logistical & interp rpt on spectral ip/resistivity …€¦ · andrew hwang (special project...

37
32D05NE2003 2.18124 MARRIOTT 010 2.18124 LOGISTICAL AND INTERPRETIVE REPORT ON SPECTRAL IP 7 RESISTIVITY SURVEY HOLLOWAY - MARRIOTT TOWNSHIPS AREA NORTHEASTERN ONTARIO FOR QUEENSTON MINING INC. JAN 21 1998 GEOSCIENCE ASSESSMENT; OFFICE ^mi JVXLtd.

Upload: others

Post on 22-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

32D05NE2003 2.18124 MARRIOTT 0102.18124

LOGISTICAL AND INTERPRETIVE

REPORTON

SPECTRAL IP 7 RESISTIVITY SURVEY

HOLLOWAY - MARRIOTT TOWNSHIPS AREA

NORTHEASTERN ONTARIO

FOR

QUEENSTON MINING INC.

JAN 21 1998

GEOSCIENCE ASSESSMENT; OFFICE ^mi

JVXLtd.

Page 2: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

LOGISTICAL AND INTERPRETIVE

REPORT

ON

SPECTRAL IP l RESISTIVITY SURVEY

HOLLOWAY - MARRIOTT TOWNSHIPS AREA

NORTHEASTERN ONTARIO

For: QUEENSTON MINING INC.111 Richmond St. W. Suite 1116 Toronto, Ontario M5H 2G4Tel.: (416) 364-0001 Fax: (416) 364-5098

Attention: Charles Page

By: JVX Ltd.60 Wilmot Street West, Unit #22Richmond Hill, OntarioL4B1M6Tel: (905)731-0972Fax: (905)731-9312

Contact: Slaine Webster

JVXRef: 9774 December 1997

Page 3: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX32D05NE2003 2.18124 MARRIOTT

TABLE OF CONTENTS

010C

l .0 Introduction

2.0 Survey Specification 8c Production Summary

3.0 Personnel

4.0 Instrumentation Se Pole-Dipole Array

5.0 Data Processing

6.0 Interpretation Methodology (Pole-Dipole)

7.0 Deep-IP Test Survey of L-400E

8.0 Discussions Se Recommendations

9.0 Summary

1

2

2

3

4

4

6

8

9

Page 4: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX

LIST OF FIGURES

Figure 1: Location MapFigure 2: Grid/Claim MapFigure 3: Diagram of JVX Deep-IP Array

LIST OF TABLES

Table 1: Specifications for the IP/Resistivity Survey........................................................ lTable 2: Summary for IP/Resistivity Survey (Pole-Dipole Array).................................... 2Table 3: Production Summary for Deep-IP/Resistivity Survey......................................... 2

LIST OF APPENDICES

Appendix A: Instrument Specification Sheets andPole-Dipole Array Geometry

Appendix B: Plates

Page 5: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX

LIST OF PLATES

Plate CS-1: Compilation Section; L400E, Scale 1:5000Plate 2: Resistivity (0=2) Contour Map, Scale l: 10,000Plate 3: Chargeability (n^2) Contour Map, Scale l: 10,000Plate 4: Chargeability-Depth Section L400E, Scale l: 5000Plate 5: Resistivity-Depth Section L400E, Scale l: 5000Plate 6: Spectral-M-Depth Section L400E, Scale l: 5000Plate 7: Log(TAU)-Depth Section L400E, Scale l: 5000Plate 8: Compilation Map, Scale l: 10,000

Peudosections

Plate PS-1: Chargeability, Resistivity, Spectral M-IP and Time ConstantPseudosection, L400E, Scale 1:5000

Plate PS-2: Chargeability, Resistivity, Spectral M-IP and Time ConstantPseudosection, L1000E, Scale 1:5000

Plate PS-3: Chargeability, Resistivity, Spectral M-IP and Time ConstantPseudosection, L1600E, Scale 1:5000

Plate PS-4: Chargeability, Resistivity, Spectral M-IP and Time ConstantPseudosection, L3200E, Scale 1:5000

Plate PS-5: Chargeability, Resistivity, Spectral M-IP and Time ConstantPseudosection, L4400E, Scale 1:5000

Page 6: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX_________________________1. INTRODUCTION

JVX Ltd. established a survey grid and conducted a time-domain spectral induced polarization (IP) and resistivity survey from October 25 through November 9 1997 on behalf of Queenston Mining Inc. The area of interest is located in the Holloway- Marriott Twps., in northeast Ontario (NTS No 32D/5). The survey location is shown in Figure l and the survey grid is shown in Figure 2.

The purpose of this survey was to locate areas of gold and/or base metal mineralization.

The grid covered the following Claim Numbers in the Holloway-Marriott Twps. area:

1221897 1206338 1221898 1214094 1217740 12218961222009 1211967 1211906 1211905 1211903

2. SURVEY SPECIFICATIONS and PRODUCTION SUMMARY

Transmitters

Receiver

Array Type

Transmit Cycle Time

Receive Cycle Time

Number of Potential Electrode Pairs

Electrode Spacing

Number of Lines Surveyed

Survey Coverage

Scintrex IPC7/2.5 kW, Androtex lOkW

ScintrexEPR-12

Pole-Dipole and Symmetrical Deep-IP Arrays

2 sec

2 sec

8 for Pole-Dipole Array, 4 for Deep-IP Array

50 metres

5 for Pole-Dipole Array, l for Deep-IP Array

10800 metres for Pole-Dipole Array,

9750 metres for Deep-IP Array

Table 1: Specifications for the IP/Resistivity Survey

Page 7: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

SURVEY AREA

LOCATION MAPQUEENSTON MINING INC.

HOLLOWAY PROJECTHolloway-Marriott Twps., Ontario

N.T.S. 32 D/5GROUND GEOPHYSICAL SURVEY

Scale l : 1,750,000Survey by JVX Ltd. October-November 1997 Figure l

Page 8: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

0

ci

GRID l CLAIM MAPQUEENSTON MINING INC.

HOLLOWAY PROJECTHolloway-Marriott Twps., Ontario

N.T.S. 32 D/5GROUND GEOPHYSICAL SURVEY

Survey by JVX Ltd. October-November 1997 Figure 2

Page 9: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX

The production summary is listed in the following tables:

Line

400E 1000E 1600E 3200E 4400ETotal

From Station1000S 1000S 1000S 1050S 1000S

To Station1250N 1050N 13 SON 1000N 1100N

Distance (m*2250 2050 2350 2050 210010800

No. of Readings

3940 46 33 41199

Table 2: Summary for IP/Resistivity Survey (Pole-Dipole Array)

;Liaae Number

400E

Total: 1 Line

Depth (m)280 480 600 800 960

" jillWoin Station

975S 975N 975S 975N 975S

Station975N 975S 975N 975S 975N

Distance (metres)

1950 1950 1950 1950 1950Dist.

Coverage: 9750m

No. of Readings

39 39 39 39 39

Total Readings:

195

Table 3: Production Summary for Deep-IP/Resistivity Survey

3.0 PERSONNEL

Graham Stone (Geophysical Party Chief)Mr. Stone operated the IP transmitter (Tx) and was responsible for overall data qualityand day-to-day operation and direction of the survey.

Claudia Wilck (Geophysical Technician) Ms. Wilck operated the PR-12 receiver (Rx).

Alex Jelerick (Geophysicist)Mr. Jelerick assisted in the Tx and Rx operations, and the cabling and potential/currentelectrodes emplacement.

Three field assistants were also engaged by JVX.

Dagmar Piska (Draftsperson') and Vaso Lymberis (Draftsperson):

2

Page 10: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX_______________________Ms. Piska and Ms. Lymberis carried out manual and ACAD drafting on the figures/plates and on the Compilation Map and assembled this report.

Aleksandra Savic (Geophysicist)Ms. Savic interpreted the data, prepared this report and is responsible for data storage.

Andrew Hwang (Special Project Geophvsicist)Mr. Hwang processed and interpreted the Deep-EP results.

Slaine Webster (President. JVX Ltd.):Mr. Webster provided overall supervision of the survey.

4.0 FIELD INSTRUMENTATION and POLE-DIPOLE ARRAY

JVX supplied the geophysical instruments specified in Appendix A.

4.1 IP Transmitter

The Scintrex IPC7/2.5 kW Time Domain Transmitter powered by an eight horsepower motor generator was used. The transmitter generates square wave current output with a period of 4, 8, or 16 seconds. A digital multimeter in series with the transmitter is used to measure the magnitude of the current output.

4.2 IP Receiver

The Scintrex IPR-12 Time Domain Receiver was used. This unit samples the voltage decay curve as measured by the potential electrodes at ten points in time. Readings are repeated until they converge to within a tolerance level, and the data are stored in solid- state memory. The resulting chargeability response is a measurement of the potential decay of conductive particles during the transmitter turn-off times. The apparent resistivity is a measure of the ratio of the input voltage and the transmitter current times a factor. This so- called K-factor is an array geometric factor.

