80/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 6/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- Up to 2 users receiving UL scheduling grants simultaneously per subframe in 10MHzBW

- Up to 2 users transmitting in UL simultaneously per subframe in 10MHz BW-  Trial network with up to 1 eNB with up to 1 sector in the eNB

 The remainder of this section gives a brief overview of the physical layer parameters, thesupported physical channels and signals and the UL transmission chain.

 The numerology and notation follow the status of 3GPP WG RAN1 Version 8.1.0 specs asagreed by 3GPP RAN1#52 meeting (Sorrento, Feb. 2008).

14.1 Physical Layer Parameters

 The major physical layer parameters are summarised in Table 1.

 Table 20: Uplink physical layer parameters.

Parameter Value

in 10MHz BWComment

 Transmission bandwidth 10MHzCarrier Frequency 2300MHz 3GPP Band class 40[13]Subcarrier spacing 15kHzSubcarrier frequencyoffset

7.5kHz DC subcarrier shifted to 7.5kHz

Sampling frequency 15.36MHzFFT size 1024 samplesNumber of activesubcarriers

600 Contiguous set of subcarrierswith 7.5kHz frequency shift

Frame length 10ms frame structure type 2 for TDD

Subframe length 1msSlot length 0.5msSlot structure Long blocks Normal cyclic prefix

14.2 Physical Channels and Signals

 The supported physical channels and signals together with supported modulation schemesare summarised in Table 2.

 Table 21: Supported uplink physical channels and signals.

Physical Channels Modulation Scheme Comment

Physical Uplink Shared ChannelPUSCH

QPSK, 16QAM Carries data for higher layers

Physical Uplink Control ChannelPUCCH

Zadoff-Chu Carries ACK/NACK and CQI to supporttransmission on downlink sharedchannel.

Physical Signals Modulation Scheme Comment

Reference Signals Zadoff-Chu  Required for demodulation and channelsounding

 The transmission power of PUSCH is adaptive and signalled to the UE within the UL

scheduling grants on the PDCCH.

Page 81: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 81/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 7/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The demodulation reference signals applied in resource blocks carrying PUSCH shall havethe same power offsets as the respective PUSCH symbols, i.e. demodulation RS to PUSCHpower offset is equal to 0dB.

 The transmission power of UL ACK/NACK, CQI and sounding reference signals is definedby separate power offsets relative to a reference transmission power of PUSCH:

- ACK to PUSCH power offset (default –1.5dB tbc.)

- NACK to PUSCH power offset (default –3.0dB tbc.)- CQI to PUSCH power offset (default –4.5dB tbc.)- sounding RS to PUSCH power offset (default –4.5dB)

 The UL power offsets shall be configurable in the UE with step size 0.5dB and range –6dB…+6dB. In Step0, only PUCCH power offsets -6 ... 0 dB will be tested due to UElimitation[16].

A further transport format-dependent power offset Ptx_TF_PUCCH_dB with range –10dB …0dB is introduced, to reduce the transmission power of ACK, NACK or CQI in case of goodUL channel quality.

 The transmission power of ACK/NACK/CQI is given as the PUSCH transmission power(dBm) + ACK/NACK/CQI to PUSCH power offset (dB) + Ptx_TF_PUCCH_dB, where Ptx_TF_PUCCH_dB is listed in the transport format table [4].

In all uplink subframes, whether PUSCH is transmitted or not, the corresponding PUSCHreference transmission power shall be computed by the UE for a reference transport formathaving Ptx_TF_dB=0dB (default transport format #47 having Ptx_TF_dB ~0dB) according tothe PUSCH power control formulas given in Section 7.2 of [11].

 The demodulation reference signals applied in resource blocks carrying PUCCH shall havethe same power offsets as the respective ACK, NACK and CQI symbols.

Notes:-  The power settings for the sounding reference signals are as described in §5.1.3 of 

[11].- Closed loop PUCCH power control as described in §5.1.2 of [11] is not supported (i.e.

const ig =)( ).

14.3 Uplink Transmission Chain

SC-FDMA is applied as defined in [1]. The structure of the SC-FDMA transmitter is

illustrated in Figure 20.

DFTSub-carrier Mapping

CPinsertion

Size-NTX  Size-NFFT 

Coded symbol rate= R 

 N TX symbols

IFFT

7.5kHz

-1

CP

Page 82: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 82/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 8/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Figure 20: Transmitter structure for SC-FDMA (modified from [2]).

 The physical channels and signals are multiplexed in the frequency domain (in thesubcarrier mapping part), transformed into the time domain by using an IFFT, and cyclicprefix is inserted in the time domain. The size of the IFFT is over the full system bandwidth,i.e. 1024 subcarriers (of which 600 are active subcarriers) in 10MHz BW.

Note that in compliance with §5.6 of [1], the 7.5kHz frequency offset is multiplied prior to thecyclic prefix insertion. Therefore the cyclic prefix has to be corrected by the factor –1, asillustrated in Figure 20.

For PUSCH, prior to the multiplexing in the frequency domain, a DFT spreading is appliedseparately for each user.

 The DFT size TX  N  is upper bounded by the number of available subcarriers ( 600≤TX  N  in

10MHz BW) and given by )532(12 cba

TX  N  ××= with arbitrary integer values of a, b and c.

 This restriction in the DFT size puts a constraint on the number of resource units that can beallocated to a user to 24 different values in 10MHz BW case.

Note that the TX  N  DFT input samples of a user shall have constant amplitude. The DFT

output samples are mapped to consecutive subcarriers, i.e. localised physical resourcemapping is supported as illustrated in Figure 21.

0

0

fromDFT

to IFFT

 

Figure 21: Localised physical resource mapping (from [2]).

Unused resource elements shall be filled with zeros in the frequency domain.

We assume that the UL ACK/NACK and CQI on PUCCH, and the sounding/demodulationreference signals are multiplexed directly in the frequency domain (in the subcarriermapping part), i.e. they are not fed through the DFT spreading.

Note that no spectrum shaping shall be used for the SC-FDMA sequence generation, andno frequency hopping pattern shall be applied for PUSCH transmission.

 Two Rx antennas on eNodeB are applied, and the 1Tx1Rx and 1Tx2Rx cases are referredto as SISO and SIMO, respectively. In SIMO case, the eNB applies 2Rx diversity detection.

15 UPLINK STRUCTURE

Page 83: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 83/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 9/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

. This section briefly describes the time and frequency domain structures of the LTE uplink.

15.1 Time Domain Structure[14][15]

The frame structure type 2 for TDD with normal prefix is applied as il lustrated in

Figure 1.

Figure 22: Frame structure type 2 (for 10 ms switch-point periodicity).

 Time units ( )2048150001s ×=T  seconds .

Each radio frame of length ms10307200 sf  =⋅= T T  consists of two half-frames of length

f T  = ms5153600 s =⋅T  each. The first half-frame consists of eight slots of length

ms5.015360 sslot =⋅= T T  and three special fields, DwPTS, GP, and UpPTS. The length of 

DwPTS and UpPTS is given by Table 22 subject to the total length of DwPTS, GP andUpPTS being equal to ms107203 s =⋅T  . Subframe 1(special subframe) in UL/DL allocation

configuration 5 consists of DwPTS, GP and UpPTS. The second half-frame consists of tenslots of length ms5.015360 sslot =⋅= T T  . All subframes except subframe 1 are defined as two

slots where subframe i consists of slots i2 and 12 +i . Subframes 0 and 5 and DwPTS arealways reserved for downlink transmission.

 The supported uplink-downlink allocations are listed in Table 23, where, for each subframein a radio frame, “D” denotes the subframe is reserved for downlink transmissions, “U”denotes the subframe is reserved for uplink transmissions and “S” denotes a specialsubframe with the three fields DwPTS, GP and UpPTS. At LTE TDD Demo S0, only 10 msswitch-point periodicity is supported.

In case of 10 ms switch-point periodicity (UL/DL allocation configuration 5), DwPTS ,GP andUpPTS only exist in the first half-frame. UpPTS and subframe 2 are reserved for uplinktransmission.

 Table 22: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Page 84: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 84/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 10/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Normal cyclic prefixConfiguration

DwPTS GP UpPTS

8 s24144 T ⋅ s2192 T ⋅ s4384 T ⋅

 At the LTE TDD demo S0, only normal cyclic prefix is supported and only special subframeconfiguration 8 is supported.

 Table 23: Uplink-downlink allocations.

Subframe number Configuration

Switch-pointperiodicity

0 1 2 3 4 5 6 7 8 9

5 10 ms D S U D D D D D D D

At the LTE TDD demo S0, only the UL/DL allocation configuration 5 is supported.

With the long block slot structure, an uplink slot carries 7 SC-FDMA symbols when normalcyclic prefix is applied. The SC-FDMA symbols in a slot are denoted by the time index l =0,1,…6.

 The cyclic prefix length is 80 samples for SC-FDMA symbol l=0 of a slot and 72 samples inthe remaining 6 SC-FDMA symbols of a slot in 10MHz BW, respectively. The active part of each SC-FDMA symbol uses 1024 samples in 10MHz BW.

15.2 Time and Frequency Domain Structure

 The frequency-domain structure is described here in detail for the 10MHz BW case, and Table 24 summarises the frequency domain parameters for 10MHz bandwidths.

 Table 24: Frequency domain parameters for LTE UL.

Parameter 10MHz BW

subcarrier spacing 15kHzsubcarrier frequency offset 7.5kHz#active subcarriers 600

active subcarrier index k 0...599IFFT size 1024#guard bands 2x212smallest used subcarrier number (k=0) 212highest used subcarrier number (k=kmax) 811subcarrier number for 7.5kHz subcarrier 512active subcarrier index k for 7.5kHzsubcarrier

300

active subcarrier frequencies as function of k 7.5kHz +(k-300) x 15kHz

#RUs per subframe 50RU index 0…49

Page 85: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 85/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 11/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

In the frequency domain, there are 600 active subcarriers symmetrically around DC,denoted by the active subcarrier index k, k=0,1,…599. The set of active subcarriers iscontiguous.

 The subcarrier spacing is 15kHz and the subcarrier frequencies have a frequency offset of 7.5kHz, i.e. the subcarrier frequencies are +/-7.5kHz, +/-22.5kHz, etc.

 The IFFT size is 1024 samples over 1024 possible subcarriers denoted by the subcarrier

number 0,1,…1023.

Among the 1024 subcarriers only 600 are active, with guard bands of 212 subcarriers ateach edge of the frequency band.

 The first active subcarrier with index k=0 corresponds to the subcarrier number 212, and thelast active subcarrier with index k=599 corresponds to the subcarrier number 811(=212+599). The subcarrier with active subcarrier index k=300 corresponds to the subcarriernumber 512 (=212+300) and is located at +7.5kHz.

 The active subcarrier frequencies are therefore related to the active subcarrier indexaccording to 7.5kHz + (k-300) x 15kHz. This is illustrated in Figure 23.

212

213

214

510

511

512

513

809

810

811 4492.5kHz

4477.5kHz

4462.5kHz

:

22.5kHz

7.5kHz

-7.5kHz

-22.5kHz

:

-4462.5kHz

-4477.5kHz

-4492.5kHz 0

1

2

298

299

300

301

597

598

599

subcarrier number 

(0…1023)

active subcarrier 

index k (0…599)

Figure 23: 7.5kHz shift of subcarrier frequencies in 10MHz BW case.

A Resource Unit (RU) is defined to cover 12 consecutive subcarriers over a duration of onesubframe, i.e. an RU includes 12x14 = 168 resource elements. The RU is the smallest entitythat can be addressed by the eNB scheduling. There are 50 RUs per subframe in 10MHzBW, numbered RU #0 … RU #49.

Note that a resource unit corresponds to two resource blocks (RB), consecutive in time, asdefined in [1].

Note that in PUSCH case two SC-FDMA symbols per RU are used for demodulationreference signals, and a further SC-FDMA symbol per RU is used (or reserved) for sounding

Page 86: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 86/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 12/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

reference signals. So up to 12x(14-3) = 132 resource elements per RU are available forcarrying data signals.

16 REFERENCE SIGNALS

 The UE shall transmit a demodulation reference signal to enable coherent detection in theeNB receiver for PUSCH and PUCCH.

 The UE shall further periodically transmit a sounding reference signal to enable the eNB toperform a measurement of the UL propagation channel quality over the full bandwidthavailable for PUSCH.

We assume that the demodulation/sounding reference signals are multiplexed directly in thefrequency domain (in the subcarrier mapping part), i.e. the reference signals are not fedthrough the DFT spreading.

