l.r. baylor, t.c. jernigan, n. commaux , p.parks, m. fenstermacher, t. osborne,

21
Jul-2007 - LRB L.R. Baylor, T.C. Jernigan, N. Commaux , P.Parks, M. Fenstermacher, T. Osborne, S. K. Combs, C. R. Foust, M. Hansink, B. Williams 14 th ITPA Meeting Pedestal and Edge Physics General Atomics 1-May-2008 Initial Results of Pellet Dropper Initial Results of Pellet Dropper Experiments on DIII-D Experiments on DIII-D

Upload: ethel

Post on 13-Jan-2016

28 views

Category:

Documents


1 download

DESCRIPTION

Initial Results of Pellet Dropper Experiments on DIII-D. L.R. Baylor, T.C. Jernigan, N. Commaux , P.Parks, M. Fenstermacher, T. Osborne, S. K. Combs, C. R. Foust, M. Hansink, B. Williams 14 th ITPA Meeting Pedestal and Edge Physics General Atomics 1-May-2008. ITER ELM Challenge. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB

L.R. Baylor, T.C. Jernigan, N. Commaux,

P.Parks, M. Fenstermacher, T. Osborne,

S. K. Combs, C. R. Foust, M. Hansink, B. Williams

14th ITPA Meeting Pedestal and Edge Physics

General Atomics

1-May-2008

Initial Results of Pellet Dropper Initial Results of Pellet Dropper Experiments on DIII-D Experiments on DIII-D

Page 2: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 2

ITER ELM Challenge

Filaments evolving during ELM on MAST. Kirk, et al. PRL 2004.

• ELMs result from edge pressure clamped at ballooning limit – transient breakdowns of edge barrier – filaments are ejected from the plasma

• Significant fraction of the total plasma stored energy ~5% can be expelled by an ELM (>10 MJ on ITER)

• Significant erosion of plasma facing materials will occur for ELM bursts greater than 1 MJ.

• A method to eliminate or induce rapid small ELMs is badly needed for ITER.

• Compatibility of method with pellet fueling needs to be demonstrated.

Page 3: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 3

2.21 2.22 2.23 2.24 2.252210 22200.0

0.4

0.81.2

Divertor

Density

2.42.83.23.6

neL(10

14

m-2)

( .a u.)

3.11 3.12 3.13 3.14

Tim e (s)2.69 2.70 2.71 2.72 2.73

HFS V +1 LFS

2.21 2.22 2.23 2.24 2.252210 22200.0

0.4

0.81.2

Divertor

Density

2.42.83.23.6

neL(10

14

m-2)

( .a u.)

3.11 3.12 3.13 3.14

Tim e (s)2.69 2.70 2.71 2.72 2.73

HFS V +1 LFS

Fueling Pellets Injected from all Locations on DIII-D Trigger ELMs

• Pellets injected from the 5 different injection locations on DIII-D are observed to trigger immediate ELMs. LFS injected pellets trigger larger longer lasting Dα perturbations (larger ELMs).

• Natural ELM frequency on DIII-D is higher than available pellet fueling frequency so no chance to test ELM pacing with fueling pellets.

DIII-D 99474 PoP 2000

Page 4: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 4

• Pellet cloud releases from pellet and expands along a flux tube.

• Density from the cloud expands along flux tube at the sound speed cs.

• Temperature ‘cold wave’ travels along the flux tube at the thermal speed. Heat is absorbed in the cloud resulting in a temperature deficit far from the cloud.

• Pressure decays and expands along the flux tube with a lower pressure far from the cloud.

• Strong local cross field pressure gradients result along the flux tube that form on ms time scales.

What Causes an ELM Trigger from a Pellet?

L

necs

Teqe

L

Pe

L

Page 5: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 5

Te ped (keV)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

% Ped

0.0

0.2

0.4

0.6

0.8

1.0

Non-RMP HFSRMP HFS Non-RMP LFS

ITER Penetration Requirement

AUG Trigger Range

Non-RMP HFS RMP HFS Non-RMP LFS RMP LFS

Depth of Pellet when ELM is Triggered in DIII-D is Much Less Than Top of the Pedestal

• Data from DIII-D indicates that the pellet triggers an ELM before the pellet reaches half way up the pedestal. (% Ped is % of Te pedestal height)

» Note: Deeper penetration is needed with RMP applied.