4.3 The Pole-Dipole Array

The "pole-dipole" survey configuration was used. Typically, it is made up of 8 mobile electrodes, one current electrode Ci and seven potential electrodes (Pi to P? connected to the receiver by means of the "Snake"). The infinity current location C2 is maintained at a large distance from the grid. This distance is about 10 times the potential electrode spacing "a" tunes 6 (the maximum number of "n" used in the pole-dipole survey).

Page 11: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX

5.0 DATA PROCESSING

After being transferred to a field computer at the end of each survey day, the data were examined, corrected, and organized by the instrument operator. The results were plotted on a

* STAR NX-80 colour dot-matrix printer

These plots were used to monitor progress and data quality, and to make an initial interpretation. Thus survey parameters and design were altered when necessary.

5.1 IP AND RESISTIVITY

The data were sent by courier to the head office of JVX in Richmond Hill, Ontario. They were processed and results were plotted on the following printers as was necessary:

* HEWLETT PACKARD DESIGNJET 750C 36 inch colour plotter . HEWLETT PACKARD 5L Laser printer

The processing procedure is outlined below:

1) JVX software was used to perform spectral analysis of the time-domain data. This step was crucial to maximizing the information that can be obtained from IP data. This software analyses the shape of the IP decay curve, giving information about:(a) the grain size (indicated by the parameter tau),(b) the magnitude of the chargeable source (indicated by M-IP).

2) The GEOSOFT IP PROCESSING Package was used to generate colour and black and white pseudosections of chargeability and resistivity data.

3) Plan maps of both chargeability and resistivity data were produced using JVX in- house software and the GEOSOFT Mapping Package. Additional drafting on these maps was done manually or through AUTOCAD.

Steps l and 2 were performed both in the field and in the head office. Step 3 was performed at the head office.

6.0 INTERPRETATION METHODOLOGY

JVX uses its many years of experience in geophysical interpretation to extract the most accurate information from the data. The procedures involved are simplified for the sake of clarity.

Page 12: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX________________________6.1 IP AND RESISTIVITY

The IP and resistivity data are interpreted using the following procedure:

1) Chargeability anomalies are picked on the pseudosections and classified using the following scheme as a guide:

Very Strong (? 30 mV/V) and well defined

Strong (20 to 30 mV/V) and well defined

_ _ Moderate (10 to 20 mV/V) and well defined

- - - Weak (5 to 10 mV/V) and well defined

Very Weak (3 to 5 mV/V) and poorly defined

x x x x Extremely Weak ^3 mV/V) and very poorly defined

The peak of the anomaly provides a qualitative indication of the depth to the top of the anomalous source and the location of the centre of the body. Where possible, the location and dipole number of the peak are written beside the anomaly bar.

2) The spectral characteristics of the anomalies are examined. The peak value of M- IP is noted, and tau is classified according to the following scheme:

L Long ^ W. Q sec)

M Medium ( l .0 to 1 0.0 sec)

S

3) Resistivity anomalies are picked on the pseudosections and classified using the following scheme as a guide:

Page 13: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX

no symbol VH(w) Very High O 25 000 ohm m) highly silicified

no symbol H(n) High (^10 000 ohm m) probably silicified

no symbol WEL(ri) Weak High (^ l O 000 ohm m) relative increase compared to surrounding material

SL(n) Strong Low — strong decrease in resistivity

ML(w) Medium Low — medium decrease in resistivity

WL(ri) Weak Low — weak resistivity decrease relative to surrounding material, where n is the dipole number at which the anomaly peak is located.

4) The anomalies from steps l to 3 are marked on the Compilation Map.

5) Zones of high chargeability are interpreted based on resistivity and geometric information.

6) The anomalies are rated according to JVX's past experience.

7.0 DEEP-IP TEST SURVEY OF LINE 400E (A. Hwang}

Based on earlier Pole-Dipole data acquired over Line 400E where the resistivity pseudo- section shows good structural features, but the chargeability results are problematic (see the respective pseudo-section plot in Plate PS-1), a Deep-IP test survey was made over this line. For instance, within the Station range 450S - 100N, most of the chargeability values are relatively small and apparently negative. This is one indication of the limitation of the Pole-Dipole array configuration, in that it appears the method cannot be used to properly image the IP response coming from beneath the poorly chargeable overburden layer, the latter being possibly thick, with relatively low resistivity values, generally. Further, there is an interesting local resistivity high at -400S, apparently dipping south. The question is: can JVX's new (and proprietary) Deep-IP method circumvent this near-surface problem, and reveal the chargeable structures that may occur deeper, which may (or may not) correlate with the above resistivity anomaly? Conversely, if there are significant chargeable lithologic sources buried beneath the top layer(s), it is clearly important to detect their presence.

Page 14: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX________________________JVX's Deep-IP approach employs a unique Symmetrical-Array configuration (see Fig. 3), wherein the current electrodes, CI and C2, and the potential electrodes, PI and P2, are symmetrically positioned about the measurement or plotting point. The 'Apparent Depth* ', DO (Fig. 3), is determined by the distance between CI and C2, whereas the measurement potential dipole-length, PI to P2, is a field optimized distance, hi this case, P1-P2 = 50m has been found to be suitable for the test survey. The Deep-IP survey production summary is listed in Table 3 (see above).

The field data were processed with specially designed (proprietary) software by JVX, and the results are displayed in the form of IP-Sections [which are produced by gridding and colour-plotting of the results in the 2D space defined by the Station-displacement along the survey Line (the horizontal axis) vs. the Apparent Depth (the vertical axis)].

The principal IP quantity is the Chargeability flVbc); its values were gridded and colour- plotted, as shown in Plate 4. The following is noted: (i) in contrast to the earlier corresponding Pole-Dipole readings, the chargeability values are now observed to be relatively low, but are allpositive, ranging from 0.65 to 3.00 mV/V. (ii) The general trend is that the chargeability tends to increase with depth, (iii) Although there are apparently no large values in this section, the distributions of the various types of chargeable zones are readily discernable and more meaningful than the earlier chargeability results found in the pseudo-section (cf. Plate PS-1) along this line. This shows that JVX's Deep-IP method has succeeded in circumventing the near-surface problem in the present field condition.

Based on the chargeability (and resistivity, see later) sections, the Compilation Section, CS-1, has been constructed. The chargeabilities have been interpreted and grouped into 3 zones: CL for low values, CM for moderate and CH for relatively high chargeability values. Further, CM can be subdivided into CMA and CMB. The details are probably not critical in this case. Various resistivity zones are delineated and superimposed: RH for resistivity highs, RM for the moderate resistivities, and the unmarked regions (which occur mostly at depths ^OOm) for the lower resistivity values. There are some interesting sympathetic occurrences of resistivity highs with chargeability highs, although the former are apparently more localized.

The second set of survey results is the Resistivity Section, which shows generally lower resistivity values at the shallower depths, but increasing in value with depth. At least three resistivity anomalies are observed, apparently occurring at depths

*NB: The terms 'depth' and 'apparent depth' are used interchangeably in this report. The latter term is preferred and technically more appropriate, particularly for real earth situations where there is a thick and relatively conductive overburden. Another suitable term could be 'effective depth'.

Page 15: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

L/2 L/2

ICi

Do ~ 0.2 * L

: Field optimized

( D0 = "Apparent Depth" )

Do

x Plot Point

Ci

JVX's DEEP-IP SYMMETRICAL ARRAY(This "Deep-IP Method" is Registered

and Proprietary to JVX Ltd.)

Figure 3

Page 16: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J V)C _____ _________________

It should also be noted that these Deep-IP results (at depth-range of 280-960m) should not be directly compared with those of the Pole-Dipole results, since the latter pertains to information derived from the shallower depths (-75m or less). However, the deeper structures (for example, the local resistivity high at -350S, on Plate CS-1) may be intuitively followed from depth to 'connect up' with the shallow resistivity anomaly at -400S on Plate PS-1, with the understanding that the apparent 'dip' seen in the latter may be the result of the skewness inherent in the asymmetric Pole-Dipole array configuration.

The final two IP parameters are the Spectral-M value (Cole-Cole calculation of the 'true' or theoretical chargeability value, based on the entire chargeability decay curve), and the time-constant, TAU. Since the TAU values tend to vary over several orders of magnitude, it is necessary, for presentation purpose, (a) to convert its values to units of micro-seconds from msec., and (b) to take the logarithm of the new values. The resultant is defined as TAU*, called the "Time Constant Index", a more convenient Spectral-EP parameter to use in this case.