16.1 Demodulation Reference Signal

16.1.1 Physical Resource Allocation

In resource blocks carrying PUSCH, the demodulation reference signal is located in the SC-FDMA symbol l=3 of a slot [1].

In resource blocks carrying PUCCH, demodulation reference signals are located in the SC-

FDMA symbols (cf. §5.5.2.2 of [1]):- l=2,3,4 of a slot if UL ACK/NACK is transmitted,- l=1 and l=5 of a slot if CQI is transmitted,

as shown in Figure 25. The demodulation reference signals applied in resource blockscarrying PUCCH shall have the same power offsets as the respective ACK, NACK and CQIsymbols.

In the frequency domain, a user applies the demodulation reference signal over all thesubcarriers allocated by the PUSCH and/or PUCCH of the user within a slot.

If in a slot some subcarriers are not used for PUSCH and/or PUCCH transmission, thenthere is also no demodulation reference sequence transmitted on these subcarriers.

In resource blocks carrying PUSCH, the resource allocation of the demodulation referencesignal as described above is applied in both SISO/SIMO and MU-MIMO cases. (TheSISO/SIMO and/or MU-MIMO case is signalled on PDCCH within the MU-MIMO pairingindicator field of the UL scheduling grant. At S0, only SISO/SIMO will be signalled on

PDCCH, that is, mpi X  always set to zero, refer to section 7.2[12])

 The physical resource mapping of the demodulation reference signal is illustrated in theAppendix.

Page 87: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 87/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 13/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

16.1.2 Sequence Generation

 The sequence generation follows [1].

 The demodulation reference sequences are generated from a set of U  complex-valued

baseline sequences denoted by 1,,1,0,,,2,1),( −== Gu N k U uk a KK , whereG N   

denotes the sequence length.

A demodulation reference sequence has length K,2,1,12 =×= nn N P , whereP N  is

given by the number of subcarriers to be allocated, andGP N  N  ≥ .

 The sequence generation considers three cases depending on the number of subcarriers tobe allocated:

- 12=P N  : sequence allocation over one resource block (GP N  N  = ),

- 24=P N  : sequence allocation over two resource blocks (GP N  N  = ),

- 2,12 >×= nn N P : sequence allocation over more than two resource blocks ( G N  is

largest prime number satisfyingGP N  N  > ).

 The former case is applicable to PUSCH and PUCCH (CQI and UL ACK/NACK)transmission, whereas the latter two cases are confined to PUSCH transmission.

In each case we will use the term Zadoff-Chu sequences, although strictly speaking it

applies only to the 2,12 >×= nn N P case.

 The sequence parameters are summarised in Table 25 for PUSCH and PUCCHtransmission.

 Table 25: Demodulation reference sequence parameters.Channel type

G N    v N    P N   

12 2  1224 2 24

PUSCH

largest prime < P N  2 nx12, n>2

CQI on PUCCH 12 6 12UL ACK/NACK onPUCCH

12 6 12

16.1.2.1 Sequence Allocation over one Resource Block

A set of 30 baseline sequences 30,,2,1,11,,1,0),( KK == uk k au of length

12== PG N  N  is defined in [10].

From the thu baseline sequence )(k au

, sequences )(, k a vu are defined by cyclic shifts in

the time domain (i.e. phase rotation in the frequency domain) according to

1,,1,0,2

,)()(, −=⋅=⋅= ⋅⋅v

k  j

uvu N v N 

ek ak a Kν π 

α ν 

α .

A demodulation reference sequence )(, k r  vuof length

P N  is then given by )(, k a vu:

.1,,1,0),()( ,, −== Pvuvu N k k ak r K

 

Page 88: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 88/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 14/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

16.1.2.2 Sequence Allocation over two Resource Blocks

A set of 30 baseline sequences 30,,2,1,23,,1,0),( KK == uk k auof length

24== PG N  N  is defined in [10].

From the thu baseline sequence )(k au , sequences )(, k a vu are defined by cyclic shifts inthe time domain (i.e. phase rotation in the frequency domain) according to

1,,1,0,2

,)()(, −=⋅=⋅= ⋅⋅v

k  j

uvu N v N 

ek ak a Kν π 

α ν 

α .

A demodulation reference sequence )(, k r  vu of length P N  is then given by )(, k a vu :

.1,,1,0),()( ,, −== Pvuvu N k k ak r  K  

16.1.2.3 Sequence Allocation over more than two Resource Blocks

 The baseline sequences are given by Zadoff-Chu sequences of lengthG N  according to:

,1,,2,1,1,,1,0),/)1(exp()( −=−=+−= GGGu N u N k  N k uk  jk  x KKπ   

and the number of baseline sequences is determined by the number of roots, 1−= G N U  .

From the thu root Zadoff-Chu sequence, ,1,,1 −= G N u K a sequence )(k au of length P N   

is then obtained by cyclic extension of the thu root Zadoff-Chu sequence )(k  xu

,

,1,,1 −= G N u K according to:

⎩⎨

−=−

−=

= ,1,,),(

,1,,1,0),(

)(PGGu

Gu

u  N  N k  N k  x

 N k k  x

k aK

K

 

where G N  is the largest prime number satisfying GP N  N  > , as listed in [10].

 Then, sequences )(, k a vuare defined by cyclic shifts in the time domain (i.e. phase rotation

in the frequency domain) according to

1,,1,0,2

,)()(, −=⋅=⋅= ⋅⋅v

k  j

uvu N v N 

ek ak a Kν π 

α ν 

α  .

A demodulation reference sequence )(, k r  vuof length

P N  is then given by )(, k a vu

:

.1,,1,0),()(,,

−==Pvuvu

N k k ak r  K  

16.1.3 Sequence Allocation

Each cell of the trial network is assigned a baseline sequence index u according to

,1 cell X u += wherecell X  denotes the cell identifier (0) [9].

 The allocation of sequence shift values in a resource block depends on whether theresource block carries PUSCH, CQI or ACK/NACK on PUCCH, as described in the sequel.

Page 89: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 89/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 15/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

16.1.3.1 PUSCH Case

Each cell of the trial network is assigned two sequence shift values }1,0{∈v .

 The sequence shift value v to be applied by the UE is given by the MU-MIMO pairing

indicatormpi X  that is signalled to the UE within the UL scheduling grant on PDCCH, i.e.

}.1,0{∈= mpi X v  

In other words:- In SISO/SIMO case, the sequence shift value 0=v is applied by the UE for the

sequence generation.- In paired MU-MIMO case, a first UE applies the sequence shift value 0=v , and the

paired UE applies the sequence shift value 1=v .At S0, paired MU-MIMO notsupported.

In each case, the sequence shift value is signalled to the UE within the UL scheduling granton PDCCH.

16.1.3.2 UL ACK/NACK Case on PUCCH

Each cell of the trial network is assigned a set of sequence shift values }1,,1,0{ −∈ v N v K ,

where 6=v N  .

 The sequence shift value v to be applied by the UE is implicitly given by v N iv mod = ,

where i# (0…7) for pre-delivery and full delivery is same as what defined in section 17.3.1.

 The demodulation reference signals transmitted on SC-FDMA symbols l=2,3,4 are multiplied

with the elements of a DFT spreading sequence 2,1,0, ,, www d d d  , respectively, where theindex w is derived according to ⎣ ⎦v N iw /= and the DFT sequences are defined in Table

26. This DFT spreading is illustrated in Figure 25. (Note that 1...0=w for 7...0=i )

Note that the cyclic shift value is not varied on a symbol basis (as opposed to §5.5.2.2 of [1]).

Note that the DFT spreading sequence is not varied on a slot basis (as opposed to §5.5.2.2of [1]).

 Table 26: DFT spreading sequences for demodulation reference signal in UL ACK/NACK case.

w  2,1,0, ,,

www d d d   

0 1  1  1 1 1  )3/2exp( π  j )3/4exp( π  j  

2 1  )3/4exp( π  j )3/8exp( π  j  

16.1.3.3 CQI Case on PUCCH

Each cell of the trial network is assigned a set of sequence shift values }1,,1,0{ −∈ v N v K ,

which enables to transmit up to 6=v N  CQI reports with a given control channel resource.

Page 90: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 90/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 16/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The assignment of sequence shift values to the UEs is described in detail in Sections 17.4.3and 17.4.4.

Note that the cyclic shift value is not varied on a symbol basis (as opposed to §5.5.2.2 of [1]).

16.2 Sounding Reference Signal

A UE is configured to transmit a sounding reference signal periodically, with 10ms (LTE TDDUL/DL allocation configuration 5) period.

16.2.1 Physical Resource Mapping

For LTE TDD UL/DL allocation configuration 5, sounding reference signal is send insubframe #2.

 The sounding reference signal is located in the first SC-FDMA symbol of the correspondingsubframe (l=0).

 The sounding reference signal is allocated over the bandwidth available for PUSCH, i.e. 46resource units in 10MHz BW.

In resource blocks carrying the PUCCH, no resource elements shall be allocated for thesounding reference signal. Note that PUCCH is transmitted on NRU resource units at thelower band edge and NRU resource units at the upper band edge, where NRU =2 in 10MHz

BW.

We define two sounding channel elements (SCE), where SCE #0 and #1 comprise the even-numbered and odd-numbered subcarriers, respectively. The sounding channel elementsoccupy the following subcarrier indices:

- SCE #0: 574,...,28,26,24=k  ,

- SCE #1: 575,...,29,27,25=k  ,

in 10MHz BW case.

A UE transmits a sounding reference signal of length 276 symbols in 10MHz BW case, andthe UE allocates either sounding channel element #0 or #1.

 The number of UEs that can simultaneously allocate a sounding channel element equals 1. The number of UEs that can simultaneously transmit a sounding reference signal in asubframe is therefore given as 2.

We define 2 UE groups i# (0…1) comprising the set of UE identifiers i X UE  =2mod  ,

whereUE  X  (0…1) denotes the UE identifier, and the UEs of UE group i# (0…1) use the

SCEs given by }1,0{2mod  ∈i .

 The UEs of groups #0 transmit the sounding reference signals in SCE #0 of thecorresponding uplink sub-frame, and the UEs of groups #1 transmit the sounding referencesignals in SCE #1 of the corresponding uplink sub-frame.

Page 91: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 91/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 17/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The allocation of SCEs by the UE groups is summarized inTable 27.

 Table 27: Allocation of sounding channel elements by UE groups.

UE group UE id UE  X    SCE ZC shift values

#0 0, #0 =2/UE  X  0

#1 1, #1 =+ 2/)1( UE  X  1,

 The physical resource mapping of the sounding reference signal is illustrated in theAppendix.

16.2.2 Sequence Generation

 The sequence generation is based on a Zadoff-Chu sequence of odd-lengthG N  according

to:

.1,,1,0),/)1(exp()( −=+−= GGu N k  N k uk  jk  x Kπ   

From the thu root Zadoff-Chu sequence, sequences )(k au

are defined by cyclic extension

of the sequence )(k  xuaccording to:

⎩⎨⎧

−=−

−==

.1,,),(

,1,,1,0),()(

PGGu

Gu

u N  N k  N k  x

 N k k  xk a

K

K

 

A sounding reference sequence )(, k s vuof length

P N  is then obtained by cyclic shifts in the

time domain (i.e. phase rotation in the frequency domain) according to:

1,,1,0,2

,)()(, −=⋅=⋅= ⋅⋅v

k  j

uvu N v N 

ek ak s Kν π 

α ν 

α   

 The following parameters are used:

- 271=G N  in 10MHz BW,

- 8v = N  ,

- 276=P N  in 10MHz BW.

16.2.3 Sequence Allocation

Each cell of the trial network is assigned a Zadoff-Chu root value u according to

,1 cell X u += where cell X  denotes the cell identifier (0) [9].

 To each sounding channel element, we assign a set of 1 Zadoff-Chu shift values:- SCE #0 uses Zadoff-Chu shift values 0=v ,

- SCE #1 uses Zadoff-Chu shift values 1=v  For each UE group, we define a one-to-one mapping between the UE identifier and theZadoff-Chu shift value as summarized in Table 27.

Page 92: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 92/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 18/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Note: the Zadoff-Chu root value in a cell is equal for the demodulation and soundingreference signals (cf. Section 5.1.3) [9].

17 PHYSICAL UPLINK CONTROL CHANNEL

 The PUCCH is used to carry UL ACK/NACK and CQI to enable HARQ and scheduledtransmission on PDSCH, respectively.