0

5

10

15

20

25

30

0.6 0.7 0.8 0.9 1 1.1

Pe

(kP

a)

Electron Pressure Pedestal

DIII-D 129195 2.772sPre-pellet and ELM

Pellet Locationwhen ELMTriggered

% P

ed

Page 6: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 6

Pellet ELM Pacing Led to 2X Higher ELM Frequency on AUG

• Initial pellet ELM pacing shown for 1 second on AUG. (Lang et al NF 2004). Small fueling pellets from HFS doubled the natural ELM frequency.

• Further optimization needed to reduce strong fueling induced confinement decay and greatly increase the natural ELM frequency.

Page 7: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 7

Pellet Dropper for ELM Pacing on DIII-D

• The dropper was developed from existing equipment to make a simple ELM trigger tool.

• It uses a batch extruder with pellet cutter to supply sub 1mm D2 pellets at up to 50 Hz for triggering ELMs on DIII-D

• The extruder is cooled with a G-M cryocooler and LN2 for simplified installation and operation

• Gravity acceleration limits pellet speeds to ~ 10 m/s

• Low speed and small pellet size minimize fueling, but should make strong enough density perturbations to trigger ELMs

DIII-D Platform

PelletDropper

V+3at 0o

MicrowaveCavity

Page 8: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 8

Pellet Dropper Operation

Pictures of extruded solid deuterium (14K)and pellet chopped fromextrusion

Data from microwavecavity showingmass of each pellet.

Page 9: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 9

0.00E+00

1.00E+19

2.00E+19

3.00E+19

4.00E+19

5.00E+19

6.00E+19

7.00E+19

8.00E+19

0.7 0.8 0.9 1.0 1.05

n e

1.8mm 200 m/sActual

1.0mm 10 m/s

1.0mm 50 m/s

1.0

0.4

0.8

0.6

0.2

0.0

1.2

Te (k

ev)

DIII-D 120775

Pellet Dropper Now Operational on DIII-D

• NGS ablation model shows pellets should nearly reach Te pedestal in DIII-D H-mode. Good simulation of expected ITER 3mm pellet penetration depth.

• Initial operation will be to determine penetration depth and ELM triggering.

Page 10: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 10

Target Plasma for the Pellet Dropper is the ITER Scenario

ELMs of this size on ITERcould be 15 MJ per ELM

The dropper is designed to drop 50 Hz pellets to trigger50 Hz ELMs that have smaller energy loss

Can the dropper be used toObtain 5X increase in ELMFrequency?

Density

PNBI

Wtot

Divertor Dα

ORNL Filterscope Data

Time (s)2.0 3.0 4.01.00.0

E. Doyle 2008

DIII-D ITER Like Scenario

Page 11: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Apr2008 LRB

Pellet Dropper Initial Results – April 2008

• The 1-mm 10/ms deuterium pellets dropped during L-mode Ohmic plasmas travel in a vertical path and are observed in the divertor Dα signals and edge interferometer.

• In H-mode NBI plasmas the dropper pellets are observed to “skip” along the SOL and are swept toroidally. No interferometer signals for these pellets – no penetration inside the separatrix.

• The largest pellets appear to coincide with ELMs and there may be a cause and effect, which is under investigation.

• Drag and ion ablation in the SOL are candidates for the strong toroidal deflection and poor penetration.

• Pellets with more momentum normal to the plasma are needed with this vertical trajectory.

Tangential view from fast framing camera – images and movies by J. Yu

Ohmic L-mode

NBI H-mode

Page 12: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Apr2008 LRB

ELM frequency evolution due to pellets ? – April 2008

2 2.5 3 3.5 4 4.5 time (s)

Density (1019 m-3)

Divertor Dα

PNBI (MW)

Dropper pellets

ECRH

• Dropper pellets injected during ECRH pedestal control experiments :

• The ELM frequency is higher (~40 Hz) than without the pellets (~10 Hz)

Shot 132650

Page 13: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Apr2008 LRB

DIII-D Platform

PelletDropper

V+3at 0o

MicrowaveCavity

Pellet Dropper Future Plans for DIII-D

• The low pellet speed at a glancing angle to the plasma edge limits the effectiveness in triggering ELMs. (No obvious proofs of increase in the ELM frequency)

• The plan is to modify the entry tube to deflect the pellets so they hit more normal to the plasma surface.

