longitudinal space charge instability

38
Theory Institute, ANL , 24 September 2003 Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.Wu C.Limborg,Z.Huang,T.Shaftan,J.Wu Longitudinal Space Charge Instability Longitudinal Space Charge Instability [email protected] [email protected] Longitudinal Space Charge Instability C.Limborg-Déprey, Z.Huang, J.Wu, SLAC T.Shaftan, BNL September 24, 2003 Longitudinal Space Charge Instability C.Limborg-Déprey, Z.Huang, J.Wu, SLAC T.Shaftan, BNL September 24, 2003 LSC observed experimentally Theory Application to LCLS Comparison theory with Simulations LSC observed experimentally LSC observed experimentally Theory Theory Application to LCLS Application to LCLS Comparison theory with Simulations Comparison theory with Simulations

Upload: others

Post on 13-Jul-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Longitudinal Space Charge Instability C.Limborg-Déprey, Z.Huang, J.Wu, SLAC

T.Shaftan, BNLSeptember 24, 2003

Longitudinal Space Charge Instability C.Limborg-Déprey, Z.Huang, J.Wu, SLAC

T.Shaftan, BNLSeptember 24, 2003

LSC observed experimentally TheoryApplication to LCLSComparison theory with Simulations

LSC observed experimentally LSC observed experimentally TheoryTheoryApplication to LCLSApplication to LCLSComparison theory with SimulationsComparison theory with Simulations

Page 2: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

DUV FELDUV FEL

Reprinted from NIM A 475, M. Hüning, Ph. Piot and H. Schlarb, “Observation of longitudinal phase space fragmentation at the TESLA test facility free-electron laser,” 348(2001), with permission from Elsevier.

TTFTTF

Page 3: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

ExperimentalTTF observations

M. Huning et al., NIM A 475 (2001) p. 348DUVFEL observations

W.S. Graves, et al., PAC 2001, p. 2860

T.Shaftan et al. experiments at the DUVFEL T.Shaftan et al., PAC03, “Micro-bunching and beam break-up in the DUV

FEL accelerator”, also in FEL03with modeling of mechanism discussed in March at SLACZ.Huang, T.Shaftan, SLAC-PUB-97, May 2003

TheorySaldin , Schneidmiller, Yurkov, “Longitudinal Space Charge Driven MicroBunching Instability in TTF2 Linac” TESLA-FEL-2003-02,May 2003

ExperimentalExperimentalTTF observationsTTF observations

M. M. HuningHuning et al., NIM A 475 (2001) p. 348et al., NIM A 475 (2001) p. 348DUVFEL observationsDUVFEL observations

W.S. Graves, et al., PAC 2001, p. 2860W.S. Graves, et al., PAC 2001, p. 2860

T.ShaftanT.Shaftan et al. experiments at the DUVFEL et al. experiments at the DUVFEL T.ShaftanT.Shaftan et al., PAC03, “Microet al., PAC03, “Micro--bunching and beam breakbunching and beam break--up in the DUV up in the DUV

FEL accelerator”, also in FEL03FEL accelerator”, also in FEL03with modeling of mechanism discussed in March at SLACwith modeling of mechanism discussed in March at SLACZ.HuangZ.Huang, , T.ShaftanT.Shaftan, SLAC, SLAC--PUBPUB--97, May 200397, May 2003

TheoryTheorySaldinSaldin , , Schneidmiller, Yurkov, “Longitudinal Space Charge Driven MicroBunching Instability in TTF2 Linac” TESLA-FEL-2003-02,May 2003

MotivationsMotivationsMotivations

Page 4: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

PositiveRF slope

Accelerate bunch at RF zero-crossing of tank 4 Spectrometer

dipole

Zero RF slopeNegativeRF slope

Size of the Size of the chirped beam chirped beam image at the image at the monitor 14monitor 14 isisproportional proportional to theto thebunch length !bunch length !

The DUVFEL AcceleratorThe DUVFEL AcceleratorThe DUVFEL Accelerator

RF gun 4.5 MeV

Tank 1 Tank 2 Tank 3 Tank 435 MeV 75 MeV

SpectrometerSpectrometerdipoledipoleChicaneChicane

MonitorMonitor BeamDumpDrive

Laser

to FEL

Page 5: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

The DUVFEL AcceleratorThe DUVFEL AcceleratorThe DUVFEL Accelerator

Structure with a Large Number SpikesStructure with a Large Number Structure with a Large Number SpikesSpikes

Frequency spectrum (THz)

Time, ps

• “Zero-phasing” image of uncompressed bunch with a large number of sharp spikes

• Energy spectrum, derived from the image,horizontal axis is scaled in picoseconds

Time or Energy?

• Frequency spectrum of upper plot. Spectrumshows modulation with harmonics in THz range. Harmonics sharpness of the spikes.