UL ACK/NACK and CQI shall always be transmitted on PUCCH and shall not be multiplexedinto data transmitted on PUSCH.

PUCCH is transmitted on NRU resource units at the lower band edge and NRU resource unitsat the upper band edge, where NRU =2 in 10MHz BW.

UL ACK/NACK and CQI are multiplexed directly in the frequency domain (in the subcarrriermapping part), i.e. they are not fed through the DFT spreading.

CDM is applied for the separation of different PUCCH messages within the same controlchannel resource, and frequency hopping is applied at the slot boundary as in [1].

 The eNB shall apply coherent detection for UL ACK/NACK and CQI by performing channelestimation with a-priori knowledge(section 16.1) of the demodulation reference signals.

 The channel structure and multiplexing of UL ACK/NACK and CQI on PUCCH is compliantwith 3GPP working assumptions from RAN1#50 (Athens) meeting.

17.1 Physical Resource Mapping

PUCCH is transmitted on RUs #0-#1 and #48-#49 in 10MHz BW case.

A control channel resource is defined as in §5.4.4 of [1]. It occupies 12 subcarriers and isdistributed over 2 slots, consecutive in time, with frequency hopping at the slot boundary.We define a set of four control channel resources #0…#3 as illustrated in Figure 24 for10MHz BW case. The control channel resources are defined in a way that the frequencyseparation at the slot boundary is equal for all control channel resources (48 RUs in 10MHzBW case).

UL ACK/NACK is transmitted using control channel resource #0 and #3, and CQI istransmitted using control channel resources #1 and #2, as indicated in Figure 24.

Multiplexing of UL ACK/NACKs and CQIs into the same control channel resource is notsupported.

A control channel resource is able to carry up to 18 UL ACK/NACKs or 6 CQI reports, thusup to 36 UL ACK/NACKs and 12 CQI reports can be transmitted per subframe on PUCCH in10MHz BW. CQI or ACK/NACK reports transmitted within a control channel resource areseparated by means of CDM, where cyclically shifted Zadoff-Chu sequences – andadditional Hadamard sequences in UL ACK/NACK case – are used for the spreadingoperation.

Different slot formats are used for the transmission of UL ACK/NACK and CQI, as illustratedin Figure 25 for control channel resources #0 (UL ACK/NACK) and #2 (CQI) in 10MHz BW

case.

Page 93: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 93/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 19/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 In resource blocks carrying PUCCH, demodulation reference signals are located in the SC-FDMA symbols:

- l=2,3,4 of a slot if UL ACK/NACK is transmitted,- l=1 and l=5 of a slot if CQI is transmitted,

as shown in Figure 25.

Note that zeros are filled in by the UE into the resource elements (including the

demodulation reference symbol positions) that are not allocated for the transmission of anUL ACK/NACK or CQI, respectively.

 The configuration parameters of PUCCH are summarised in Table 28.

Page 94: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 94/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 20/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

1 subframe=1ms

1 slot =0.5ms(odd)1 slot =0.5ms(even)

0 1 2 3 4 5 6 0 1 2 3 4 5 6ak,l

Index l : “ Time” (2 x 7 SC-FDMA symbols)

237

236

235

234

233

232

231

230

229

228

227

226

225

224

223

222

221

220

219

218

217

216

215

214

213

212

811

810

809

808

807

806

805

804

803

802

801

800

799

798

797

796

795

794

793

792

791

790

789

788

787

786

 

placeholders for demodulation RS

placeholders for sounding RS symbols

placeholders for PUSCH symbols

control channel resource #0: UL ACK/NAC

control channel resource #1: CQI

control channel resource #2: CQI

control channel resource #3: CQIUL ACK/NACK 

Page 95: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 95/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 21/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

Figure 24: Definition of control channel resource.

   i  n   d  e  x   k  : „   F  r  e  q  u  e  n  c  y   “   (   6   0   0  s  u   b -  c  a  r  r   i  e  r  s   )

  s  u   b -  c  a  r  r   i  e  r  n  u  m   b  e  r   (  s   t  a  r   t  c  o  u  n   t   i  n  g   f  r  o  m  z  e  r  o   )

1 sub frame =1 ms

1 slot =0.5 ms (even) 1 slot =0.5 ms (odd)

index l : „Time“ (2 x 7 SC-FDMA symbols)

ak,l 430 1 52 6

   1

   0

   3

   2

   5

   4

   7

   6

   9

   8

   1   1

   1   0

   R  e  s  o  u  r  c  e   U  n   i   t   0

212 

213

214

215

216

217

218

219

220

221

222

223

788

789

790

791

792

793

794

795

796

797

798

799

ACK/NACK demodulation reference symbols

ACK/NACK symbols

430 1 52 6

   5   7   7

   5   7   6

   5   7   9

   5   7   8

   5   8   1

   5   8   0

   5   8   3

   5   8   2

   5   8   5

   5   8   4

   5   8   7

   5   8   6

av,0su,v(0)

av,0su,v(1)

av,0su,v(2)

av,0su,v(3)

av,0su,v(4)

av,0su,v(5)

av,0su,v(6)

av,0su,v(7)

av,0su,v(8)

av,0su,v(9)

av,0su,v(10)

av,0su,v(11)

av,1su,v(0)

av,1su,v(1)

av,1su,v(2)

av,1su,v(3)

av,1su,v(4)

av,1su,v(5)

av,1su,v(6)

av,1su,v(7)

av,1su,v(8)

av,1su,v(9)

av,1su,v(10)

av,1su,v(11)

dw,0ru,v(0)

dw,0ru,v(1)

dw,0ru,v(2)

dw,0ru,v(3)

dw,0ru,v(4)

dw,0ru,v(5)

dw,0ru,v(6)

dw,0ru,v(7)

dw,0ru,v(8)

dw,0ru,v(9)

dw,0ru,v(10)

dw,0ru,v(11)

av,3su,v(0)

av,3su,v(1)

av,3su,v(2)

av,3su,v(3)

av,3su,v(4)

av,3su,v(5)

av,3su,v(6)

av,3su,v(7)

av,3su,v(8)

av,3su,v(9)

av,3su,v(10)

av,3su,v(11)

av,2su,v(0)

av,2su,v(1)

av,2su,v(2)

av,2su,v(3)

av,2su,v(4)

av,2su,v(5)

av,2su,v(6)

av,2su,v(7)

av,2su,v(8)

av,2su,v(9)

av,2su,v(10)

av,2su,v(11)

dw,1ru,v(0)

dw,1ru,v(1)

dw,1ru,v(2)

dw,1ru,v(3)

dw,1ru,v(4)

dw,1ru,v(5)

dw,1ru,v(6)

dw,1ru,v(7)

dw,1ru,v(8)

dw,1ru,v(9)

dw,1ru,v(10)

dw,1ru,v(11)

dw,2ru,v(0)

dw,2ru,v(1)

dw,2ru,v(2)

dw,2ru,v(3)

dw,2ru,v(4)

dw,2ru,v(5)

dw,2ru,v(6)

dw,2ru,v(7)

dw,2ru,v(8)

dw,2ru,v(9)

dw,2ru,v(10)

dw,2ru,v(11)

av,4su,v(0)

av,4su,v(1)

av,4su,v(2)

av,4su,v(3)

av,4su,v(4)

av,4su,v(5)

av,4su,v(6)

av,4su,v(7)

av,4su,v(8)

av,4su,v(9)

av,4su,v(10)

av,4su,v(11)

av,5su,v(0)

av,5su,v(1)

av,5su,v(2)

av,5su,v(3)

av,5su,v(4)

av,5su,v(5)

av,5su,v(6)

av,5su,v(7)

av,5su,v(8)

av,5su,v(9)

av,5su,v(10)

av,5su,v(11)

av,7su,v(0)

av,7su,v(1)

av,7su,v(2)

av,7su,v(3)

av,7su,v(4)

av,7su,v(5)

av,7su,v(6)

av,7su,v(7)

av,7su,v(8)

av,7su,v(9)

av,7su,v(10)

av,7su,v(11)

av,6su,v(0)

av,6su,v(1)

av,6su,v(2)

av,6su,v(3)

av,6su,v(4)

av,6su,v(5)

av,6su,v(6)

av,6su,v(7)

av,6su,v(8)

av,6su,v(9)

av,6su,v(10)

av,6su,v(11)

CQI demodulation reference symbols

CQI symbols

ru,v(0)

ru,v(1)

ru,v(2)

ru,v(3)

ru,v(4)

ru,v(5)

ru,v(6)

ru,v(7)

ru,v(8)

ru,v(9)

ru,v(10)

ru,v(11)

ru,v(0)

ru,v(1)

ru,v(2)

ru,v(3)

ru,v(4)

ru,v(5)

ru,v(6)

ru,v(7)

ru,v(8)

ru,v(9)

ru,v(10)

ru,v(11)

qv,0su,v(0)

qv,0su,v(1)

qv,0su,v(2)

qv,0su,v(3)

qv,0su,v(4)

qv,0su,v(5)

qv,0su,v(6)

qv,0su,v(7)

qv,0su,v(8)

qv,0su,v(9)

qv,0su,v(10)

qv,0su,v(11)

qv,1su,v(0)

qv,1su,v(1)

qv,1su,v(2)

qv,1su,v(3)

qv,1su,v(4)

qv,1su,v(5)

qv,1su,v(6)

qv,1su,v(7)

qv,1su,v(8)

qv,1su,v(9)

qv,1su,v(10)

qv,1su,v(11)

qv,2su,v(0)

qv,2su,v(1)

qv,2su,v(2)

qv,2su,v(3)

qv,2su,v(4)

qv,2su,v(5)

qv,2su,v(6)

qv,2su,v(7)

qv,2su,v(8)

qv,2su,v(9)

qv,2su,v(10)

qv,2su,v(11)

qv,3su,v(0)

qv,3su,v(1)

qv,3su,v(2)

qv,3su,v(3)

qv,3su,v(4)

qv,3su,v(5)

qv,3su,v(6)

qv,3su,v(7)

qv,3su,v(8)

qv,3su,v(9)

qv,3su,v(10)

qv,3su,v(11)

qv,4su,v(0)

qv,4su,v(1)

qv,4su,v(2)

qv,4su,v(3)

qv,4su,v(4)

qv,4su,v(5)

qv,4su,v(6)

qv,4su,v(7)

qv,4su,v(8)

qv,4su,v(9)

qv,4su,v(10)

qv,4su,v(11)

ru,v(0)

ru,v(1)

ru,v(2)

ru,v(3)

ru,v(4)

ru,v(5)

ru,v(6)

ru,v(7)

ru,v(8)

ru,v(9)

ru,v(10)

ru,v(11)

ru,v(0)

ru,v(1)

ru,v(2)

ru,v(3)

ru,v(4)

ru,v(5)

ru,v(6)

ru,v(7)

ru,v(8)

ru,v(9)

ru,v(10)

ru,v(11)

qv,5su,v(0)

qv,5su,v(1)

qv,5su,v(2)

qv,5su,v(3)

qv,5su,v(4)

qv,5su,v(5)

qv,5su,v(6)

qv,5su,v(7)

qv,5su,v(8)

qv,5su,v(9)

qv,5su,v(10)

qv,5su,v(11)

qv,6su,v(0)

qv,6su,v(1)

qv,6su,v(2)

qv,6su,v(3)

qv,6su,v(4)

qv,6su,v(5)

qv,6su,v(6)

qv,6su,v(7)

qv,6su,v(8)

qv,6su,v(9)

qv,6su,v(10)

qv,6su,v(11)

qv,7su,v(0)

qv,7su,v(1)

qv,7su,v(2)

qv,7su,v(3)

qv,7su,v(4)

qv,7su,v(5)

qv,7su,v(6)

qv,7su,v(7)

qv,7su,v(8)

qv,7su,v(9)

qv,7su,v(10)

qv,7su,v(11)

qv,8su,v(0)

qv,8su,v(1)

qv,8su,v(2)

qv,8su,v(3)

qv,8su,v(4)

qv,8su,v(5)

qv,8su,v(6)

qv,8su,v(7)

qv,8su,v(8)

qv,8su,v(9)

qv,8su,v(10)

qv,8su,v(11)

qv,9su,v(0)

qv,9su,v(1)

qv,9su,v(2)

qv,9su,v(3)

qv,9su,v(4)

qv,9su,v(5)

qv,9su,v(6)

qv,9su,v(7)

qv,9su,v(8)

qv,9su,v(9)

qv,9su,v(10)

qv,9su,v(11)

   R  e  s  o  u  r  c  e   U  n   i   t   4   8

Control channel resource #0 (UL ACK/NACK): Control channel resource #2 (CQI):

dw,0 ru,v(0)

dw,0ru,v(1)

dw,0ru,v(2)

dw,0ru,v(3)

dw,0 ru,v(4)

dw,0ru,v(5)

dw,0ru,v(6)

dw,0ru,v(7)

dw,0 ru,v(8)

dw,0ru,v(9)

dw,0ru,v(10)

dw,0ru,v(11)

dw,1ru,v(0)

dw,1 ru,v(1)

dw,1 ru,v(2)

dw,1 ru,v(3)

dw,1ru,v(4)

dw,1 ru,v(5)

dw,1 ru,v(6)

dw,1 ru,v(7)

dw,1ru,v(8)

dw,1 ru,v(9)

dw,1ru,v(10)

dw,1ru,v(11)

dw,2ru,v(0)

dw,2ru,v(1)

dw,2ru,v(2)

dw,2ru,v(3)

dw,2ru,v(4)

dw,2ru,v(5)

dw,2ru,v(6)

dw,2ru,v(7)

dw,2ru,v(8)

dw,2ru,v(9)

dw,2ru,v(10)

dw,2ru,v(11)

 

Figure 25: UL ACK/NACK and CQI on PUCCH.