While there is overall similarity between the Spectral-M section and the Chargeability section, there are obvious differences, particularly in the finer details. For the local chargeability anomaly at depth of ~800m at -250N, the spatial distribution is clearly distinct from that of the Spectral-M anomaly at that same position. Had the Spectral-M values been larger here (say ^00 mV/V) this anomaly would be worth consideration, particularly if it were associated with a resistive high (silicification) and a low TAU* value ^5). The finer the grain-texture of the host rock, the shorter the TAU* value (a TAU* of 6 is equivalent to a decay time-constant, TAU, of l second).

hi summary, this Deep-IP test survey over L-400E demonstrates the viability of obtaining IP data beneath relatively thick overburden of low-chargeability/low-resistivity values which hitherto prevented the standard Pole-Dipole IP method from working properly. However, the Deep-IP Sections, while useful for the mapping of structures at depth, apparently revealed no important target of commercial significance along this selected test-line.

8.0 DISCUSSION OF RESULTS and RECOMMENDATIONS

The following is a brief discussion based on available geophysical and topographic/ cultural information.

Individual IP anomalies detected during the Pole-Dipole IP/Resistivity survey were classified and plotted on Plates PS-1 through PS-5, as well as on the Compilation Map, CM-1. Although the line separation is 600m to the west and 1200m to the east, with 1600m gap in between, an interpolated "regional" picture is obtained.

Page 17: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

J VX

Resistivity measurements show low values on the west portion of the grid, with some moderately high resistivity. A narrow high resistivity zone has been identified on the east side, on Lines 3200E and 4400E, coinciding with the north side of the IP zone, IP-1.

By standard classification, as outlined in Section 6 of the report, all chargeability anomalies, according to the strength, fall into the weak to very-weak category. However, one east-west IP zone, IP-1 (see Compilation Map, CM-1), could be traced from the west to the east extent of the grid, at approximately 200-400N. This IP zone consists of an extremely-weak anomaly on the L400E has also been detected with the Deep-IP test survey, and has been discussed in the previous section (Section 7.0).

The IP anomalies on the east side of IP-1 are somewhat stronger with moderate Spectral response and short tune constant. The diminishing strength of the anomalies to the west could be due to the plunging of the chargeable body to the west and the increasing thickness of the conductive overburden.

To test IP-1 zone on the west side, one possible drill target, T1H on L3200E, may be recommended.

Parallel to IP-1, zone IP-2 appears on the western part of the grid. This zone might be tested by a second drill target, T2M.

On the southwest portion of the grid, some extremely weak anomalies have also been identified, but are deemed of minimal significance at this stage.

Further, Plates 2 and 3 show the colour-contour maps of the Resistivity and Chargeability values at the n=2 level (smoothed by a 2D-filtering process). The apparent area of interest in this instance, is in the northeastern region of the grid, where both the chargeability as well as the resistivity values are relatively large.

Finally, additional detailed IP/Resistivity survey is highly recommended, especially on the east side, between L3200E and L4400E. In particular, at least 4 Deey-IP lines: L-3200E, L-3600E. L-4000E and L-4400E (in the Station range: l OOPS to 2500N) are strongly recommended. This should provide the critical information needed to better define and delineate the key target area, T1H, as well as the principal chargeable zone, IP-1, preferrably prior to the commencement of the drilling program by the Client.

9.0 SUMMARY

JVX Ltd. has conducted a time-domain spectral induced polarization (TP) and resistivity survey on behalf of Queenston Mining Inc., Holloway-Marriott Townships area, NTS 32 D/5. The IP/resistivity pole-dipole survey was completed over five lines, totaling 10800 m. Additionally, the Deep-IP test survey was carried over l line (Line 400E),

Page 18: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

JVX _______________________

totaling 9750 m line-coverage. The Deep-IP test proved that the problems posed by the presence of a poorly chargeable, conductive overburden can be circumvented, at least in this geologic region of interest.

The geophysical data shows that the area warrants further detailed IP work. To better evaluate the exploration targets identified in this report, a detailed geological sampling program is also recommended, prior to any drilling.

If there are questions with regard to the survey or its interpretation, please contact the undersigned.

Respectfully submitted, JVX LIMITED

\A. Aleandra Savic, M.Sc.

(Geophysicist)

.D. ^Projects Geophysicist)

r.Blaine Webster, B.Sc. (President, JVX Ltd.)

Cc7CW79774REP.doc Dec. 1997

10

Page 19: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

APPENDIX A

Page 20: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

l PR-12 Time Domain Induced Polarization/Resistivity Receiver

Brief Description

The IPR-12 Time Domain IP/Resistivity Receiver is principally used in exploration for precious and base metal mineral deposits. In addition, it is used in geoelec- trical surveying for groundwater or geothermal resources, often to great depths. For these latter targets, the induced polarization measurements may be as useful as the high accuracy resistivi ty results since it often happens that geo logical materials have IP contrasts when resistivity differences are absent.

Due to its integrated, lightweight, micropro cessor based design and its large, 16 line display screen, the IPR-12 is a remarkably powerful, yet easy to use instrument. A wide variety of alphanumeric and graphical information can be viewed by the operator during and after the taking of readings. Signals from up to eight potential dipoles can be measured simultaneously and recorded in solid-state memory along with automatically calculated parameters. Later, data can be output to a printer or a PC (direct or via modern) for processing into profiles and maps.

The IPR-12 is compatible with Scintrex l PC and TSQ Transmitters, or others which output square waves with equal on and off periods and polarity changes each half cycle. The IPR-12 measures the pri mary voltage (Vp), self potential (SP) and time domain induced polarization (Mi) characteristics of the received waveform. Resistivity, statistical and Cole-Cole parameters are calculated and recorded in memory with the measured data and time.

Scintrex has been active in induced polar ization research, development, manufac turing, consulting and surveying for over thirty years. We offer a full range of instru mentation, accessories and training.

The IPR-12 Receiver measures spectral IP signals from eight dipoles simultaneously then records measured and calculated parameters in memory.

Benefits

Speed Up Surveys

The IPR-12 saves you time and money in carrying out field surveys. Its capacity to measure up to eight dipoles simultaneous ly is far more efficient than older receivers measuring a single dipole. This advantage is particularly valuable in drillhole logging where electrode movement time is mini mal.

The built-in, solid-state memory records all information associated with a reading, dis pensing with the need for any hand written notes. PC compatibility means rapid elec tronic transfer of data from the receiver to a computer for rapid data processing.

Taking a reading is simple and fast. Only a few keystrokes are virtually needed

since the IPR-12 features automatic circuit resistance checks, SP buckout and gain setting.

High Quality Data

One of the most important features of the IPR-12 in permitting high quality data to be acquired, is the large display screen which allows the operator easy real time access to graphic and alphanumeric displays of instrument status and measured data. The IPR-12 ensures that the operator obtains accurate data from field work.

The number and relative widths of the IP decay curve windows have been carefully chosen to yield the transient information required for proper interpretation of spec tral IP data. Timings are selectable to per mit a very wide range of responses to be measured.

Page 21: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Specifications

Inputs1 to 8 dipoles are measured simultaneously.

Input Impedance16 Megohms

SP Bucking 10 volt range. Automatic linear correction operating on a cycle by cycle basis.

Input Voltage (Vp) Range50 (j volt to 14 volt

Chargeability (M) RangeO to SOOmillivolt

Tau Range1 millisecond to 1000 seconds

Reading Resolution of Vp, SP and MVp, 10 microvolt; SP, 1 millivolt; M, 0.01 millivolt/volt

Absolute Accuracy of Vp, SP and MBetter than 1 0X0

Common Mode RejectionAt input more than 100db

Vp Integration Time1007o to 8007o of the current on time.

IP Transient ProgramTotal measuring time keyboard selectable at 1, 2, 4, 8,16 or 32 seconds. Normally 14 windows except that the first four are not measured on the 1 second timing, the first three are not measured on the 2 sec ond timing and the first is not measured on the 4 second timing. (See diagram on page 2.) An additional transient slice of minimum 10 ms width, and 10ms steps, with delay of at least 40 ms is keyboard selectable.

Transmitter TimingEqual on and off times with polarity change each half cycle. On/off times of 1, 2, 4, 8, 16 or 32 seconds. Timing accuracy of 100 ppm or better is required.

External Circuit TestAll dipoles are measured individually in sequence, using a 10 Hz square wave. The range is O to 2 Mohm with O.lkohm resolution. Circuit resistances are dis played and recorded.

SynchronizationSelf synchronization on the signal received at a keyboard selectable dipole. Limited to avoid mistriggering.

FilteringRF filter, 10 Hz 6 pole low pass filter, sta tistical noise spike removal.

Internal Test Generator1200 mV of SP; 807 mV of Vp and 30.28 mV/V of M.

Analog MeterFor monitoring input signals; switchable to any dipole via keyboard.