0 1 2 3 4 5 6 7 8 90

50

100

0 3 6 9 12 15 180

1

2

3

4

5

2.6 5.2

Page 6: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Modulation dynamics with Compression (~300 pC)Modulation dynamics with Compression (~300 Modulation dynamics with Compression (~300 pCpC))

0 2 4 6 80

50

1001.42 ps

0 1 2 3 4 50

50

1001.24 ps

0

2000.43 ps

0 1 2 3 40

100

2000.93 ps

• Dynamics at “high” (>200 pC) charge differs from the dynamics at “low” charge

• Uncompressed bunch profile is smooth

• Experiment on modulation dynamics:Keep chicane constant and increase chirpingtank phase (0 -13 -19 -25 degrees)

Modulation shows up during compression Process

Compression: a decreases modulation period (C times); b) increases bunch peak current (C times)

-19°

-13°

-25°

Page 7: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

This is not CSR!This is not CSR!This is not CSR!

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

Tank 2 Phase (Degree)

Chic

ane

Curr

ent

(A)

0.1

0.1

0.1

0.10.3

0.3

0.3

0.30.6

0.6

0.6

11

1

11.2

1.2

1.2

1.21.5

1.5

1.5

1.5

1.7

1.7

1.7

1.71.7

Isolines of constant bunch length• CSR-related effect ? should be sensitive

to the bending radius in the chicane magnets

•Experiment: final bunch length maintained constant

whilechicane strength changed

Compression factor is 1-hR56 there is always a combination of h and R56 that will maintain a constant compression ratio

•Result of the experiment:in general the modulation is

insensitive to the chicane settings

Page 8: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Current Density Energy

•The self-consistent solution is the space charge oscillation

Plasma Oscillation in a Coasting BeamPlasma Oscillation in a Coasting BeamPlasma Oscillation in a Coasting Beam

Page 9: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

• For a round, parallel electron beams with a uniform transverse cross section of radius rb, the on-axis longitudinal space charge impedance is (cgs units)

• Free space approximation is good whenγ λ/(2π) << beam pipe radius

• Off-axis LSC is smaller and can increase the energy spread

• For a round, parallel electron beams with a uniform transverse cross section of radius rb, the on-axis longitudinal space charge impedance is (cgs units)

• Free space approximation is good whenγ λ/(2π) << beam pipe radius

• Off-axis LSC is smaller and can increase the energy spread

(pancake beam)

(pencil beam)

Longitudinal Space Charge ImpedanceLongitudinal Space Charge ImpedanceLongitudinal Space Charge Impedance

Page 10: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

• For arbitrary initial condition (density and/or energy modulation), this determines the final microbunching

• Bunching parameter b at modulation wavelength λ = 2π/k

Integral EquationIntegral EquationIntegral Equation

4434421 dampingLandau

...),exp(...))(()()()(),( kernel

));((),());(());((

56

00

δσετγ

τττ

ττττ

×→=

+= ∫kZ

IIsRsiksK

kbsKdsskbsskb

A

s

• Linear evolution of b(k;s) can be described by an integral equation (Heifets, Stupakov, Krinsky; Huang & Kim)

))cos(1( kzbII o +=

Page 11: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

• beam energy γr(s) increases in the linac. Generalize the momentum compaction R56’(τ! s) as the path length change at s due to a small change in γ (not δ) at τ:

• The integral equation for LSC microbunching in the linac is

• In a drift,

Space charge oscillation

• When γ! 1, R56’=0, b(k,s)=b0(k,s), beam is “frozen”

for γr À 1

Including accelerationIncluding accelerationIncluding acceleration

Page 12: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Space Charge Oscillation – 2 regimesSpace Charge Oscillation Space Charge Oscillation –– 2 regimes2 regimes

• Density and energy modulation in a drift at distance s

• At a very large γ, plasma phase advance (Ωs/c) ¿ 1, beam is “frozen,” energy modulation gets accumulated(Saldin/Schneidmiller/Yurkov, TESLA-FEL-2003-02)

LSC acts like a normal impedance at high energies

Page 13: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Saldin, Schneidmiller, Yurkov

ρi ρfΖ(k) ∆γ

R56

Klystron Amplitfication mechanismKlystron Klystron AmplitficationAmplitfication mechanismmechanism

Page 14: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

LCLS Set-UP•3 keV intrinsic energy spread is too small for the high-frequency LSC

• Gain is high enough to amplify the shot noise bunching 4eff 10~1~ −

λNb

Page 15: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Only CSR

Solution = Wiggler before BC2

CSR + LSC

• Peak gain increased by a factor of 3

• Solution = Adding Energy Spread on beam before BC1

“laser heater”

3 keV-> 30 keV before BC1

Page 16: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

• Current design has energy spread 1x10-4 for the FEL• Since FEL ρ ~ 5x10-4, small increase in energy spread is allowed, say 1.7x10-4