 Table 28: PUCCH configuration parameters.

Parameters 

10MHz BW NRU = occupied number of resource

units at either spectrum edge 2 

#UL ACK/NACKs per subframe 36 Nc =#CQIs per subframe 12 

17.2 Spreading Sequences

Zadoff-Chu spreading sequences )(, k s vuof length 12 are used for the CDM multiplexing of 

different ACK/NACKs or CQIs transmitted within a control channel resource.

Page 96: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 96/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 22/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

 The sequence generation and the sequence allocation of the spreading sequences )(, k s vu 

are done as for the demodulation reference sequences )(, k r  vuthat are used in PUCCH

case (cf. Section 16.1.2, Section 16.1.3.2 for UL ACK/NACK case, and Section 16.1.3.3 for

CQI case), i.e., )()( ,, k r k s vuvu = , where u denotes the cell-specific Zadoff-Chu root value

and v denotes the Zadoff-Chu shift value assigned to the UE [9].

Note that the cyclic shift value is not varied on a symbol basis (as opposed to §5.5.2.2 of [1]).

17.3 UL ACK/NACK

 The UL ACK/NACK carries one bit of information, according to CRC PASS/FAIL fortransmission on PDSCH.

17.3.1 Coding and Physical Resource Mapping

PUCCH format 0 of [1] is used for UL ACK/NACK transmission.

UL ACK/NACKs of same or different users in a cell are separated by using CDM.pre-delivery only:[

UE and eNB shall be configurable for mode1 and mode2:mode1: no HARQ retransmission for UL and DL, DL up to 8 HARQ processes.

eNB will send initial transmissions only(coding and signaling on PDCCH as [12]defined.)

HARQ IDs will be in the range 0...7 (4 bits used for signaling as [12] defined)A single 1-bit ACK will be sent by the UE for all 8 HARQ processes from an &-

operation.UL ACK/NACK control channel element of UE id=0 is mapping to control channelresource #0 with i =0.

UL ACK/NACK control channel element of UE id=1 is mapping to control channelresource #3 with i =0. 

mode2:UL and DL HARQ, with restrict max number of HARQ process 1 for pre-deliveryS0.1(HARQ id=0),can be sent in any DL subframe.

UE should feedback the ACK/NACK in the way defined in Table 29.][16]

We define v N iv mod = and ⎣ ⎦v N iw /= , 6=

v N  , where v is the Zadoff-Chu shift valueand i# (0…7) for LTE TDD Demo S0 (up to 2 users, UL/DL allocation configuration

5,10MHz BW) and i mapping from which subframe the ACK/NACK acknowledges for andthe UE ID, refer to Table 29. Table 29 is based on the timing relationship for DL HARQprocesses(section 9.1[12]). Further, u denotes the cell-specific Zadoff-Chu root value.

 Table 29: UL ACK/NACK channel element at subframe#n 

UL ACK /NACK  

channel

UE ID For subframek n − and k =

Page 97: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 97/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 23/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

element i  

0 13

1 12

2 9

3

0(mappingto controlchannelresource

#0)8

4 7

5 6

6 5

7

0(mappingto controlchannelresource#3)

4

4 13

5 12

6 97

1(mappingto controlchannel

resource#0)8

0 7

1 6

2 5

3

1(mappingto controlchannelresource#3)

4

 The coding for UL ACK/NACK is as follows:- ACK = CRC PASS = 1- NACK = CRC FAIL = 0

- binary to BPSK conversion as in §7 of [1]: 1 Æ  2/)1( j−− and 0Æ  2/)1( j+  

- 8x repetition gives the BPSK modulation symbols 7,1,0, ,,,vvv aaa ′′′ K  

- Element-by-element multiplication with Hadamard spreading sequence

7,1,0, ,,,www hhh K as in §5.4.1 of [1] gives the BPSK modulation symbols

7,1,0, ,,,vvv aaa K , where

 jw jv jv haa ,,,′= . The Hadamard spreading sequences are

listed in Table 30. (Note that 4,, += jw jw hh for 3...0= j (2x repetition), and 1,0=w for

7...0=i )

- Element-by-element multiplication with Zadoff-Chu spreading sequence )(, k s vu 

according to )(,),(),( ,7,,1,,0, k sak sak sa vuvvuvvuv K , 11,,1,0 K=k  , results in 8x12 = 96

modulation symbols, as in §5.4.1 of [1].

 Table 30: Hadamard spreading sequences for UL ACK/NACK.

w  7,1,0, ,,,

www hhh K  

0 +1 +1 +1 +1 +1 +1 +1 +11 +1 -1 +1 -1 +1 -1 +1 -12 +1 +1 -1 -1 +1 +1 -1 -13 +1 -1 -1 +1 +1 -1 -1 +1

Page 98: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 98/131

Page 99: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 99/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 25/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

- In 1Tx case, the UE shall be configurable to measure the CQI based on thereference signal transmitted from antenna port #0.

17.4.1.1 SINR to CQI Mapping

 The mapping of SINR to CQI is summarised in Table 31, where Δ (dB) denotes aconfigurable measurement offset with value range –6dB, -5dB, …, 0dB. The default value isgiven by 3−=Δ dB to compensate for the 3dB default power boost of the DL reference

symbols.

 Table 31: Mapping of SINR to CQI.

SINR+Δ (dB) CQI (decimal) CQI (binary)

3210 ,,, aaaa  

SINR+Δ <=-4dB 0 0, 0, 0, 0

-4dB <SINR+Δ <=-2dB 1 0, 0, 0, 1

-2dB <SINR+Δ <=0dB 2 0, 0, 1, 0

0dB <SINR+Δ <=2dB 3 0, 0, 1, 1

2dB <SINR+Δ <=4dB 4 0, 1, 0, 0

4dB <SINR+Δ <=6dB 5 0, 1, 0, 1

6dB <SINR+Δ <=8dB 6 0, 1, 1, 0

8dB <SINR+Δ <=10dB 7 0, 1, 1, 1

10dB <SINR+Δ <=12dB 8 1, 0, 0, 0

12dB <SINR+Δ <=14dB 9 1, 0, 0, 1

14dB <SINR+Δ <=16dB 10 1, 0, 1, 0

16dB <SINR+Δ <=18dB 11 1, 0, 1, 1

18dB <SINR+Δ <=20dB 12 1, 1, 0, 020dB <SINR+Δ <=22dB 13 1, 1, 0, 1

22dB <SINR+Δ <=24dB 14 1, 1, 1, 0

24dB <SINR+Δ  15 1, 1, 1, 1

17.4.1.2 Frequency Resolution

 Two CQI modes shall be supported:- Mode 1 = wideband CQI: CQI shall be measured over the full system BW in DL. The

wideband CQI of user #u is denoted byuCQI  .

- Mode 2 = frequency-selective CQI: CQI shall be measured over a subband, i.e. apart of the system BW in DL. The frequency-selective CQI of user #u is denoted by

 N uu CQI CQI  ,1, ... , where N denotes the total number of CQI reports (or subbands)

used to cover the full system BW, 1,uCQI  denotes the CQI measured at the lower

band edge (starting with the active subcarrier index k=0), and … N uCQI  , denotes the

CQI measured at the upper band edge. The frequency resolution of the frequency-selective CQI report is defined in Table 32 andillustrated in Figure 26 for 10MHz BW case.

 Table 32: Definition of frequency-selective CQI.

Parameters 10MHz BW

N =total number of CQI reports to cover full 9

Page 100: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 100/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 26/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

system BWFrequency-resolution of first CQI report

1,uCQI   

6x12 =72 subcarriers

Frequency-resolution of last CQI report

 N uCQI  ,  

2x12 =24 subcarriers

Frequency-resolution of other CQI reports

1,2, − N uu CQI CQI  K  

6x12 =72 subcarriers

 Total number of subcarriers 6x12+7x6x12+2x12 =600

RU #i#7 #8 #9 #10 #11 #12#0 #1 #2 #3 #4 #5 #6 #20 #21 #22 #23#13 #14 #15 #16 #17 #18 #19

CQIu,1 CQIu,3 CQIu,4

RU #i#31 #32 #33 #34 #35 #36#24 #25 #26 #27 #28 #29 #30 #44 #45 #46 #47 #48#37 #38 #39 #40 #41 #42 #43

CQIu,5 CQIu,6 CQIu,7 CQIu,8 

CQIu,2

#49

CQIu,9 

Figure 26: Frequency-selective CQI definition in 10MHz BW case.

17.4.1.3 Measurement Interval and Timing

About the measurement interval and timing of a CQI report, refers to section 19.2 .

17.4.1.4 Subband Differential CQI

 To reduce the signalling overhead for the frequency-selective CQI, we define a 2bit subbanddifferential CQI, as agreed at 3GPP RAN1#51bis (Sevilla) meeting.

 The coding for the 2bit subband differential CQI is summarized in Table 33, where:

- uSINR denotes the wideband SINR of user #u,

- nuSINR , denotes the n-th subband SINR of user #u,

- }3,...,5.5,6{ +−−∈Δ diff denotes a configurable offset in dB (default -1dB),

- }4,3,2,1{∈Φ diff denotes a configurable step size in dB (default 2dB).

 Table 33: Coding for 2bit differential CQI.

Measured subband SINR 2bit CQI(decimal)

2bit CQI(binary)

1, + j j aa

diff udiff nu SINRSINR Φ×−<Δ+ 5.1,   0 0, 0

diff udiff nudiff u SINRSINRSINR Φ×−<Δ+≤Φ×− 5.05.1 ,   1 0, 1

diff udiff nudiff u SINRSINRSINR Φ×+<Δ+≤Φ×− 5.05.0 ,   2 1, 0

diff nudiff u SINRSINR Δ+≤Φ×+ ,5.0   3 1, 1

Page 101: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 101/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 27/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

17.4.1.5 Scheduling Request

We define a 2bit scheduling request that shall be multiplexed by UE into each CQISR report.

 The coding for the 2bit scheduling request is summarized in Table 34, where:- UTBS  denotes the UE total buffer status in bytes,

- 1UTBS  and 2UTBS  denote configurable thresholds (default values 100bytes and

1500bytes, respectively).

 Table 34: Coding for 2bit scheduling request.

Total buffer filling of UE 2bit SR(decimal)

2bit SR(binary)

1, + j j aa  

0=UTBS    0 0, 0

10 UTBS UTBS ≤<   1 0, 1

21 UTBS UTBS UTBS  ≤<   2 1, 0

UTBS UTBS  <2  

3 1, 1

Notes:- In 3GPP Rel. 8, it is envisaged to support a scheduling request on the PUCCH (cf.

 TS36.212 V8.1.0).- Here we propose to use the CQI reports to simultaneously carry a 2bit scheduling

request. This is not compliant with Rel. 8, but should be very similar in performance.

17.4.1.6 Multiplexing of CQISR Reports

 Two CQISR reporting modes are supported corresponding to the two CQI reporting modes:- Mode 1 = wideband CQI: As illustrated in Figure 27, a single CQISR report (for

10MHz BW)denoted by uCQISR is used by user #u to transmit a wideband CQI

denoted byuCQI  .