Keyboard17 key keypad with direct one key access to the most frequently used functions.

Display16 lines by 42 characters, 128 x 256 dots, Backlit Liquid Crystal Display. Displays instrument status and data during and after reading. Alphanumeric and graphic dis plays.

Display HeaterAvailable for below -15'C operation.

Memory CapacityStores approximately 400 dipoles of infor mation when 8 dipoles are measured simultaneously.

Real Time ClockData is recorded with year, month, day, hour, minute and second.

Digital Data OutputFormatted serial data output for printer and PC etc. Data output in 7 or 8 bit ASCII, one start, one stop bit, no parity format. Baud rate is keyboard selectable for stan dard rates between 300 baud and 51.6 kBaud. Selectable carriage return delay to accommodate slow peripherals. Hand shaking is done by X-on/X-off.

Standard Rechargeable BatteriesEight rechargeable Ni-Cad D cells. Supplied with a charger, suitable for 110/230V, 50 to 60 Hz, 10W. More than 20 hours service at *25'C, more than 8 hours at -30'C.

Ancillary Rechargeable BatteriesAn additional eight rechargeable Ni-Cad D cells may be installed in the console along with the Standard Rechargeable Batteries. Used to power the Display Heater or as back up power. Supplied with a second charger. More than 6 hours service at-30'C.

Use of Non-Rechargeable BatteriesCan be powered by D size Alkaline batter ies, but rechargeable batteries are recom mended for longer life and lower cost over time.

Operating Temperature Range-30'C to *50'C

Storage Temperature Range-30'C to +5Q'C

DimensionsConsote:355 x 270 x 165 mm Charger: 120 x 95 x 55mm

WeightsConsole: 5.8 kgStandard or Ancillary RechargeableBatteries: 1.3 kgCharger: 1.1 kg

Transmitters availableIPC-9 200 W TSQ-2E 750 W TSQ-3 3 kW TSQ-4 10kW

In Canada

222 Snidercroft Rd. Concord, Ontario Canada, L4K1B5

In the U.S.A.

85 River Rock Drive Unit #202 Buffalo, N.Y. U.S.A. 14207

IPR-12/94

Tel.: (905)669-2280 Fax: (905) 669-6403 Telex: (905) 06-964570

Tel.: Fax:

(716)298-1219 (716)298-1317

Page 22: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Induced Polarization and Commutated DC Resistivity Transmitter System

DANGERHIGH VOLTAGE

Function

The IPC-7/2.5 kW is a medium power transmitter system designed for time do main induced polarization or commutated DC resistivity work. It is the standard power transmitting system used on most surveys under a wide variety of geophysical, topographical and climatic conditions.

The system consists of three modules: A Transmitter Console containing a transformer and electronics, a Motor Generator and a Dummy Load mounted in the Transmitter Console cover. The purpose of the Dummy Load is to accept the Motor Generator output during those parts of the cycle when current is not transmitted into the ground, in order to improve power out put and prolong engine life.

The favourable power-weight ratio and com pact design of this system make it portable and highly versatile for use with a wide variety of electrode arrays.

Features

Maximum motor generator output, 2.5 kW; maximum power output, 1.85 kW; maximum current output, 10 amperes; maximum voltage output, 1210 volts DC.

Removable circuit boards for ease in servic ing.

Automatic on-off and polarity cycling with selectable cycling rates so that the op timum pulse time (frequency) can be selected for each survey.

The overload protection circuit protects the instrument from damage in case of an overload or short in the current dipole cir cuit.

The open loop circuit protects workers by automatically cutting off the high voltage in case of a break in the current dipole circuit.

Both the primary and secondary of the transformer are switch selectable for power matching to the ground load. This ensures maximum power efficiency.

The built-in ohmmeter is used for checking the external circuit resistance to ensure that the current dipole circuit is grounded properly before the high voltage is turned on. This is a safety feature and also allows the operator to select the proper output voltage required to give an adequate current for a proper signal at the receiver.

The programmer is crystal controlled for the very high stability required for broadband (spectral) induced polarization measurements using the Scintrex IPR-11 Broadband Time Domain Receiver.

Page 23: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Technical Description of IPC-7/2.5 kW Transmitter System

Transmitter Console

Complete 2.5kW induced polarization system including motor-generator, reels with wire, tool kit, porous pots, simulator circuit, copper sulphate. IPR-8 receiver, dummy load, transmitter, electrodes and clips.

/PC-7 /2.5kW transmitter console with lid and dummy load.

0-T T

T T T 'Time Domain Waveform

Maximum Output Power

Output Current

Output Voltage

Automatic Cycle Timing

Automatic Polarity Change

Pulse Durations

1.85 kW maximum, defined as VI when cur rent is on, into a resistive load

10 amperes maximum

Switch selectable up to 1210 volts DC

T:T:T:T; on:off:on:off

Each 2T

Standard: T = 2,4 or 8 seconds, switchselectableOptional: T = 1,2,4 or 8 seconds, switchselectableOptional: T = 8,16,32 or 64 seconds, switchselectable

Voltage Meter

Current Meter

Period Time Stability

Operating Temperature Range

Overload Protection

Open Loop Protection

Undervoltage Protection

Dimensions

Weight

Shipping Weight

1500 volts full scale logarithmic

Standard: 10.0 A full scale logarithmic Optional: 0.3, 1.0, 3.0 or 10.0 A full scale linear, switch selectable

Crystal controlled to better than .01 "/o

-30"Cto + S5 C

Automatic shut-off at output current above 10.0 A

Automatic shut-off at current below 100 mA

Automatic shut-off at output voltage less than 95 V

280 mm x 460 mm x 310 mm

30kg

41 kg includes reusable wooden crate

Motor Generator

Maximum Output Power

Output Voltage

Output Frequency

Motor

Weight

Shipping Weight

2.5 kVA, single phase

110V AC

400 Hz

4 stroke, 8 HP Briggs S Stratton

59kg

90 kg includes reusable wooden crate

222 Snidercroft Road Concord Ontario Canada L4K 1B5

Telephone: (416) 669-2280 Cable: Geoscint Toronto Telex: 06-964570

Geophysical and Geochemical Instrumentation and Services

Page 24: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

^ANDROTEX STX-10

INDUCED POLARIZATION TRANSMITTER

Induced Polarization Transmitter Model STX-10 is designed for Time Domain and Resistivity surveys.

The wide output voltage range makes the STX-10 applicable for large electrode spacing, under most geological conditions. Stabilized output currents may vary from 30 mA up to 20 Amperes. The operator is able to monitor the input voltage, frequency, and output current on a large 2.5 cm high LCD display. The resolution of current readings is 1 mA.

The compact STX-10 IP Transmitter weighs only 30 kg, and it can be carried by one person, as a backpack unit. This relatively light weight qualifies the unit as checked baggage on commercial airlines.

The STX-10 can be powered from a single source; however for maximum output power, a standard three-phase aircraft generator is recommended.

Specifications

Input

Output

Voltage Phase

Power (Max)VoltageCurrentWaveform

On l Off Time Frequency

' Current StabilityTime Stability

Operating temp, range Display Protections Dimensions (HxWxD) Weight

210V l 400 Hz Single or Three

10 kW120 to 4800 Volts30 mA to 20 Amperes

1, 2, 4, or 8 seconds0.1; 0.3; 1 ; or 3 Hz0.1 "/o for 2007o of load change50 ppm in full temp, range

-40 0 to +50 0 CDigital LCD 2.5 cm highAutomatic47 x 37 x 31 cm (18.5 x 14.5 x 12.0 in)30 kg (66 Ibs.)