– Less SOL to travel through

– Higher momentum normal to the plasma

• Future modifications as necessary to obtain reliable ELM trigger – larger pellets and or faster.

Page 14: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 14

• ITER will have 2 pellet injectors that each provide D2, DT, T2 pellets (5mm @ ~10Hz, 3mm @ ~30Hz).

• Inside wall pellet injection for efficient fueling beyond the pedestal utilizing a curved guide tube. Maximum pellet survival speed is 300 m/s.

• Pellet injector must operate for up to 1 hour continuously and produce ~ 1.5 cm3/s (0.3 g/s) of ice.

• A LFS tube is being added for pellet ELM pacing. Pellet speed maximum probably ~500 m/s.

ITER Pellet Fueling and ELM Pacing Challenges

Pellet Path in ITER

Page 15: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 15

1/ E fpel

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Pe

llet

Th

rou

gh

pu

t/P

lasm

a V

olu

me

(m

m3 /

s-m

3 )

0

2

4

6

8

10

DIII-DJETAUGJT-60U ITER

Pellet Normalized Throughput in Present Experiments is Heading TowardProjected ITER Pellet ELM Pacing Conditions

• The normalized pellet throughput from current pacing and fueling experiments is far from the projected operating point.

• The planned pellet ELM pacing experiments on JET, DIII-D, and AUG are all planning to be in a regime that is more ITER relevant in terms of normalized throughput and time between pellets scaled to energy confinement time.

ITER range covers:3mm@20 Hz – 4mm@40Hz

(Time between pellets / E)

Page 16: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 16

RMP Using Internal Coils Developed by Evans et al. is Successful at Eliminating ELMs with Reduced Density

• RMP technique developed by Evans et al. is successful in ITER like collisionality and shape at eliminating ELMs.

DIII-D RMP and non-RMP Comparison

Evans, NF2008

Page 17: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 17

• Pellet Fueling (and gas fueling) into RMP ELM Suppressed plasmas can lead to a return to ELMs when high density is reached. (DIII-D result from Feb. 2008)

• In lower density cases with fewer pellets only a few ELMs are triggered by the pellets.

• The alternative of mitigation with high frequency ELMs from Pellet Pacing is needed