- Mode 2 = frequency-selective CQI: As illustrated in Figure 28, three CQISR

reports(for 10MHz BW) denoted by 3,2,1, ,, uuu CQISRCQISRCQISR are used by user

#u to transmit a frequency-selective CQI denoted by N uu CQI CQI  ,1, ... .

At LTE TDD Demo S0, Mode 2 is not required.-

4bit padding

(zeros)

4bit wideband CQIu 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

2bit scheduling

request

MSB LSB

10bit

CQISR u 

Figure 27: CQISR reporting in case of wideband CQI.

Page 102: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 102/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 28/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  2bitsubband 

CQIu,2 

4bit wideband CQIu 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

2bit scheduling

request

2bit

subband 

CQIu,5 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

2bit scheduling

request

2bit

subband 

CQIu,6 

2bit

subband 

CQIu,3 

2bit

subband 

CQIu,4 

2bit

subband 

CQIu,1 

2bitsubband 

CQIu,9 

MSB LSB

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

2bit schedulingrequest

2bit padding

(zeros)

2bitsubband 

CQIu,7 

2bit

subband 

CQIu,8 

10bit

CQISR u,1 

10bit

CQISR u,2 

10bit

CQISR u,3 

Figure 28: CQISR reporting in case of frequency-selective CQI for 10MHz BW.

17.4.2 CQI Coding and Modulation

 The channel quality information is coded using a (20, A) block code as agreed at 3GPPRAN1#51bis (Sevilla) meeting, where 10= A , and the definition of LSB/MSB is as agreed at3GPP RAN1#52 (Sorrento) meeting (cf. 3GPP R1-080985).

 The code words of the (20, A) code are a linear combination of the  A basis sequencesdenoted Mi,n defined in Table 35.

 Table 35: Basis sequences for (20, A) code.

Page 103: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 103/131

Page 104: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 104/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 30/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

 Table 36: Assignment of  ),( v j parameters to CQI channel elements.

CQI channelelement

Control channelresource  j  

Zadoff -Chu cyclicshift value v  

0 01 1

2 23 34 45

1

56 07 18 29 310 411

2

5

17.4.3.2 Spreading and Resource Mapping

Spreading with the Zadoff-Chu sequences )(, k s vu is applied to the 10 QPSK symbols

9,1,0, ,,,vvv qqq K according to )(,),(),( ,9,,1,,0, k sqk sqk sq vuvvuvvuv

K , where 11,,1,0 K=k  , and

the resulting 120 symbols are mapped to the resource elements of the control channelresource as illustrated in Figure 25.

17.4.4 CQI Transmission Strategies

In the following, CQI transmission strategies are defined for a maximum of 2 users one cell

network.

17.4.4.1 Mode 1: Wideband CQI

With Mode 1, each user reports a single CQISR reportuCQISR on each UL subframe, where

each CQI report covers the full system bandwidth. Thereby user #u (0…1) occupies the CQIchannel element #0 and #6 seperately.

17.4.4.2 Mode 2: Frequency-Selective CQI

At LTE TDD Demo S0, Mode 2 is not required.

With Mode 2, a frequency-selective CQI is reported by the UE which is packed into three

CQISR reports denoted by 3,2,1, ,,uuu CQISRCQISRCQISR for 10MHz BW .

 The below transmission scheme shall be applied in 10MHz BW case.

Case 1: number of users in the network <= 2

- Each user reports 3CQISR reports 3,2,1, ,, uuu CQISRCQISRCQISR on each UL subframe.

-  The user with ID #u (0…1) occupies the CQI channel elements #u, #u+6 and #u+12,respectively.

Page 105: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 105/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 31/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

18 PHYSICAL UPLINK SHARED CHANNEL

 The PUSCH carries data from higher protocol layers.

A UE shall transmit a single PUSCH stream, with one codeword (or transport block) per

subframe (or TTI). The UE uses a single transmit antenna.

In SISO/SIMO case, the transport format can change on a subframe basis and it is signalledwithin the UL scheduling grant on the PDCCH. The eNB may apply one or two receiveantennas, where in the latter case 2Rx diversity is used.

MU-MIMO is not supported at S0.

QPSK and 16QAM modulation shall be supported.

 The maximum number of UEs connected with eNB shall be 2.

 The maximum number of UL scheduling grants simultaneously within a subframe is 8 in10MHz BW, and it is given by the available channel elements on the PDCCH. Any PDCCHelement can be used for UL grant for every UE id.

18.1 Resource Assignment and User Multiplexing

PUSCH is transmitted in each uplink subframe (configured by high layer, see [1] subclause

4.2).

 The PUSCH is transmitted using resource elements not occupied by demodulation/soundingreference signals or PUCCH.

 The number of resource elements per resource unit used for PUSCH transmission is givenby 12x(14-3) = 132.

18.2 RLC/MAC PDU Formats

 The formats of the RLC/MAC PDUs are described in [3].

 The MAC PDU header has a fixed size of 4 bytes and there is no RLC PDU header.

Only RLC TM is supported at S0.

 The size of the MAC PDU is called the transport block size (TBS). The TBS is confined tointeger multiples of bytes.

Padding is included in the MAC PDU only if there is not enough buffered data to fill the PDUfor the selected transport format.

Page 106: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 106/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 32/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

If the eNB schedules a PUSCH transmission while the UE has no data in buffer, the PDUshall be filled with padding and the transport block shall be formatted as defined in the ULscheduling grant. (This may assist to perform UL time advance correction or the bufferstatus reporting.)

RLC retransmissions are not supported, neither are re-segmentations of RLC PDUs.

18.3 Scheduling Information Report

A number of 5bits 521 ,...,, sisisiSI  = are reserved in the RLC/MAC PDU header to report the

scheduling information to the eNB:

- 21 , sisiSI UPH  = : UL transmission power headroom (UPH) (2bits),

- 543 ,, sisisiSI UTBS  = : UE total buffer status (UTBS) (3bits),

as illustrated in Figure 11. Note that we use the index 1 to indicate the MSB, and the highest

indices to indicate the LSB, in unsigned binary representation, e.g. 2=UPH SI  corresponds

to 0,1 21 == sisi .

At S0, the RLC/MAC PDU header structure as Figure 11 should be used.SN in MAC PDU Header changed from 11 to 10 Bit, the MSB bit of original 11 bit SN will befixed as zero[16].

si5 

si1 

si2 

si3 

si4 

sn (10bits)  n (5bits) si (5bits) r (11bits) 

MSB  LSB2bytes  2bytes

 

Figure 29: Scheduling information report in RLC/MAC PDU header.

 The UPH is defined as the ratio PUSCH PkP /max , where

- maxP denotes the maximum UL transmission power of the UE,

- PUSCH P denotes the total PUSCH power transmitted by the UE over the latest

measurement interval (default 10ms), where averaging shall be performed by the UEonly over subframes in which PUSCH is transmitted,

- and k  denotes a scaling factor that takes into account the UL power overheadrequired for reference signals and PUCCH (default 0.72 in 10MHz BW).

 The reference point shall be the UE antenna connector.

 The UTBS is defined as the total buffer filling state of the UE on RLC layer in units of bytes.(In general, this shall include data available for transmission and retransmission in RLClayer.

 The coding for the uplink transmission power headroom and for the UE total buffer status issummarized in Table 37 and Table 38, respectively. The dimensioning of the maximumvalue of the UTBS assumes a user peak data rate of 25Mbps (10MHz BW) multiplied by anupper limit of the scheduling round trip time of 10ms.

Page 107: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 107/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 33/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Table 37: Coding for UL transmission power headroom reporting.

UPH SI    UL transmission power headroom (UPH)

0 UPH <= 0dB1 0dB < UPH <= 3dB2 3dB < UPH <= 6dB3 6dB < UPH

 Table 38: Coding for UE total buffer status reporting.

UTBS SI    UE total buffer s tatus (UTBS) in bytes

0 UTBS = 01 0 < UTBS <= 102 10 < UTBS <= 323 32 < UTBS <= 1774 177 < UTBS <= 9925 992 < UTBS <= 55686 5568 < UTBS <= 31250

7 31250 < UTBS

18.4 Transport Formats

 The transport format can be changed on a subframe basis and is signalled to the UE withinthe UL scheduling grant on PDCCH.

Several transport formats shall be supported, covering code rates from about 1/3 to about1.0 for QPSK and 16QAM modulation schemes. The transport block sizes shall be confined

to integer multiples of bytes.

A detailed set of transport formats for PUSCH transmission is given in [4].

18.5 Coding Chain

 The coding chain for PUSCH uses building blocks of the coding chain for PUSCH of LTEFDD D2.4, and the following processes are not changed :

- the code block segmentation and channel coding (Turbo code internal QPPinterleaver) which are compliant with 3GPP Rel. 8 [6],

- the physical resource segmentation and the block interleaver which are proposed byALU [7],

- and the physical channel mapping which is replaced by a physical resourceconcatenation block.

Figure 12 illustrates the PUSCH coding chain. This figure is taken from 3GPP Rel. 6 [5] withnaming of some blocks modified and with the number of physical channels at the outputreduced to 1 (instead of P for each transmitted HS-PDSCH code).

 Table 14 exemplifies the respective block sizes for a TBS of 7360bits (single UE case, 20RUs allocated, 16QAM, code rate 0.7, data rate 736kbps).

Page 108: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 108/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 34/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

CRC attachment

a im1 ,a im2,aim3,...aimA

Code block segmentation

Channel Coding

Physical resourcesegmentation

PhCH#1

Physical Layer Hybrid-ARQfunctionality

d im1 ,d im2,dim3,...dimB

o ir1 ,o ir2,oir3,...oirK 

c i1 ,c i2,ci3,...ciE

v p,1 ,v p,2,vp,3,...vp,Up

u p,1 ,u p,2,up,3,...up,Up

w 1 ,w2,w3,...wNdata

PUSCHInterleaving

Bit Scrambling

b im1 ,b im2,bim3,...bimB

Physical resourceconcatenation

r 1 , r 2, r3,... rNdata

 

Figure 30: Coding chain for PUSCH (modified from [5]).

 Table 39: Example block sizes in coding chain

Function Number of bits Comments

 Transport block size 1x7360 MAC PDU sizeCRC attachment 1x7384 24bit CRCBit Scrambling 1x7384Code Block Segmentation 2x3712 2 equal-sized code blocks <=6144bits

each, matched to QPP interleaver sizeChannel Encoding 2x11148 =22296 Rate 1/3 per code block plus 12 tail bits

per code blockHARQ first RM 1x22296 Transparent (infinite virtual IR buffer)HARQ second RM 1x10560 Output block size matched to available

physical resource (=4x2640bits with16QAM and 20 RUs allocated)

Resource Segmentation 6x2x(26x34-4) = P=6 segments matched to PUSCH

Page 109: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 109/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 35/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

6x1760 interleaver sizePUSCH Interleaver 6x2x(26x34-4) =

6x1760Segment-by-segment interleaving with 2parallel (16QAM) basic interleavers of size26x34 bits and 4bit padding per basicinterleaver

Physical ResourceConcatenation

1x10560 Concatenation of segments

18.5.1 CRC Attachment

A 24 bit CRC is used as specified in §4.5.1 of [5].

18.5.2 Bit Scrambl ing

Bit scrambling shall be transparent.

Note that in 3GPP Rel. 8, the position of the scrambling entity is shifted to the input of the

modulation mapper.

18.5.3 Code Block Segmentation

Code block segmentation is used as specified in §5.1.2 of [6].

 The maximum code block size that can be used is 6144bits.

18.5.4 Channel Encoding

A Rate 1/3 Turbo encoder is used and there is only a single transport block per TTI asspecified in §5.1.3 of [6].

 The QPP Turbo code internal interleaver as specified in §5.1.3.2.3 of [6] is applied.

Note that 12 tail bits are appended to each code block for trellis termination.

18.5.5 Hybrid ARQ (Rate Matching)

 The Hybrid ARQ entity performs the rate matching as specified in §4.5.4 of [5].

HARQ bit separation is as specified in §4.5.4.1 of [5].

HARQ first rate matching is as specified in §4.5.4.2 of [5]. The first rate matching stage shallbe transparent. This can be achieved by using a sufficiently large virtual IR buffer.

HARQ second rate matching is as specified in §4.5.4.3 of [5] and uses variable RVparameters }1,0{∈s (indicates whether systematic bits are prioritized) and }1,0{∈r   

according to Table 40 and Table 41 for QPSK and 16QAM modulation, respectively. Theretransmission sequence number (RSN) is 0 for the initial transmission of a transport block,

Page 110: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 110/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 36/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

1 for the first retransmission, etc. If there are more than 3 retransmissions of a transportblock, the RSN is taken modulo 4, i.e. the fourth retransmission assumes RSN=0, etc.