Androlex reserves the right to change specifications, when it results in product improvement

Page 25: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

FEATURES

Switch selectable six output terminals

Recessed input and dummy load connectors

Wide output voltage range

Stabilized output current

Auto-ranged (2A or 20A) output current display

Fully protected for safety and reliability

Crystal-controlled output timing

Digital readout

Built-in electrode resistance meter

Input power connector is directly compatible with Huntek MG set

Portable

Output Power vs. Current and Voltage

Switch Position

1

2

3

4

5

6

7

8

9

10 kW

OUTPUT kV Amp

0.15

0.3

0.5

0.8

1.0

1.7

2.3

3.0

4.0

20.0

20.0

20.0

12.5

10.0

5.9

4.3

3.3

2.5

Represented by:

A ANDROTEX LIMITED/V\ GEOPHYSICAL INSTRUMENTS

7225 Harwick Drive MISSISSAUGA ONTARIO L4T 3A5 Tel. S Fax (905) 677-7919 CANADA

Page 26: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

CZ- ————————— Tx

C,

\

P|

.. 17

Z PS P4 P5 PS

*— a —JL— g —J--*- o —*tt- a • u a —Ju- a

Apparent Resistivity;

ARRAY GEOMETRY

^ 2if na(n-fl) Vp/I

where /^a ^ apparent resitivity (ohm.m)n ^ dipole number (dimensionless)a - dipole spacing (m)Vp - primary voltage (mV)I - primary current (mA)

Pole-Dipole Array Array Geometry and Formula for Apparent Resistivity

Page 27: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

APPENDIX B

Page 28: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Tan(sec)

Spectral-M(mV/V)

Chargeability(mV/V)

Resistivity(ohm-m)

10+00 S 9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N

11=1

11=2

0=3

11=4

11=5

0=6

11=7

11=8

O 0.0010 O O O -_ 0.50 0.25 0.031 00000 0.0040

o o.oieii 0.031 o ' iLLX^ i 0 0 ' 25 0 0 0 - 0020 0 - 0080 0 ' 008()o f^TlaS^Wo o ~ ~* o o o o o o.ooio o.oie 0,0020

\^^^Q]r oooooooo 0.016

000000000 0.016 O O O

O 1.00 EaiL. 000000000

o o o

s-^2048 vfv^O 0.25 0.13 0.50.^0.063 jl^'smm, 0,016 O Ojlfe^ir .irsjjj^^-Mfr , uw-0 ^OSl 0.0020 0.0020 0.50 0.25. g?. 64 M 0.50 .i^J 64 UJ5) O O O

O 0-^- 1.00 ' 0.063 - - 0.50 - . 0.016 (C 2048v

0.50 0.0040 O O

OflfV 2048 V1)JO 0000

00 000 0*^^2048

[O. 0.0010 0.13 - 0.50 0.063 1.00 - 0.0040 | 0.50 00000

O 0.13 0.26 " 0^50 S 0.13 0.50 0.50 000000Jl^^m. - - ~ '

OOOOOOOO 0.13 0.13 0.063 (( 64 \ 0.0020 0.50 "^^0 J^K^^ Ol()63 0000

0000000 'o.50 C 1.00 ^ - 0.13 0.063 ^\jj*,j) 0 - M80 :TS 8^ Q ' 0040 ^M8 y^uk. O O O

'T O O O O O O 0,016 0.0020 ~ 0.50 0,13 0.031 - 0.0010 0.0040 -^256 "^w o ?VN 2048 0000

10+00 S 9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N

11=2

0=3

0=4

0=5

0=6

0=7

0=8

28 ~~ 36 v 24 17 17 12-, \ i ir-14 \ 33 /J^ 8.6 ") 20 10 ) ) 31 "-i 23 23 25

31 18 19 18 33 ' 20

10+00 S 9+00 S 8+00 S 7+00 S 6+00 S

IP Zone5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N

IP - 22+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N

xxxxxxxxxx xxxxxxxxxxxxxxxx

11=1 0.35 0.43 0.47 - 0.45 0.18 0,32 0,44 0.40 0.41 0.391*1=23 1=0.13

0.40 , 0.62 0.83 - 0.27 0.45 0.35 -0.060 0.24 0.19 0.16 0,070 0,060 0,13 0.20 - 0.88 1.3 0.97 0.72 - 0.41 - 0,52 0,33 0.47

0=2

0=3

0=4

0=5

0=6

0=7

0=8

V0.43 , 0.48 0.56 0.13 0,37 ^ 0.47 0,45 - 0.53 0.35 0.43 0.42 . 0.54 0.76 - 0.34 0,30 0,44 0,26 -0.10 0.12 0.090 0.040 -0.14 -0.13 0.38

l1.4 1.3 1.2 \ 0.74 , 0.60 0..46 . 0.46 0.60

0.67 0.56 ' 0.35 0.26 0,55 0.50 0.62 0.45 0.43 0.42 0.53 0.66 - 0.23 0.47 0.29 0.33 0.20 -0.85 -0,040 -0.040 -0.15 -0.13 0.21 , i 1.2 1.3 1.4

0.49 0.10 0.30 0.30 0.54 0.49 0.49 0.39 0.53 0.65 ' 0,050 0,090 0,54 0.10 0.27 -0.070 0.090 -0,12 -0.20 -0.11 0,26l

1.1 X 0.86 0,67 0,65 0,58 0.48

0.78 0.28 ' 0.61 ' 0.34 0.59 0,40 0.48 0.41 0.46 ^ ~ -' l ^

y v,v, 1.5 1.1 1.4 1.3

0.050 0.10 0.23 0,51 -0.070 0.30 -0,090 -1,00 -0,38 -0.10 0,23 ^ ^, l" 1,2 1.5 1.1 1.2 1.2

1,080 0.090 ' X0.52 0.060 -0.21 -0.16 -0,40 -0.20 0,040 .'' 1,1 1,2 1.2 V. 1.6 0.88 ^s, 1.10.73 0.67 ,, 0.46 0.27 v 0,67 0.52 0.26 0.50 0.57 0.090 0.14 0,08- ..... ..., ,.,,, ,... ,... ,,.. .... ...., ,---" /"x , ' , ,//

0,25 0.21 , 0,65 0.030 x 0.73 0.23 0.48 0.75 -0,030 0.090 0.070 -0.0100 0.080 0.46 -0.31 0.12 -0,27 0.34 0.21 '. ' 1.1 1,4 1,1 l1 ^ ' '- " ' ^/(___ /

0,95 0,82 1,10.51 0.36 0.54 0.12 0.99 ^ 0.44 0.74 0.24 -0.0100 0.11 -0.81 -0.080 0.030 0.51 -0.60 -0.19 -0.19 0.50 - 0.95 1.1 0.79 1.4 ^ ' 0.34V1.4 ^

.0,59 0.54 0.50 - 0.67

1.2 ( ' 0,29 , 0.76 0.73 ' 0.37 0.42

1.1 .^ " 0,80 ' 0,56 0.54 ~ 0.51 '-' 0.59

1.3 \ 0.74 - - 0.81 0.87 0,83 , - 0.65 0.56 0,54 0.34 0.59

0 = 1

0=2

0=3

0=4

0=5

0=6

0=7

0=8

0=1

0=2

0=3

0=4

0=0

0=6

0=7

0=8

11=1

0=2

0=3

0=4

0=5

0=6

0=7

0.80 0.67 0,51 - 0.47 0.40 0.36 0.55 0=8

10+00 S 9+00 S

Conductive Overburden

8+00 S 7+00 S 6+00 S 5+00 S 4+00 S

Possible Shear Zone

3+00 S

Conductive Overburden

2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N

0=1

0=2

0=3

0=4

0=5

0=6

0=7

881 0=8

Tau(sec)

Spectral-M(mV/V)

Chargeability (mV/V)

Resistivity(ohm m)

Line 400 E

Pole-Dipole Array

a = 50.0 M

plot point

Resistivity and Chargeability Anomalies

^ ^^ i . . . . . . . . .Very Strong

________ . . .... . . Strong

.____. . . . . . . . . Medium

-------- .........Weak

.......... . . . . . ... .Very Weak

xxxxx xxxxx . . . . . . . . .Extremely Weak

Scale 1:500050 O 50 100 150 200 250 300

mm g(metres)

Plate PS-1QUEENSTON MINING INC.

INDUCED POLARIZATION SURVEYHOLLOWAY PROJECT

Holloway-Marriott Twps.Date: 97/11/20

IPR-12

JVX Ltd. re/, no. 9774

Page 29: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Tau(aec)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

11=1

0=2

11=3

11=4

11=5

11=6

11=7

11=8

O O O 0.0020 00000000 0.0020 0000000000 0.0080 0.0040 0.0080 0.016 0.063 000 0,031 0.0040 O 0.13 0.0010 O 0.0040- - 0,016

O O 0.063 0,0010 00000 0.0040 000 0.031 000000000 0.0080 0.0080 0.016 0.13 0.50 0.031 O 0.031 0.031 0.031 O O 0.0020 O \, UTO ' \ O

O 0.0040 0 0 00 0 00000000 00 O O 0.0020 0.016 0.063 0.0080 0.13 0.063

000000 000000000000

O O 0.0040 0000000000000 O O O 0.016 0.031 0.031 0.13 0.016 0.031

O 0.0020 0.016 0.13 O O 0.0040 O 0.0010 0.0040

O 0.0020 0.016 0.0020 0.016 0.063 0.031 0.13 f f 1256 ) 11 0,031 O 0.016 0.25 0.063 0000 0.0040 O

O 0.0080 0.016 O

00000000 0000 00 0.25 O 0.063 0.063 0.063 0.016 O 0.0080 1.00 ,, O 00 O 0.063 0000000

00000000000000 0000O O 0.13 0.25 0.016 0.0020 0.063 O ^ — .0

00000000 00000000 O 0.063 0.063 000000000.063 O 0.50

Spectral-M(mV/V)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

11=1

11=2

0=3

0=4

0=5

0=6

0=7

0=8

4 \ 27 17 1121 ^ ^ 10 17 . 18 8 17 x 12 23 i \ 12 15 15 14 ~— 16

19 -^ 14 14 __ 13 16 16 18

O O O 12 __ 14 18 18

000

00000 O O O O O O

00000000 0000000

000000 0000000 18 18 16 00000

Chargeability (mV/V)