Laser heater increases energy spread 3 keV 50 keVWiggler increases energy spread to 5x10-5 at 4.5 GeV

Even More Landau Damping

Page 17: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Wiggler

Laser

∆ γ

∆ γ

Elegant (from M.Borland)

Real danger is in fact energy spread > ρ = 5.10-4

Page 18: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

All the simulations are based on theory just described

Let’s compare this theory with results from space charge simulation codes

All the simulations are based on theory just described All the simulations are based on theory just described

Let’s compare this theory with results from space Let’s compare this theory with results from space charge simulation codescharge simulation codes

Page 19: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

SimulationsSimulationsSimulations

Simulations description40k/200k particles Distribution generated using the Halton sequence of numbers Longitudinal distribution

2.65 m of driftWith 3 cases studied

6MeV, 1nC6 MeV , 2nC12 MeV, 1nC

Simulations descriptionSimulations description40k/200k particles 40k/200k particles Distribution generated using the Distribution generated using the HaltonHalton sequence of numbers sequence of numbers Longitudinal distributionLongitudinal distribution

2.65 m of drift2.65 m of driftWith 3 cases studied With 3 cases studied

6MeV, 1nC6MeV, 1nC6 MeV , 2nC6 MeV , 2nC12 MeV, 1nC12 MeV, 1nC

[ ] ( ) ( )[ ]44 4/)cos(1 σozzekzA −−+

+/- 5%

Page 20: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Page 21: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Page 22: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Oscillation of density characterized by

“ modulation amplitude”

current density ⇔ energy

But,

1- Residual energy modulation after half a period

2- Line density modulation amplitude strongly increased

Two parameters have also evolved along the beamline :

- uncorrelated energy spread

- transverse beam size

Half a plasma period, 12 MeV, 1nC, λ = 250 µm

Page 23: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

6 MeV, 2nC, λ = 100 µm

30 cm

65 cm

110 cm

Page 24: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Shift + broadening

190 cm

230 cm

265 cm

150 cm

Page 25: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Evolution with energy Evolution with energy Evolution with energy

6 MeV , +/- 5%

½ plasma period shorter for shorter wavelengths

line density modulation ↑ with shorter wavelengths

Energy modulation ↓ with shorter wavelengths

12 MeV , +/- 5%

Amplitude Energy modulation gets larger than for 6 MeV

Uncorrelated energy spread gets larger by 60%

( )2/1

3 ⎥⎥⎦

⎢⎢⎣

⎡=Ω osco

A

oplasma kZk

IIc

γ

Page 26: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Comparison with theoryComparison with theoryComparison with theory

• Transverse beam size evolution along beamline taken into account

(Radial variation of green’s function for 2D )

• Evolution of peak current NOT taken into account yet

• Absence of dip in 6MeV curve :

• “Coasting beam “ against “bunched beam” with edge effects

• Intrinsic energy spread

Page 27: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Evolution transverse profileEvolution transverse profileEvolution transverse profile

6 MeV , 1nC, +/- 5%

Page 28: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

• 1-D model: transverse uniform pancake beam with longitudinal modulation

where, rb is the radius of the pancake beam.• need to find realistic effective rb• radius dependence of impedance increases energy spread and so damping

• define

3D model – impedance with r dependency 3D model – impedance with r dependency

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

γγbb

bSC

krKkrkr

ikZ 12 14)(

),;(and),;( rskrskb γ∆

[ [ ] ⎥⎦

⎭⎬⎫

⎩⎨⎧ ++−Θ+−Θ= )()()()(2)()()(2)(),( 020

1002 RKIIIRRIKRikRZ ring

LSC ααα

ααααγ

α

γγσβ

γα krRkka r ≡≡≡ and 3 ,

Page 29: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

LSC in accelerating structuresLSC in accelerating structuresLSC in accelerating structures

drift 67 cm Linac 3m linac 3m drift 1m Initial beam

6MeV

No energy spread,

Current modulation M

Summary PARMELA simulations Summary Theory [Huang,Wu]

Courtesy of Z.Huang

Page 30: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

LSC in gunModulation introduced on the laser (as in real life)Difficulties to study the effect for the LCLS pulse

Study of λ = 50 µm , dz = 5 µm ∆z ~ 5 mm Nz x Nr ~ 1000 x 20200k particlesPer longitudinal bin ~ 200 particles , 1/√200 ~7%

⇒ For initial modulation of less than 7% modulation of current density at gun exit is in noise Case studied :

λ = 50 µm, 100 µm, 250 µm, 500 µm, 1000 µmFor +/-10% and +/- 20% initial modulation amplitude