 Table 40: RV parameters used with QPSK modulation.

RSN mod 4 s r 

0 1 01 0 02 1 13 0 1

 Table 41: RV parameters used with 16QAM modulation.

RSN mod 4 s r b

0 1 0 01 0 1 12 1 0 23 0 0 0

 The maximum number of retransmissions max RSN  of a transport block is limited. Our

working assumptions is 3max = RSN  .

HARQ bit collection is as specified in §4.5.4.4 of [5].

A UE transmits PUSCH with a synchronous HARQ scheme having UL

 HARQ N  HARQ processes

( 1...#0# −UL

 HARQ N  ), i.e. the HARQ process number used by the UE is incremented by 1 in

each uplink subframe (irrespective whether PUSCH is transmitted in this subframe or not),

modulo UL

 HARQ N  . The HARQ process number used by UE for PUSCH transmission is not

known at eNB side.

UL

 HARQ N  value refers to section 19.1.

 The HARQ processes of a UE have equal memory sizes given by the total HARQ buffer size

/ UL

 HARQ N  . It is assumed that the total HARQ buffer size is sufficiently large to allow a

transparent HARQ first rate matching.

An initial transmission of a transport block on PUSCH is triggered by means of the ULscheduling grant transmitted on PDCCH.

A retransmission of a transport block on PUSCH is triggered by means of a DL NACK transmitted on PDCCH.

18.5.6 Resource Segmentation

A detailed proposal for resource segmentation is given in [7].

 The input bits into the resource segmentation (i.e. the output bits of the HARQ second rate

matching stage) are denoted bydata N www ,,, 21 K .

Page 111: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 111/131

Page 112: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 112/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 38/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

In analogy with the Rel. 6 block interleaver for HS-DSCH, the PUSCH block interleaver usesm+1 parallel basic interleavers, where m=0 for QPSK and m=1 for 16QAM. The output bitsfrom the physical channel segmentation are divided two by two between the basicinterleavers and bits are collected two by two from the basic interleavers.

 The interleaver structure is exemplified in Figure 13 for 16QAM. With 16QAM, bits up,k andup,k+1 go to the first interleaver, and bits up,k+2 and up,k+3 go to the second interleaver. Bits vp,k and vp,k+1 are obtained from the first interleaver, and bits vp,k+2 and vp,k+3 are obtained from

the second interleaver, where k mod 4=1.

Interleaver(N x M)

up,k up,k+1  vp,k vp,k+1 

Interleaver(N x M)up,k+2 up,k+3  vp,k+2 vp,k+3 

up,k,up,k+1,...up,k+3 

Figure 31: PUSCH interleaver structure for 16QAM.

 The basic interleaver (denoted as ALU version v2) has a variable number of rows  N  and afixed number of columns .34= M   

 The PUSCH interleaver is designed to have approximately square basic block interleaverstructure with matrix sizes similar to 3GPP Rel. 6 (except for small number of input bits). Thenumber of rows N is computed as described in the previous section.

 The maximum number of bits that can be stored in the basic interleaver matrix is given by N  M × , i.e. an entry of the basic interleaver matrix corresponds to a single bit of the input

sequence.

 The input bits are written into the basic interleaver matrix column by column, as illustrated in

Figure 32. The number of interleaver runs illustrated in Figure 32 corresponds to the numberof segments P.

Page 113: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 113/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 39/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

write

order 

read order read order 

 Number of 

first runs: P1

 Number of 

last runs: P-P1

Number of 

runs/segments

1 1 8 35 52 10 27 44 61

2 1 9 36 53 11 28 45 62

3 20 37 54 12 29 46 63

4 2 1 38 55 13 30 47 64

5 2 2 39 56 14 31 48 65

6 2 3 40 57 15 32 49 66

7 2 4 41 58 16 33 50 67

8 2 5 42 59 17 34 51 68

9 26 43 60

1 19 37 54 10 28 46 63

2 20 38 55 11 29 47 64

3 21 39 56 12 30 48 65

4 22 40 57 13 31 49 66

5 23 41 58 14 32 50 67

6 24 42 59 15 33 51 68

7 25 43 60 16 34 52 69

8 26 44 61 17 35 53 70

9 27 45 62 18 36

 Number of runs: P

m+1 parallel basic

interleavers

 Nfill_min 

filling bits

 

 Nfill_min+2

filling bits

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

index

write

order 

0

1

2

3

4

5

6

7

8

index

Example parameters:- m=1

- P=6 and P1=4- NxM=9x8

- Nfill_min=2

- write order of columns:

<0, 4, 1, 5, 2, 6, 3, 7>

Figure 32: PUSCH block interleaver structure.

Possibly some entries in the basic interleaver matrix are not filled with data bits and insteadfilling bits are inserted. The filling bits are inserted into the last columns of the last row of thebasic interleaver matrix, as illustrated in grey colour in Figure 32. The filling bits have to bepruned during readout. The number of filling bits per basic interleaver is given by

( 2min _  + fill N  ) in the first P1 interleaver runs and by min _  fill N  in the last P-P1 interleaver runs,

where min _  fill N  is defined in the previous section.

 The input bits are written into the basic interleaver matrix column by column, where theorder of columns is given by the following sequence of column indices (this is similar to an

inter-column permutation):- <0, 5, 10, 15, 20, 25, 30, 1, 6, 11, 16, 21, 26, 31, 2, 7, 12, 17, 22, 27, 32, 3, 8, 13, 18,23, 28, 33, 4, 9, 14, 19, 24, 29>.

 The columns are always written from top to bottom, i.e. the order of rows is given by thesequence <0, 1, 2, …>. (Note that the column write order <0, 4, 1, 5, 2, 6, 3, 7> isexemplified in Figure 32.

 The output of the basic interleaver is the bit sequence read out row by row (i.e. withsequence <0, 1, 2, …>) from the  M  N × matrix.

Page 114: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 114/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 40/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

18.5.8 Physical Resource Concatenation for PUSCH

 This function block simply concatenates the block interleaved segments according to

Pdata U PU  N  vvvvvvr r r  ,2,21,2,12,11,121 ,,,,,,,...,,1

KK=  

to obtain a bit sequence of lengthdata N  .

18.6 Modulation and Physical Resource Mapping

 The output signal of the coding chain is further processed by means of scrambling,constellation re-arrangement for 16QAM, modulation mapping and physical resourcemapping.

18.6.1 UE-Specific Scrambl ing

 The scrambling sequence generation uses Gold sequences as agreed during 3GPPRAN1#51bis meeting in Sevilla.

 The initialization of the Gold sequences is as agreed during 3GPP RAN1#52 meeting inSorrento (cf. 3GPP R1-081106), but time-variant input variables are avoided to reduce testeffort (i.e. the variable <Subframe_Num> is replaced by <Cell_ID>).

 The inputs of the UE-specific scrambling are given by:

- the sequence of bitsdata N r r r  ...,, 21 obtained from the PUSCH coding chain,

- the UE identity 16,2,1, ,,,ueueueue x x x X  K= ,

- the cell identity 16,2,1, ,,, cellcellcellcell x x x X  K= ,

where we use the index 1 to indicate the LSB, and the index 16 to indicate the MSB, inunsigned binary representation.

 The UE-specific scrambling is defined by:

,,...,2,1,2mod )( 1 datak k k  N k cr r  =+=′ −  

where the }1,0{∈′k r  denote the output bits of the UE-specific scrambling, and the

}1,0{)(1 ∈== − nccc k ndenote a Gold sequence generated by modulo-2 addition of the

output sequences )(1 n x and )(2 n x of two feedback shift registers of length 31,

,1,,0},1,0{)(,2mod ))()(()( 21 −=∈+= data N nncn xn xnc K  

and the generator polynomials of the binary sequences )(1 n x and )(2 n x are given by

1331 ++ x x and 12331 ++++ x x x x , respectively. The generation of the Gold sequence isdepicted in Figure 33.

Page 115: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 115/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 41/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

x1(n) 

x2(n) 

c(n) 

Init x1: 

... 

Init x2: 

xUE,1

(LSB)... xUE,16

(MSB)

MSB  LSB 

... 0  xcell,9

(MSB)xcell,1

(LSB)0 

0  0 

xcell,4...1

(MSB...LSB)

 

Figure 33: Feedback shift register for UE-specific scrambling.

 The 31 entries of the first shift register are initialized according to:

0,1)(1

== nn x (LSB, green in Figure 33),

,300,0)(1 ≤<= nn x (gray in Figure 33).

 The second shift register is initialized with

,22 149

UE cellcell X  X  X  +′′+′  

where:

- 9,2,1, ,,, cellcellcellcell x x x X  K=′ denotes a shortened 9bit cell identifier (blue in Figure 33),

- 4,2,1, ,,,cellcellcellcell x x x X  K=′′ denotes a shortened 4bit cell identifier (yellow in Figure

33), and

- 16,2,1, ,,,UE UE UE UE  x x x X  K= denotes the 16bit UE identifier (red in Figure 33),

where we use the index 1 to indicate the LSB. Note that two positions are initialized withzeros: 0)(2 =n x for 13=n and 30=n (grey in Figure 33).

 The outputs of the shift registers ,30),(),( 21 >nn xn x are iteratively obtained according to:

,2mod ))()3(()31( 111 n xn xn x ++=+  

.2mod ))()1()2()3(()31( 22222 n xn xn xn xn x ++++++=+  

18.6.2 Constellation Re-Arrangement

Constellation re-arrangement for 16QAM is as specified in §4.5.7 of [5] and uses variableparameter }2,1,0{∈b according to Table 41.

For QPSK, the constellation re-arrangement is transparent.

18.6.3 Modulation Mapper 

QPSK and 16QAM modulation shall be supported.

Page 116: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 116/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 42/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

  The modulation mapper is as specified in §7 of [1].

(Note that for QPSK and 16QAM modulation, the modulation mapping of 3GPP Rel. 8 [1] isidentical to the modulation mapping of 3GPP Rel. 6 (TS25.213).)

18.6.4 Physical Resource Mapping

Resource elements not used (or reserved) for demodulation/sounding reference signals orPUCCH shall be used for transmission of PUSCH.

 The physical resource mapping for PUSCH can be called “in frequency first over allallocated resource units”:

-  The sequence of modulation symbols is mapped to resource elements withincreasing active subcarrier index k over all resource units allocated for the user,starting in the second SC-FDMA symbol (l=1) of a subframe until all allocatedresource elements in the SC-FDMA symbol are filled.

-  The mapping is continued in the next SC-FDMA symbols (l=1,2,4,5,6,0,1,2,4,5,6) of 

the subframe also with increasing active subcarrier index.-  The SC-FDMA symbol l=0 of the first slot of a subframe is not used for PUSCH

transmission as it carries the sounding reference signal.-  The SC-FDMA symbols l=3 in both slots of a subframe are not used for PUSCH

transmission as they carry the demodulation reference signal.

 The physical resource mapping for PUSCH is illustrated in the Appendix.

19 UPLINK TIMING

 This section clarifies the timing issues related to HARQ (UL), CQI and switching point.

19.1 HARQ Timing

For TDD, the max number of HARQ processes shall be determined by the DL/ULconfiguration. The maximum number of HARQ processes is shown in Table 16 according toR1-081124.

 Table 42: Maximum number of UL/DL HARQ processes

Maximum Nb of DL HARQ Processes

ConfigurationSwitch-pointperiodicity

Data transmission inDwPTS

No data transmissionin DwPTS

MaximumNb of UL

HARQprocesses

5 10ms 15 13 1

In Table 16, ‘Data Transmission in DwPTS’ means that PDSCH is transmitted in DwPTS.And it assumes that the data should be re-transmitted in the special subframe (i.e. DwPTS)if the feedback is NACK.

 The eNB shall use

Page 117: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 117/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 43/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

-  1=UL

 HARQ N  HARQ process for PUSCH, configuration 5;

 The number of HARQ processes UL

 HARQ N  and  DL

 HARQ N  must be configured equally in eNB and

UE.

19.1.1 UL HARQ Timing Relationship

Based on R1-081677, for the scheduled PUSCH transmission in subframe n, a UE shalldetermine the corresponding DL ACK/NACK resource in the subframe n+kDL_ACK, wherekDL_ACK is given in the following table for LTE TDD Demo.