9+00 S 8+00 S 7+00 S 6+00 S

IP-Zone5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N

IP - 23+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

11=1

11=2

11=3

0=4

0=5

0=6

0=7

0=8

xxxxxxxxxxxxxxxxns3

11=18 1=0.30.060 0.22 0.32 0.31 0.23 0.25 0.28 0.30 0.29 0.17 0.35 0.30 0.37 0.20 0.38 0.28 0.25 0.34 0.28 0.21 0.29 0.27 0.35 0.47 i 0.53 0.58 0.59 - 0.83 0.54 0.50 -- 0.45 0.55 0.39 0.34 0.44 0.38 , 0.56 0.61 0.48

/0.0100 0.35 0.41 0.34 0.32 0.32 0.34 0.36 0.14 0.32 0.20 0.31 0,13 0.36 0.17 0.21 0.30 0.21 0.21 0.16 0,18 0.25 0.39 0.52 0.64 0.70 0.95

0.34 0.42 0.36 0.32 0.31 0.31 0.36 0.17 0.21 0.25 0.21 0.14 0.27 0.18 0.070 0.30 0.20 0.11 0.18 0.090 0,19 0.33 0.51 0.68 0.7S

0.68 0.63 0,62 - . .0,61 0.45 0.38 0.41 0.35 ^ 0.51 0.56. - ' 0,45 0.49

0.83 0.57 0.65 l 0.25 0.45 0.42 0.49 0.23 0.54 0.5l' 0.34 0.44 J 0.55

0.25 0.40 0,40 0.39 0.25 0.35 0.20 0.25 0.12 0.30 O 0,28 0,12 0.13 0.13 0.12 0.080 0.060 0.14 0,11 0.30 0.47' 0.69 0.76 /l S 0.91 0.78 0.65 0,69 " 0,49 0.45 - "" 0.54 0.32 0.40 v 0.54 0.27 0,37 0,51 ' 0.32.'S S ^ ,--K ' ^ ' ,--^0.43 0.45 0.41 0.32 0.24 0.20 0.29 0.17 0.15 0.10 0.12 0.15 0.080 0.24 0.030 0.050 0.050 0.0100 0.23 0,23 0,47 0.66 0.79 / 1.1 y 0.89 0.85 0.78 ^ ,. 0.27 0,54 -0.18 0.52 ^ J1.39 t 0.66 ^ 0.34 0.33 0.33 0,38 0.29 0.22

0 = 1

0=2

0=3

0=4

0=5

0=6

0=7

0=8

0=2

0=3

0=4

0=5

0=6

0=7

0=8

l \ 0.24 0,51 0.18 0.60 0.59 0.41 0.13 0.40 0.35 -0.060 -0.26 0.34

Resistivity(ohm-m)

9+00 S

0.27 0.36 l 0,62 ) 0,32 0.21 0.24 0.11 0.15 -0.13 0.23 0,050 0.020 0.31 0.13 -0.19 -0.020 -0.070 O 0,36 0.41 l 0.64 0.74 ^ l 7 0.89 ; 0.64 ,~* 0.79l ' --^-'/(- "' ' ^

-0.21 0.53 ' 0.30 0.19 0.13 0.24 0.32 0.060 -0.040 0.13 -0.030 0,27 O 0.19 -0.080 -0,030 0.10 0.26 0,52 0,59 0.79 ( l 0.99 0.84 l 0.74 ~~ 0.60 " " 0,59^ 0,66 0,14 0.52 0.63 ' 0.32 0,27 0.44 0,20 0.12 0.81

-0.020 0,26 0.53 0.22 0.090 0.21 0.15 -0.060 -0.27 0,12 0.16 -0.14 0.38 0.16 -0.46 0.11 0.23 0,020 x 0.76 ~"' 0.84 0.94 0.83 0.84 0.60 '^0.45 0.72 0.57 0.060 ~ 0.42 0.43' 0,69 '' 0.31 0.42 -0.040 0.11 -0.25 0.060

Top Horizontal Condictive Layer

8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

0=1

0=2

0=3

0=4

0=5

0=6

0=7

0=8

WH(8) WH(8)

125 126___ 130 116 127,—— 138 ——— 142——— 144 ——140 ——— 137___138 151 -141 ——— 140 ——— 137- 148 162.—— 1950=1 147^^171- 213 -184———190

0 = 2 305 ^~ 357 ^~~~~ 309 ——— 313 ——^ 277 " 207 ——— 203 ——~ 213 ——— 206 ——— 201

0=3 499 415 418 354 \ 286___ 284 ___ 287 ___ 285 _— 298 ——— 311 "~327 330 329 326 334

0=4

0 = 5

0=6

0=7

0=8

WH(8)

179 186 194 - 187 . ___ 176 .

WH(8) WH(8)11=5

148 156 172 ___ 165 177 223 .__ 264 224

234 233 237 234 240 ^ 282 241 234 245 266 266 -^-- 328 ~-~- 276___. 285 •"-""Me 346 ' 321 —— 293 ——— 293 ._ 265 262 _^ 295 ——— 285 256 -^ 431 ___ 441 } 254 ^ 375

402 392 363 ^, 519 713 l 344 393 372363 333 342 384 386 ___441 377 380 439^- 504 -—^^454 402 391 369

454 445 _ 490 ——- 507 582 \ 461 480 -—" 539 586 593 514 ——. 486 452 483 ——~ 527 '—- 481 457 -^ 681 ^" 801 ' 525 -\

0=1

0=2

0=3

0=4518 ' —— 502 424 341 363 376 356 362 428 407 421 429 413 429- 501

587 480 398 422 462 447 458^^-^522 529^—498 —— -516 507 ——— 517 611 557 549 571 603 615 721 572 557 645 686 657 632 586 533 565 636 594 535 ^ 826^*- 1010 l 566 713 '452 389 519

540 J 446 488 ""^ 529 531 558 605 626 624 __ 587 584 612 709 655 635

^"543 605 593 646 716 700 715 (1305\^ 639

602 672 675 721 '^^813 815 788 807——"765 744' 876 839 805 834 921 973"*^ 1146 ' 885 839 960 994 903 839 795 ^754~ 836 905 830 793 -'l235 1493 S'53 973 735 606 784—-735 0 = 8

743-__ 730-" 844 \ 680 665 .726 --"^ 796 745 681 693 622 647 720 691 639^^939 1179 l 692 740 624 \^452^^, 503 695 0 = 6

740. 727 ^^ 749 " 835 867 — 9.69 788""—— 770" 840 868 842 754 ^ 726 716 ^ 738 -"808 757 ^ 720 ^ 1091 1305 f 784 867 j 629 606 592 677 0 = 7

Tau(sec)

Spectral-M(mV/V)

Chargeability(mV/V)

Resistivity(ohm-m)

Line 1000 E

Pole Dipole Arraya na a

a = 50.0 M

plot point

Resistivity and Chargeability Anomalies

mmm————m,——mmm . . . . . . . . .Very StfOIlg

________ . . . . . . . . Strong

____ . . . . . .. .. Medium

--------......... .Weak

.......... . . . ..... .Very Weak

xxxxx xxxxx . . . . . . . . .Extremely Weak

Scale 1:500050 O 50 100 150 200 250 300

d g (metres)

Plate PS-2QUEENSTON MINING INC.