– Pellet dropper on DIII-D

– HFPI on JET

Pellet Fueling During RMP Leads to ELMs when Density Increased

2.52.0

9.71*10 13

1.61*1014

2.24*1014

2.88*1014

3.51*1014

denv1f 131467

-5.0*103

0

5.0*103

1.0*104

1.5*104

pinj 131467

-6750

-4250

-1750

750

3250

iu30 131467

-0.63

0.56

1.75

2.95

4.14

pmt03da 131467

2000 2500 3000 3500 4000 4500 5000

-200

-100

0

100

200

mpi4b322d 131467

Wed Jan 30 16:19:47 2008

Icoil @ Max current 6.6 kA

Divertor Dα

Fast Bdot

PNBI 10 MW

Line Integral Density

3.0 3.5 4.0 4.5 5.0

Time (s)ELMs suppressed

DIII-D 131467

2.52.0

9.71*10 13

1.61*1014

2.24*10 14

2.88*10 14

3.51*10 14

denv1f 131467

-5.0*10 3

0

5.0*103

1.0*104

1.5*10 4

pinj 131467

-6750

-4250

-1750

750

3250

iu30 131467

-0.63

0.56

1.75

2.95

4.14

pmt03da 131467

2000 2500 3000 3500 4000 4500 5000

-200

-100

0

100

200

mpi4b322d 131467

Wed J an 30 16:19:47 2008

9.71*10 13

1.61*1014

2.24*10 14

2.88*10 14

3.51*10 14

denv1f 131467

-5.0*10 3

0

5.0*103

1.0*104

1.5*10 4

9.71*10 13

1.61*1014

2.24*10 14

2.88*10 14

3.51*10 14

denv1f 131467

-5.0*10 3

0

5.0*103

1.0*104

1.5*10 4

pinj 131467

-6750

-4250

-1750

750

3250

iu30 131467

-0.63

pinj 131467

-6750

-4250

-1750

750

3250

iu30 131467

-0.63

0.56

1.75

2.95

4.14

pmt03da 131467

2000 2500 3000 3500 4000 4500 5000

-200

-100

0

100

200

mpi4b322d 131467

Wed J an 30 16:19:47 2008

Icoil @ Max current 6.6 kA

Divertor Dα

Fast Bdot

PNBI 10 MW

Line Integral Density

3.0 3.5 4.0 4.5 5.0

Time (s)ELMs suppressed

DIII-D 131467HFSPellets

Page 18: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 18

ITER will require ELM mitigation in order to complete its mission

RMP for ELM suppression needs further optimization to be compatible with high density operation and pellet fueling

ELM triggering by small LFS pellets a promising but still unproven technique for ITER

» Further research to optimize and understand physics of pellet induced ELMs and ELM energy loss is required

Further pellet ELM pacing research is needed and is ongoing on DIII-D, JET, and AUG

The pellet injection system for ITER fueling and ELM pacing presents challenges for the technology in throughput and reliability, gas gun concept looks promising

» Development is underway and expected to take ~ 4 yrs

» Extruder and accelerator prototypes will be produced which can be available to test on existing tokamak devices

Summary

Page 19: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 19

Plans for Future R&D

• ELM triggering with vertical pellets on DIII-D – test pellet size and speed necessary to trigger ELMs.

• Investigate ELM size and confinement properties with pellet pacing > 5x natural ELM frequency

• Participate in JET pellet pacing experiments

» JET HFPI utilizes ORNL pellet mass diagnostics

» LFS pellets enter through the RF antenna

• Scaling of results to ITER and development of a 3D model for pellet ELM triggering

• Future possible upgrade of D3DPI to use high frequency pellets with similar guide tube to ITER

Page 20: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 20

0.00

0.02

0.04

0.06

0.08

0.10

1.5

1.6

1.7

1.8

1.9

-40

-20

0

20

40

60

80

2772.2 2772.4 2772.6 2772.8 2773.0-50

0

50

100

150

200

PelletEntersPlasma

ELMTriggered

ELMEnd

neL(1014m-2)

dBr/dt (a.u.)Inner wall

dBr/dt (a.u.)Outer shelf

Divertor Dα

HFS Pellet Induced ELM Details from DIII-D

TS profile time

Pellet Dα

• The ELM is triggered 0.05 ms after the pellet enters the plasma or 147 m/s* 0.05 ms = 7.4 mm penetration depth.

DIII-D 1291951.8mm pellet injectedfrom innerwall is ~10%density perturbation

No MHD precursorto pellet induced ELM

Pellet Dαrepresentsablation of pellet in the plasma with assumed constant radial speed.

Time (ms)

Page 21: L.R. Baylor, T.C. Jernigan,  N. Commaux ,  P.Parks, M. Fenstermacher, T. Osborne,

Jul-2007 - LRB 21

0.7 0.8 0.9 1.0

0

2

4

6

8

10

Te(keV

), Δne(10

19

m-3)

Te

5mm300 m/s

3mm300 m/s

2mm300 m/s

ρ0.7 0.8 0.9 1.0

0

2

4

6

8

10

Te(keV

), Δne(10

19

m-3)

Te

5mm300 m/s

3mm300 m/s

2mm300 m/s

D (mm)

1 2 3 4 5

V (m/s

)

0

200

400

600

800

1000

1200

1400

/n n

0.0

0.2

0.4

0.6

0.8

1.0

D (mm)

1 2 3 4 5

(V/m s

)

0

200

400

600

800

1000

1200

1400

/n n

0.0

0.2

0.4

0.6

0.8

1.0

ITER Pellet ELM Triggering May Provide Tool for ELM Amelioration

• NGS ablation model in PELLET code shows 300 m/s 3mm pellets should nearly reach T pedestal in ITER H-mode (4 keV pedestal Te).

• Figure on right shows pellet size necessary to reach half of pedestal height as a function of pellet size. Pellet perturbation size is shown in blue curve.