 Table 43: kDL_ACK for LTE TDD Demo

TDD UL/DLConfiguration

UL subframe index n

0 1 2 3 4 5 6 7 8 9

5 6

 The UL HARQ timing relationship is illustrated in Figure 34 for UL/DL allocationconfiguration 5 case. For UL/DL allocation configuration 5, only one ACK/NACKs can besent to one UE in one subframe, and different DL ACK/NACKs for different UEs occupydifferent resource elements as shown in section 7.5[12].

subframe 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

D S U D D D D D D D D S U D D D D D D D D S U D D D D D D D

PUSCH 0 0 0

DL ACK/NACK  0 0 0

Max DL HARQ Round Trip Tim e = 10ms

 

Figure 34: Timing relationship for UL HARQ processes (configuration 5)

Maximum UL HARQ round trip time is 10ms (for configuration 5).

19.2 CQI Timing

 The measurement interval and timing of a CQI report is illustrated in Figure 35.

sub frame #9 (D)

1 sub frame =1 ms

UE Tx 

UE Rx 

 TA 

 TP TP 

UE processing delay 0.96...0.98ms

 

sub frame #0 (D) sub frame #1 (S) sub frame #2 (U) sub frame #3 (D)

CQI measurement interval (DL RS)

CQI report (PUCCH) 

Page 118: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 118/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 44/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Figure 35: Measurement interval and timing of CQI report (configuration 5)

Our working assumptions are as follows:- The CQI measurement interval spans a period of 2ms.- For configuration 5, CQI measured over subframe #9 and subframe #0 is reported in

subframe #2.

19.3 Switching Point

Switching point is very important in LTE TDD to switch RF from/to ON to/from OFF. It usesuplink time advance correction in PDCCH (section 7.3 [12]) to let UE transmit UL in advance(i.e. TA) as shown in Figure 36.

•0 •2 •3 •4•NB

•UE •0 •2 •3 •4

Tp TUD

PUSCH/PUCCH

•1

TA=2Tp+TUD

•1

Tp

•D •S •U •D •D

TDU

DwPTS UpPTSGP

PUSCH/PUCCH

Tp

 

Figure 36: LTE TDD UL-DL timing in air interface

For initial UL transmissing, the initial transmission timing should be configurable in UE (noRACH procedure in S0), max TA = 120us (the round trip delay and T UD for eNB uplink todownlink switch gap should both be considered for configuration). For later UL transmissing,the UE should correct the transmission timing advance based on uplink time advancecorrection in PDCCH (section 7.3 [12]). For pre-delivery:[Fixed but configurable TA in the UE.

Even if the eNodeB send TA to the UE, the UE will ignore it. TA messages can appear onPDCCH.][16]

 The value of eNB uplink to downlink switch gap TUD is 920 Ts ( about 30 us) fixed[16].

20 RANDOM ACCESS PREAMBLE

Random access process is not supported at LTE TDD demo S0, and this chapter isreserved for LTE TDD demo Step 1.

A random access preamble is transmitted by the UE within a random access burst.

Page 119: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 119/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 45/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

A random access preamble is not transmitted simultaneously with any other physicalchannel or signal.

20.1 Physical Layer Parameters

 The major physical layer parameters of the random access burst are summarised in Table

44. Table 44: Physical layer parameters of random access burst(Preamble format 0).

Parameter Valuein 10MHz BW

Valuein 20MHz BW

Comment

 Transmission bandwidth 1.08MHz 1.08MHz 6 RUsSubcarrier spacing 1.25kHz 1.25kHz 12x reduction versus subcarrier

spacing of PUSCHSubcarrier frequencyoffset

7.5kHz 7.5kHz DC subcarrier shifted to 7.5kHz

Number of subcarriersallocated for random

access burst

864 864 6 RUs x 144 subcarriers/RU

Number of subcarriersoccupied with randomaccess preamble

839 839 Length of Zadoff-Chu sequence(prime number)

Sampling frequency 15.36MHz 30.72MHzIDFT size (Tx side) 12288 samples 24576 samples Corresponds to 800us preamble

lengthBurst length 1ms 1ms

20.2 Time and Frequency Structure

At the LTE TDD prototype stage , only preamble format 0 is supported.

 The physical layer random access preamble consists of a cyclic prefix of length TCP, asequence part of length TSEQ in the time domain.

Figure 37: Time structure of random access burst.

 The time domain parameter values of the random access burst (preamble format 0) aresummarized inTable 45.

 Table 45: Time domain parameters of random access burst.

TCP TSEQ Preambleformat

Parameters

in Ts in us in Ts in us

Cyclic Preamble

time

TCP TSEQ

Page 120: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 120/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 46/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Duration 3168 103 24576 800

#samples N in10MHz

1576 122880

#samples N in20MHz

3152 24576

In the frequency domain, the random access burst occupies 6 resource blocks (1.08MHz).For preamble format 0, it is corresponding to 864 sub-carriers with spacing 1.25kHz per sub-carrier.

20.3 Preamble Sequence Generation

 The random access preambles are generated from Zadoff-Chu sequences. To givenphysical root sequence index u, the root Zadoff-Chu sequence is defined by

( ) 10, ZC

)1(

ZC −≤≤=

+−

 N nen xN 

nun

 j

u

π 

 

where NZC denotes the length of Zadoff-Chu sequence.NZC = 839 preamble format 0

From the thu root Zadoff-Chu sequence, random access preambles with zero correlation

zone are defined by cyclic shifts of multiples of  CS N  according to

)mod )(()( ZCCS, N vN n xn x uvu += .

 The parameter CS N  shall be configurable in UE and eNB as summarized in Table 46(defaultindex 0). This is to allow for a flexible trade-off between the maximum number of users andthe maximum cell radius.

 Table 46: Relation between shift parameterCS  N  , number of users and cell radius(preamble

format 0).

IndexCS  N  Max. #users ( v N  ) Cell radius (km)

0 52 16 6.51 69 12 8.82 104 8 13.7

 The number of preambles created from the thu root Zadoff-Chu sequence is given by

⎣ ⎦CS  ZC v N  N  N  /= preambles 1,,1,0),(, −= vvu N vn x K . Note that the parameterv N  is

equal to the maximum number of users that can be supported in the trial network, under theassumption that only a single root Zadoff-Chu sequence is allocated per cell.

 The maximum cell radius is approximated according to ,2/*)864/( cT  N  SEQcs τ − where

810*3=c m/s denotes the velocity of light, and 5=τ  us denotes a delay spread typical forurban areas, and TSEQ = 800us.

Page 121: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 121/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 47/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

20.4 Baseband Signal Generation

For the random access burst, the baseband signal generation is as in §5.7.3 of [1], and thetransmitter structure is depicted in Figure 38 (modified from 3GPP R1-062630).

CPInsertion

DFTSub-carrier 

Mapping

Size: NZC  Size: NPRE

Rate: Rs 

Preamble 

IDFT

Rate: f s 

P/S

Size: NPRE +NCP  

CP

Figure 38: Transmitter structure for random access burst.

 The preamble )(, n x vu is fed through a DFT of size 839ZC = N  to obtain a sequence of 

length 839ZC = N  in the frequency domain according to

.)()(1

0

2

,, ∑−

=

= ZC 

 ZC 

 N 

n

 N 

kn j

vuvu en xk  X 

π 

 

 The sequence )(, k  X  vuof length 839ZC = N  is mapped in the frequency domain to

839ZC = N  consecutive subcarriers.

We further define a sequence )(, k  X  vu′ mapped to 864a = N  consecutive subcarriers. The

sequence )(, k  X  vu′ is obtained from the sequence )(, k  X  vu

of length 839ZC = N  by adding

25839864 =− zero subcarriers. These 25 zero subcarriers are distributed symmetrically

around the 839ZC = N  non-zero subcarriers, with the first 12=ϕ  subcarriers and the last

131=+ subcarriers set to zero. The position of the sequence )(, k  X  vu′ in the frequency

domain is aligned with the RU grid.

 The sequence )(, k  X  vu′ of length 864a = N  is transformed into the time domain with an

IDFT of sizeSEQsSEQ T  f  N  ×= samples ( 24576/12288=SEQ N  in 10/20MHz BW), where

aSEQ N  N  − input samples are set to zero ands f  denotes the system sampling rate

( 72.30/36.15=s f  MHz in 10/20MHz BW case). Values of SEQ N  are summarized in Table 45

(inSEQT  column).

 The frequency domain mapping of the random access preamble is illustrated in Figure 39for 10MHz BW case.

Page 122: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 122/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 48/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

k RA=2

  a  c   t   i  v  e  s  u   b  c  a  r  r   i  e  r   i  n   d  e  x

   k   (   0 …

   5   9   9   i  n   1   0   M   H  z   B   W   )

 . . .

   0

   1   2

   1   1

   2   3

 . . .

 . . .

   2   4

   3   6

   3   5

   4   7

 . . .

 . . .

   4   8

   6   0

 

   7   1

 … 

 … 

   7   2

   8   3

 

Resource unit #1

Resource unit #2

Resource unit #3

Resource unit #4

Resource unit #5

Resource unit #6

phi=12 Zeros

phi+1=13 Zeros

   I   D   F   T   i  n   d  e  x   (   0 …

   1   2   2   8   7

   i  n   1   0   M   H  z   B   W

  c  a  s  e   )

2687 

2688 

2831

2832…2843 

2844

2845

2846 

2544

 

Resource unit #7 … 

   8   4

   9   5

3681

3682

3683...3695

   R  a  n   d  o  m  a  c  c  e  s  s   b  u  r  s   t   (   8   6

   4  s  a  m  p   l  e  s   )

   R  a  n   d  o  m  a  c  c  e  s  s  p  r  e  a  m   b   l  e   (   8   3   9  s  a  m  p   l  e  s   )

 

144 Zeros

Xu,v(0)

Xu,v(1)

Xu,v(2)

Xu,v(838)

Xu,v(837)

   5   8   8

 

   5   9   9

 … 

9600

 

9743

 

Resource unit #8 … 

   9   6

   1   0   7

 

144 Zeros

3839

3696

 

212 Zeros 12x212=2544 Zeros

9744

 

12287

2543

0

 

Resource unit #0 144 Zeros

12x212=2544 Zeros212 Zeros

Resource unit #49 144 Zeros

Figure 39: Frequency-domain mapping of random access preamble.

 The cyclic prefix is inserted in the time domain as in [1] to obtain a signal of size CPSEQ N  N  +  

samples, where the values of  CP N  are summarized in Table 45 (in CP N  column). As the

frequency shifts for the random access preamble are integer multiples of the 1.25kHzsubcarrier spacing, the cyclic prefix can simply be copy-pasted, as illustrated in Figure 38.

Page 123: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 123/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 49/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

20.5 Resource Allocation

20.5.1 Time-Frequency Allocation

 The allocation of the random access burst in the UL time-frequency grid as seen by eNodeBis defined as follows.

In the time-domain:

- A random access burst is allocated periodically, with period × RAP 10ms, where

}8,4,2,1,0{∈ RAP shall be configurable, and 0= RAP indicates that no random access

burst is configured. Equal random access period is configured in all cells of the trialnetwork (80ms default period).

- A random access burst is positioned in frames satisfying 0mod  = RAPSFN  , where

SFN denotes the System Frame Number. The SFN is incremented with each frame. The SFN is further periodically transmitted in PDCCH in DL in the first subframe of the respective frame (40ms default period).

- A random access burst is always located in subframe #2, for TDD configuration 0

and configuration 5 with preamble format 0.-

In the frequency-domain:- A random access burst is positioned within the bandwidth available for PUSCH. A

random access burst does not interfere with the PUCCH at the band edges.- A random access burst is aligned with the RU grid, i.e. a random access burst

occupies 6 consecutive RUs.- A random access burst is defined in the frequency domain by the smallest RU index

 RAk  , i.e. the random access burst with RU index  RAk  occupies the RUs

)5(#,),1(#,# ++ RA RA RA k k k  K . Note that 2= RAk  is exemplified in Figure 39.

- In each cell of the trial network, no more than a single random access burst (6 RUs)is allocated per subframe.

- Burst-by-burst frequency hopping between the PUSCH band edges shall beconfigurable to improve the detection performance of the random access burst.

If the frequency hopping option is deactivated, the frequency domain position of the random

access burst is characterized by 2= RAk  .

Frequency hopping option is not supported in the LTE TDD prototype stage.

Note that the time-frequency allocation of the random access burst is identical in all cells,and no more than one random access burst can be defined per frame.

20.5.2 Sequence Allocation

Each cell is assigned a unique Zadoff-Chu root =u cell ID+1, where cell ID = 0 [9].