INDUCED POLARIZATION SURVEYHOLLOWAY PROJECT

Hollo way-Marriott Twps.Date: 97/11/12

IPR-12

JVX Ltd. ref. no. 9774

Page 30: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Tau(sec)

Spectral-M(mV/V)

Chargeability(mV/V)

Resistivity(ohm-m)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N

11=1

11=2

[1=3

11=4

11=5

11=6

11=7

11=8

O O O (l

o o oO 0.031 0.063 0.016 000000000 0.0040 - 0,063 00000 0.0080 0.016 0.063 0.031 0.13 0.031 0.0010 0,0020 OOOO 0.0040 O O 0,0080 [1 = 1

O 0.13 0,031 0.0040 0.016 O 0.0020 00000 0.0080"" x 7 8 ) W O OOOO 0.016 0,0020 0.13 0.031 0.063 0.13 0.0040 0,0080 OOOO 0.0020 O O 0,0080 11=2

0 00 O 0,0020 0,0080 O O 0.0010 OOOO 0.0040 O 0.008(L.A 8^/^D O 0.0010 000 0,13 0.063 0.016 O 0.063 0.016 0.13 00000 0.0010 0.0010 0.0020

OOOO 0.0040 'v 1,00 \ O O 0.0010 O O O 0.016 0.0010 0.0040 O.MT^"8 ^ OOOO 0,016 0,0010 0.50 0.0080 0.0080 0.25 0.0080 0.13 O O O 0.0080 O O ((ufT^ 0.0080

00000 0,25 000000 0.0040 0,0040 0000000 0,031 0,016 0,13 0.031 0.063 0.031 O 0.13 0.031 O O 0.063 O O * " 0.0010

O O O O O - 0.13 000000 0,016 00000000 0.13 0.0010 0.50 0.0080 0.0040 0.13 O O 0.016 00000

OOOO ^( T 2 Jj. 0.13 O

O O O 0^-~-~-0 0.13 O o oO (l O

O 0.018 O O

0000000 0.063 0.0020 0.25 0.0080 OOOO 0.031 OOOO

0000000 0.0020 0.25 0.0020 0.13 OOOO ' *^- i~~^- 0.063 O O O

11=3

11 = 4

11 = 5

11=6

11=7 11=8

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N +OON 7+00 N 8+00 N 9+00 N

14 18 20 -^ 13 14 13 18 vv. O

11=2

11=3

11=4

11=5

11=6

11=7 11=8

20. 30 20 15 11=2

16 __ 17 11=3

O O

O O

OOOO

29 ,-z.- 17 —— 14 - 16 18 ^ 34 - 19 v 13 16 ^^^f^- 17 20 -—— 11 12 __ 14 15 14 - 15 20 28 24 24 26 x^ 34 ^__ 24 \ 18 ^ 32 21 15 n=l, s ' /" /^^^zs^ ///^Pfs^N f \ ^ s. ,. 42 J 19 ^~- 14 (--^ 23 20 r 24 21 //( (JJEyj, 10 C. 18 14 14 ^— 18 __.ifcCT.J/ 5o //^r/^^N- ( A .//Pib^x V ^/5s^rH ( .34 s 22 6- 15 ^ 24 )mog^ 18 ,J~ 23 //^O^J. il \ N 20 ^14 \ 18 ( 23 ^^ 21 25 ,^ 16 (jTj.^32 ^^g^g.^ "^V "0 ^\Y/ " "^

26 22y^OSSPBO*BBr TB*BWO^P*0'JK'(m 29 A^J3-7 IB ^13 \ 19 24 22 'fifffijj^ ll~^li^\"3^^^^\3^^ O C^L( ™ 11=5

^ _. ._^ .. , .,, . . . O O

0000000 JA)^ IS V 27 21 29 f'tt )MJ O 1}}^ H X^l 000 r^7

15 fs? - 22 'O To'**-- 18 1***'W 0 0000000 0"*^' 26 55 ' '"b* O o^"* 13 -^ 16 -NNN̂ 0 O O

9+00 S

IP Zone8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S

IP Zone2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N

IP - 24+00 N 5+00 K 7+00 N 8+00 N 9+00 N

xxxxx XXXXXXXXXXXXXXXX xxxxxxxxxxnso 1*1=31 1=0.004

0.22 0.18 0.22 0.27 0.61 , - 0.72 0.55 ^ J),43 - 0.55 0.52 - 0.43 0.20 0.16 0.21 0,41 ^ 0.80 0.65 . . 0.67 0.16 0.080 0.34 0.30 0.14 0.47 , 0.59 , 0.75 0.69 ' 0.85 0.97 0.74 - . 0.74 0.33 0.40 . 0,52 0.46 0.63 0.47 0.49 0.60 n=l

0.16 0.070 0.23 0.21 0.56 l 0.87 0.75 0.62 0.67 0.59 0.58 0.26 0.24 0.25 0.46 , 0.85 0.74 0.87 ' 0.27 0.22 0.36 0.30 0.060 0.45 " 0.55 , 0.80 / 0.68 l 0.91 1.1 J 0.83 0.76 ' 0.39 0,47 ( "o.52 0.52 0.59 ,- 0.45 0.46 l 0.59 11=2

11=4

11=5

11=6

11=7 11=8

0.12 0.55 0.70 0.65 0.60 O 0.83 0.75 0.41 0.35 0.22 0.59 ' 0.93 0,78 0,79' s 0.30 0.16 0.41 0.35 0.060 0.46 " 0.57 l 0,83 ,"0.69 ' 0.95 " 1.2 0,99 0.89 ' 0.43 0.52 0.63 0,54 0.62 ^ 0^47 0.43 ,' 0.57

-0.030 0.50 0.83 - 0.66 0.77 ^ 0.93 0.86 0.83 0.51 0.36 0.52l

l 0.96 0.79 0,84 ,' 0-24 c - 24 0 - 33 0 - 2B "- 11 0 - 45 ".62 0,78 0.75 " 0.91 ' 1.2 l/ 0.92 ' 0.57 "" 0~55 0.64 0,58 0,66 0.40 0,47 ^ o'.Sll

0.81 0.55 v 0.99 0.72 ' 0,34. ! 0,95 0.87 0.43 0.37 0.36 0.24 , 0.83 0.84 0.74 / 0.20 -0.030 0.30 0.13 0.060 0.48 - 0.49 . 'o.Bl l 0,70 1.1 1.1 ^ 0.93 f 0.59 ' l 0.65 ' 0.43 0.67 0.53 0.43 J 0.56

0.59 0.62N -. 0.93 l 0.43 /' 0,76 . . 0,90 t 0.43 x 'o.58~' 0.39 0.50 'f 0.94 0.79 0,95/ 0,39 0.31 0.39 0.29 0.020 0.43' 0.71 -' 0.85 0.75 - 0.83 1.3 1.2 /BM ^ 0.59 0.72 ;' 0.62 0,65 ^ ^ 1,00 ; 0.58 0.38 ' 0.70

1.1 ' 0.49 ~" ' 0.76 0.56 " -0.090 ' 0.93 "- 0.65 ' 0.16 0.38' 0.87 0.78' 0.59 -- 6,25 0,40 0.23 0.0100 0.27 0.34 k 0.63 ' 0.79 0.78 0.81 '1.1 1.2 - 0.80 0.79 0.71 0.65 0,69 0,75 0.71 0.49 0.45

11=3 11=4

11=5 11=6 11=7 11=8

9+00 S

Conductive Overburden

8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S

Conductive Overburden

0+00

160 148 —^ 131 122 119^, 14511=1 144

11=2 262 257 238 ~~~ 203

11=3

11=4

11=5 369 345 389 506^ 567

11=6 396 450/579

11=7 512 655

11=8 743 ^ 663

, 194 — 341__ 329 285 -__ 239 __ 235__^ 270 503 __. 919 - -, 389 323

1+00 ^^ 2+00 ^^ VWH(7)

. 164 160 166

3+00 N 4+00 N 5+00 Nrr+r^r:——, '... ns3 VWH(8) ns

6+00 N 7+00 N 8+00 N 9+00 N

192 201 205 183 175— 316 -266 262 199 ——183 —— 190 220 239 256 257 243 11 = 1

196—^226 244^^, 331^^X^646 651 "^494——-512 —— 529 -——533^-837^- 1498 J) 383 417 477 ^375~ "322 —— 313—~ 339 353 "326 —— 298_^. 3i[ f^^~m~~^\ 422 311 381 359 348 384 412 409 399 415 11=2

348 307 261 245 271 ^"" 323 332 457^^880 880 \ 697 630 s" 812 877-**" 1440 -- 2102 l J 522 401 508 832 571 ~"—-499 ——— 513 ——— 516—-^. 464 394 W^s* VK~*\ 605 \ 396 403 , 525 536 567 582 578 530 533 [^3

378 314 1^~— 294 —-^ 334 423^^447^^^591-^1097 1039 805^-755^^^^847 .1144^2037 2805 /A 658 504——-491 629 /^BzT ~~ 772——-729-__ 704 615 507-__.509/^1101"^ 785 517-———490—^546 727-——777 ——— 779"——-738^ 682

.,,, 1332 1198 l 873 795 925 1085 f 2434 3603 7/811 612 590 " — "" /^-,-'s -^ l s 7/ / ////yH7 s 1649 1382 .955 816 918 , 1117 S 2216 4081 f ̂ 981 L—

f — ^^ /S l l S ^-——-801 1045 1058 ~^ 933 784 v 632 WZ^S 1319 937 l 633 619 645 745 962 ——— 999 .^930 821 792

7nn inAc. iiin 19-7^ nan wi 'TAR S \zn\ Ififtl ioa -7^n —^-—' 7Bn DAD 07fl nod turt 009 nn\ S S l l ^, —-—— S ^v.