Other cases under study λ < 50 µm but for a shorter pulse than the LCLS pulse

LSC in gunLSC in gunModulation introduced on the laser (as in real life)Modulation introduced on the laser (as in real life)Difficulties to study the effect for the LCLS pulseDifficulties to study the effect for the LCLS pulse

Study of Study of λ = 50 µm , dz = 5 µm ∆∆z z ~ 5 mm ~ 5 mm Nz x Nr ~ 1000 x 20200k particlesPer longitudinal bin ~ 200 particles , 1/√200 ~7%

⇒ For initial modulation of less than 7% modulation of current density at gun exit is in noise Case studied :

λ = 50 µm, 100 µm, 250 µm, 500 µm, 1000 µmFor +/-10% and +/- 20% initial modulation amplitude

Other cases under study λ < 50 µm but for a shorter pulse than the LCLS pulse

Page 31: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

+/-5% , λ = 50 µm

Page 32: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

+/-5% , λ = 100 µm

+/-5% , λ = 250 µm

Page 33: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

+/-5% , λ = 1000 µm

+/-5% , λ = 500 µm

Page 34: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

+/-10%

+/-20%

Page 35: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Noise Level = 4%

Page 36: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

LSC along the LCLSModulation introduced on the laser (as in real life)Difficulties to study the effect for the LCLS pulse

Study of λ = 50 µm , dz = 5 µm ∆z ~ 5 mm Nz x Nr ~ 1000 x 20200k particlesPer longitudinal bin ~ 200 particles , 1/√200 ~7%

⇒ For initial modulation of less than 7% , modulation in noise Case studied :

λ = 50 µm, 100 µm, 250 µm, 500 µm, 1000 µmFor +/-10% and +/- 20% initial modulation amplitude

Other cases under study λ < 100 µm but for a shorter pulse than the LCLS pulse

LSC along the LCLSLSC along the LCLSModulation introduced on the laser (as in real life)Modulation introduced on the laser (as in real life)Difficulties to study the effect for the LCLS pulseDifficulties to study the effect for the LCLS pulse

Study of Study of λ = 50 µm , dz = 5 µm ∆∆z z ~ 5 mm ~ 5 mm Nz x Nr ~ 1000 x 20200k particlesPer longitudinal bin ~ 200 particles , 1/√200 ~7%

⇒ For initial modulation of less than 7% , modulation in noise Case studied :

λ = 50 µm, 100 µm, 250 µm, 500 µm, 1000 µmFor +/-10% and +/- 20% initial modulation amplitude

Other cases under study λ < 100 µm but for a shorter pulse than the LCLS pulse

Page 37: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

At end LCLS injector beamline:

• Current density modulation strongly attenuated• residual energy oscillation has

amplitude between 2 keV and 4 keV for wavelengths [50 µm, 500 µm]

• Impedance defined by

At end LCLS injector beamline:At end LCLS injector beamline:

• Current density modulation strongly attenuated• residual energy oscillation has

amplitude between 2 keV and 4 keV for wavelengths [50 µm, 500 µm]

• Impedance defined by

( )i

A

o

o II

ZkZ ργ =∆

( ) ( )[ ]kzIzI io cos1 ρ+=

Page 38: Longitudinal Space Charge Instability

Theory Institute, ANL , 24 September 2003Theory Institute, ANL , 24 September 2003 C.Limborg,Z.Huang,T.Shaftan,J.WuC.Limborg,Z.Huang,T.Shaftan,J.WuLongitudinal Space Charge InstabilityLongitudinal Space Charge Instability [email protected]@slac.stanford.edu

Conclusion

• Good agreement Simulations / Theory for drift and Acceleration• Discrepancies are under investigation

• Intrinsic energy spread increase• Edge effects for bunched beam

• More comparisons simulations /theory in high energy regime• Difficulties to do simulations for small modulation amplitude

• Noise Problem • Shorter wavelengths, not enough particles

• More comparisons experiments / simulations• “Attenuation” in gun might make situation not as critical as first thought • But not enough attenuation : extrapolation from 10% case

• for wavelengths >100 µm : attenuation line density modulation by factor of 3 • for wavelengths <100 µm : attenuation line density modulation by factor of 4

• Beam Heater is under discussion for the LCLS beamline

ConclusionConclusion

• Good agreement Simulations / Theory for drift and Acceleration• Discrepancies are under investigation

• Intrinsic energy spread increase• Edge effects for bunched beam

• More comparisons simulations /theory in high energy regime• Difficulties to do simulations for small modulation amplitude

• Noise Problem • Shorter wavelengths, not enough particles

• More comparisons experiments / simulations• “Attenuation” in gun might make situation not as critical as first thought • But not enough attenuation : extrapolation from 10% case

• for wavelengths >100 µm : attenuation line density modulation by factor of 3 • for wavelengths <100 µm : attenuation line density modulation by factor of 4

• Beam Heater is under discussion for the LCLS beamline