Each UE is assigned a unique Zadoff-Chu shift value =v UE ID, where UE ID = 0…1.

Page 124: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 124/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 50/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

Note: the maximum number of users that can be supported in the trial network can inprinciple be increased by increasing the number of root Zadoff-Chu sequences allocated percell, at the expense of additional computational complexity in the eNB receiver.

20.6 Random Access Procedures

Random access procedure is applied to:y Initial access from RRC_IDLE or after radio link failurey Handovery Sync/unsync state change in RRC_Connected state

 The UE shall start to transmit a random access burst with a zero time advance with respectto the start of the DL subframe which defines the time-position of the random access burst.

 To avoid contention, the UE with ID )1,0(# =ii shall use the random access preamble

)(, n x vu, where:

- the Zadoff-Chu root u = cell ID+1 is given by the ID of the cell with which the UE hasestablished the downlink synchronisation,

- the Zadoff-Chu shift iv = is tied to the UE ID.

After a first transmission of a random access burst by the UE, the UE shall periodically

transmit the random access burst with period × RAP 10ms, until:

- the UE receives at least one UL time adjust message followed by an UL/DLscheduling grant on PDCCH,

- or a timer in the UE elapses. This timer is denoted as the random access discardtimer (default value 500ms from transmission of first random access preamble bythe UE).

Note that upon reception of a random access burst from a UE, the eNB shall first send atleast one UL time advance correction message to the UE, before sending an UL/DLscheduling grant to the UE.

Note that the UE shall continue to periodically transmit the random access preamble, also if the UE receives an UL time adjust message on PDCCH, and the UE shall adapt the timingof the random access preamble as indicated in the received UL time adjust message, so asto enable the eNB to correct the UL timing. An UL time adjust message followed by anUL/DL scheduling grant then indicates to the UE that the UL synchronisation is completed.

20.7 Random access burst power control

 The power allocation of the random access burst is controlled by two parameters:

- Initial power value RAPtx to be used by UE for the first transmission of a random

access burst,

- Power step size }6,4,2,0{∈Δ RAPtx in dB units by which transmission power shall be

increased by UE for each repeated transmission of the random access preamble.

 The initial power value shall be set by the UE according to

, _  _  dBPathLossdBmPtxPtx  RA RA×+=

α   

Page 125: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 125/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 51/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

where:

- }90,,118,120{ _  −−−∈ K RAdBmPtx is an absolute power value in dBm.

- }0.1,,2.0,1.0,0.0{ K∈α  is set via configuration (default value 1.0).

- dBPathLoss _  is the time-averaged path loss in dB, measured by the UE based on

the reference signal transmitted from either eNB antenna port #0 or #1, dependingon which eNB antenna port is configured in the UE (default 100ms measurementinterval).

 The parameters  RAPtxΔ ,  RAdBmPtx _  and α  shall be configurable in the UE. Thetransmission power settings for the random access burst comply with agreements of 3GPPRAN1#52 (Sorrento) meeting.

Interference between scheduled transmission on PUSCH and transmission of the randomaccess burst within the same cell shall be avoided by the UE:

-  The UE is aware of the time-frequency positions of the random access bursts.- After receiving an UL scheduling grant or a DL NACK, the UE shall detect whether

the RUs assigned to carry PUSCH overlap with the RUs allocated in the samesubframe to carry random access bursts.

- If such an overlap (by at least one RU) is detected, the UE shall not transmit PUSCH

in this subframe.In case of a discarded retransmission, the retransmission sequence number RSN shall beincremented as usual.

Further, interference between sounding reference symbols and transmission of the randomaccess burst within the same cell shall be avoided by the UE:

-  The UE is aware of the time-frequency positions of the random access bursts.-  The UE is further aware of the time-frequency positions configured for transmission

of the sounding reference signal.- For each subframe, the UE shall detect whether there is overlap between time-

frequency resources configured for random access bursts and sounding referencesignals.

- If such an overlap is detected in a subframe, the UE shall truncate the soundingreference signal in the frequency domain, and transmit the sounding reference signalonly on the subcarriers not allocated by the random access burst.

20.8 Random access timing

Below is the timing diagrams with TDD configuration 5/0 and preamble format 0.

Page 126: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 126/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 52/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 Figure 40: Random access timing for TDD configuration 5 and preamble format 0

CP

preamble

CP

preamble

eNB Rx

eNB Tx

process delay

UE Tx

UE Rx

TA

TA

Sch. grant

Sch. grant

timing adj.

sub-frame 0

D

sub-frame 1

S

sub-frame 2

U

sub-frame 3

U

sub-frame 4

U

sub-frame 5

D

sub-frame 6

S

sub-frame 7

U

eNB Rx

UE Tx

Tp

CP Preamble

CP Preamble

TpeNB Tx

UE Tx

Tp

Tp

UERx

eNB Rx

TA=2Tp+Tud

sub-frame 8

U

sub-frame 9

U

sub-frame 0

D

radio frame #i radio frame #i+1

 

Figure 41: Random access timing for TDD configuration 0 and preamble format 0

Page 127: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 127/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 53/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

21 GLOSSARY

 Acronym Defini tion

BW Bandwidth

CDM Code Division Multiplexing

CQI Channel Quality Indicator

CRC Cyclic Redundancy Check

DFT Discrete Fourier Transform

DL Downlink

DwPTS Downlink Pilot Time Slot

eNB Enhanced Node B

FFT Fast Fourier Transform

HARQ Hybrid ARQ

IFFT Inverse Fast Fourier Transform

MAC Medium Access ControlMIMO Multiple Input Multiple Output

MU Multi User

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

RB Resource Block

RSN Retransmission Sequence Number

RU Resource Unit

SIMO Single Input Multiple Output

SISO Single Input Single Output

 TTI Transmission Time Interval

UE User Equipment

UL Uplink

UpPTS Uplink Pilot Time Slot

Page 128: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 128/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 54/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

22 APPENDIX – RESOURCE MAPPING EXAMPLE

 The figure below illustrates the time-frequency structure of the LTE uplink and exemplifiesthe physical resource mapping in 10MHz BW.

It is assumed that eNB is connected to two users denoted UE #0 and #1.

Demodulation reference symbols transmitted by UE #0 (#1) are shown in orange (red)colour. In slots carrying PUSCH, these resource elements are filled by the respective userwith the reference sequence symbols )(k  R , where k denotes the active subcarrier index, in

SC-FDMA symbol l=3 of a slot.

 The resource units #0-#1 (#48-#49) at the lower (upper) edge of the band are used forPUCCH (light blue colours) and the respective resource blocks contain the following SC-FDMA symbols with demodulation reference signals (yellow colours):

- three SC-FDMA symbols (l=2,3,4) in UL ACK/NACK case,- two SC-FDMA symbols (l=1 and l=5) in CQI case.

 The first SC-FDMA symbol of a subframe (l=0) is used for sounding reference signals overthe bandwidth available for PUSCH transmission, i.e. over the 46 resource units numbered#2-#47. The physical resource mapping for the sounding reference signal is indicated by therunning index of the sequences s (pink colours), and two sounding channel elements witheven/odd-numbered subcarrier indices are distinguished. A UE can allocate a singlesounding channel element in a subframe.

In this example, PUSCH is transmitted simultaneously to 2 Ues in the same subframe,where UE #0 allocates the resource units #2-#24 (blue colour), and UE #1 allocates theresource units #26-#47 (green colour).

In this example, resource unit #25not used for PUSCH transmission and zeros are filled intoresource elements not carrying reference symbols (grey colour).

Page 129: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 129/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 55/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

R296

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S132

S133

S133

S134

S134

S135

S135

S136

S136

S137

S137

S138

S138

S139

S139

S140

S140

S141

S141

S142

S142

S143

S143

S144

S144

S145

S145

S146

S146

S147

S147

S148

S148

S149

S149

S270

S270

S271

S271

S272

S272

S273

S273

S274

S274

S275

S275

   i  n   d  e  x   k

  : „   F  r  e  q  u  e  n  c  y   “   (   6   0

   0  s  u   b -  c  a  r  r   i  e  r  s   )

  s  u   b -  c  a  r  r   i  e  r  n  u  m   b  e  r   (  s   t  a  r   t  c  o  u  n   t   i  n  g   f  r  o  m

  z  e  r  o

1 sub f rame =1 ms

1 slot =0.5 ms (even) 1 slot =0.5 ms (odd)

UE #1 demodulation reference symbols

dummies: unused demodulation RS symbols

UE #1 data symbols

placeholders for CQI on PUCCH

UE #0 data symbols

index l : „Time“ (2 x 7 OFDM symbols)

ak,l 431 4 30 160 52 5 2 6

   2   5

   2   4

   2   7

   2   6

   2   9

   2   8

   3   1

   3   0

   3   3

   3   2

   3   5

   3   4

   2   8   9

   2   8   8

   2   9   1

   2   9   0

   2   9   3

   2   9   2

   2   9   5

   2   9   4

   2   9   7

   2   9   6

   2   9   9

   2   9   8

   3   0   1

   3   0   0

   3   0   3

   3   0   2

   3   0   5

   3   0   4

   3   0   7

   3   0   6

   3   0   9

   3   0   8

   3   1   1

   3   1   0

   3   1   3

   3   1   2

   3   1   5

   3   1   4

   3   1   7

   3   1   6

   3   1   9

   3   1   8

   3   2   1

   3   2   0

   3   2   3

   3   2   2

   5   6   4

   5   9   9  

   5   9   8  

   R  e  s  o  u  r  c  e   U  n   i   t   2

   R  e  s  o  u  r  c  e   U  n   i   t   2   4

   R  e  s  o  u  r  c  e   U  n   i   t   2   5

   R  e  s  o  u  r  c  e   U

  n   i   t   2   6

   R  e  s  o  u  r  c  e   U  n   i   t   4   7

236

237

238

239

240

241

242

243

244

245

246

247

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

521

532

533

534

535

776

777

778

779

780

781

782

783

784

785

786

787

d910

d1054

 

R323

R321

R320

R319

R318

 

R315

R314

R313

R312

d910

R575

R574

R573

R572

R571

R570

R569

R568

R567

R566

R565

R564

R35

R34

R33

R32

R31

R30

R29

R28

R27

R26

R25

R24

R298

R297

R295

R294

R293

R292

R291

R290

R289

UE #0 demodulation reference symbols

   1

   2   2

   2   3

235

234

212   0

213

   R  e  s  o  u  r  c  e   U  n   i   t  s   0 -   1

   R  e  s  o  u  r  c  e   U  n   i   t  s   4   8 -   4

   9811

810

788

789

   5   7   5   5   7   6

   5   7   7

R35

R34

R33

R32

R31

R30

R29

R28

R27

R26

R25

R24

R323

R322

R321

R320

R319

R318

R317

R315

R314

R313

R312

R575

R574

R573

R572

R571

R570

R569

R568

R567

R566

R565

R564

d910

d910

d1054

placeholders for ACK/NACK on PUCCH

demodulation RS symbols for CQI on PUCCH

sounding channel element #0

demodulation RS symbols for ACK/NACK on PUCCH

dummy symbols =zeros (unused RUs)

sounding channel element #1

   5   6   5

S132

R288

R299

R316

R317

R322

R298

R297

R296

R295

R294

R293

R292

R291

R290

R289

R288

R299

R316

   5   7   4

   5   7   3

   5   7   0   5   7   1

   5   7   2

   5   6   9

   5   6   8

   5   6   7

   5   6   6

Page 130: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 130/131

 

LTE TDD Demo Uplink Specification S0

ED  01  Release

MAD28.07.2008

3BK 11251 0313 DSZZA 56/131

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

 

Page 131: LTE TDd Radio Interface

7/30/2019 LTE TDd Radio Interface

http://slidepdf.com/reader/full/lte-tdd-radio-interface 131/131

 

  A  l  l  r  i  g  h  t  s  r  e  s  e  r  v  e  d .  P  a  s  s  i  n  g  o  n  a  n  d  c  o  p

  y  i  n  g  o  f  t  h  i  s

   d  o  c  u  m  e  n   t ,  u  s  e  a  n   d  c  o  m  m  u  n   i  c  a   t   i  o  n  o   f

   i  s   t  c  o  n   t  e  n   t  s

  n  o

   t  p  e  r  m   i   t   t  e   d  w   i   t   h  o  u   t  w  r   i   t   t  e  n  a  u   t   h  o  r   i  z  a   t   i  o  n   f  r  o  m    A

   l  c  a   t  e   l .

END OF DOCUMENT