s.-— — •— —^'- •~.— "- -""- "— -" "" 771.——— 748/^ 1571 1083 75L^" 740 ~~~^ 789 658 976 11M IWO "2 917

•--- ~-- -~- --- --- --if 1AJC 7 EC'1 1 ion N nan nae ^

701 713 ^—- 780 1005 1335 1277/^s/ i i y /s ; y/// ^—--- j ^ \ /s i /736 1071 S 1946 1633 1049 857 905 1069 / 2305 r 3620 '. 1071 847 809 803 883 957' 1245 1554 v 1282 N 932 865 s 1820 1232 ls s/~\ it s f/ y y/// ^—-* i \ -^_^/^ / l

1211 ' 2225 1946 - 1232 ' 938 930 1030 2108 ' 3506 ' - 995 934 939 952 1043 1096 1251 1505 1569 1220 1043 ' 2167 ' 1465 955

831 840 917^. 1007 ""*1074 1189 1302 1166 1072.————"~ l \ ^-.~^ S ̂ —, l l ,—--^

934 939 952 1043 1096 1251 1505 1569 1220 1043 ' 2167 ' 1465 955 938 1044 1166 1259 1348 1337 1341 1269

11 = 4

11=5

11=6 11=7 11=8

Tau(sec)

Spectral-M(mV/V)

Chargeability(mV/V)

Resistivity(ohm-m)

jiie l GOO E

Pole —Dipole Arraya na

(IV

a = 50.0 M

plot point

Resistivity and Chargeability Anomalies

^—. . . . . . . . . Very Strong

.Strong

Medium

Weak

Very Weak

xxxxx xxxxx . . . . . . . . . Extremely Weak

Scale 1:500050 O 50 100 150 200 250 300

•^—^^(metres)

Plate PS-3QUEENSTON MINING INC.

INDUCED POLARIZATION SURVEYHOLLOWAY PROJECT

Holloway-Marriott Twps.Date: 97/11/12

IPR-12Ltd. ref. no. 9774

Page 31: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Tau(sec)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N

0.063

0=2 0=3 0=4 0=5 0=6 0=7 0=8

O 0.016 0.031

0000 0.0080

0.0080 0.016 0.13 O O 0.13 O 0.016 O

0.016 0.031 0.0040 0.0020 O

O 0.0010

— 0,0040 0.0040 0.0010

0.063 0.063 0.031 O 0.016 O 0.0080 O 0.0010 0.0080 O 0.0080 0.063 O O 0.0020 0.016 O

0.13 0.063 00000 0.0020 0.016 O O 0.13 O O O t

O 0.0020 0.0040 O O O 0.031 0.016 O 0.0080 0000 0.0020

O 0,016 O 0,016 O 0.063 O O 0.016 0.0010 O 0.063 O 0.0080

0.016 000000 0.031 0.031 O O O 0,13 O.OOTo"' *" 2048 ~ 2048 ''"'W W 256 ~~^' 128'

0.13 S™ 0.13 . 0.0080

O 0.0020 ( 1.00 N 0.063 i.o"080 0.063 0.0080 0.13 0.13 0.25 0.063^" 1.00 ___ 1.00 } 0.031

0.13 0.0080 0.13 0.016 0.25 0.063 0,50 ' 0,13 ' 1.00 ' 0.50 ' 0.063 0=4

0.5D 0.063

0.50 0.063

0.25 0.13 0.25 - 0.25

0.13 0.25 0.13 1.00

2 c^ 1.00 1.00

0.50 1.00

1.00 _ 1.00 ^2-^ 1.

2 1.00 1.00 1.00 1.0

0.50 0.13 0.13 0.016 O*51 1,00 - 0.063—— ^ - -^ ^ f

13 1.00 0.50 0.063 0,25 0,25 0.016

Spectral-M (mV/V)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N

11=2

11=3

11=4 0=5

0=6

0=7

0=8

^-" fitfP"^ U45 37 50 ]llll -10 'O

24 -^x" 19,IZ^"14~!^ "22 29 42 W Z^&.WJ -^

28 26^ 35 (^J4 /M.-TO -13 -31

31 39 ^^ZZffiP' ~ 15 ~ 33 24 \ 40 24 xxii-gOi-em-H -36 -42

tK^SF ia fM?^ -38 -l

12 *' -17

O -47

-39

51 36 i~x~ 11 —— 15 x 42 x i 11

14

-41 13

10 —— 9.3 f Vi x 16 X 29 50\ V J ^~// X

46 j 16 15 ^ 15

.. 17 15 ^~ 14 .. ^^^

:,6 X x 19 __ 20 14 14 " 20 ——— 20 x 34 52C x xx^r~\-X x67/22 23 y 18 ^ 15 ., 24 ' f 59 ^ 36 .. 54

36 26 20 15 20 24 36 X 55

Chargeability(mV/V)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 SIP Zone

1+00 S 0+00xxxxx^

1+00 N 2+00 N 3+00 N

M0=1

0=2

0=3

0=4

0=5 0=6

0=7

0=8

0.54 -1.9 0.59.^ 0.79 0.55 0.64 0,67 ' -0.78 -0.070 -0.64 0.58 , 0.30 0^26^ -0.66 '\69 - 0,24 ~" 0.36 ' 0.67 0.99 0.76

0.63 - 0.73 0.96 | 0.47 ' 0.65 0.70 0,43 0.43 0.27 0.55X olsi x 0.71 X* U -^ 0.96 f 0,20 '^0.78 ~ "0.99 1.1 J 0.77' -O,.-' j—i nL n ^ ,. B /,; ,^ ^, ,^ ,.^ ^,' i S,'t... .[. ^...f .. (-''

l l x0.97 0.85 ' 0.52 0.49 0,39 ' 0,73 0.47 - 0,56

O.S5 '0.84 0.47 0.23 0,44 " 0^37 ' O.Bl" -"1.2 0.95 '' ' O 0.29

- - 0-87 -v^ii^S^-'v. V_H--' lr2 -- ^-n O'r0 '±Jt 0'83 - 0'71 O ' ie -0,0100 -0.60 0.11 , i 3.4

-0,44 -1.5 -1.2 -2.2 -0.88 //- 2.1 y 4.2 . 5.

r i!?-5^ 0.9T / 0,20 '^.78 ~ "0.99 "" 1.1 y 0.77' ' -0,17 -0,43 -2,1 -1.7 -0.97 ^^2,3 XX^ 3.9 7 5.7 ^"-^TT—'—5.7 3.5 3,9

/ Xx x ^ ' * *- X fi'''0.77 0.69 0.69 ^ 0.45 0,50 0.30 , 0.59 0.70 0.71 l l , , 0.030 0.44 . 0.80 1.5 0.80. -0.17 -0.47 -1.8 -1.9 -1.1 . 'i/, 2.1 / 3.9 / 5.4 5,8 5.7 ^ 5.1 ^ 4 4

1.2 j 0.88 0.73 0.52 '^0.40 0.48 0.37 x , 0.59 0.69 0.89 ' 0.97 l xx 0.32 0.29 0,46^ J 1.4 l x x X -0.0100 -0,52 -2 -2.2 -1.8 /tf/Z "X 3,8 x 5.4 5.5 5.6 t4.3 ) 5.3^ 4.4 7 6,7

1.00 0.83 0.77 ^ 0.37 0.37 0.25 ,' 0.71 0.62 0.70 'Xl.l 0.98 '' -0.020 ^.64 ; 0,33 'X/1.3 0.96 v -0.16 -0.52 -2 -2.2 -1.2 Xl.5 y^ 3,8 , 5.2 5.5 5.5 6.3 5.7 5.7' X x X ^ ~~ x' X/ X XX s&Z" '

0.88 ''-0.030 0.29 0,40 ^ X 1.2 0.78 -0.61 -0.65 -1.9 -2.2 -1.1 /^2.3"x'// /" /^-X x

0,24 ' - 1.3 O.B3 -1.1 -1.1 -2.5 -2.3 -1.4 "* 2.2 ' 3.6 ' 5.4

7 P -T-2M

7+00 N \ 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N

1.5

n=6 1*1=56 1=0.25

0.46 0.48 0.72 x 2.2 x/- 0.43 - 0.79 0,50 0,18 0.33^ f 0.80

•r -l 0.66 f 2 X- 0.60 0.67 0,52 0,35 0.45 0.92 -, 1.6c--v 'XX X/' -^ "----"XXX^/Ri x N n so .X i s X^ o,62 , 0.84 ( 0.55 0,55 0,63 -- -, l S 1.8 x 2.4

,.. v.vv -^ ... ,, ..66 ^ 0.91 0.78 ' OMj Q.n^S' H./ '' 9 2 - 5

1m '/y 3.1 y 0.93 ~ "0.85 0.84 0.77 0.67 7 1.4 .2 2.6't^vj /7 C—--. ~ " y 7 Xi.3 X X 1 l 1 l ^ (170 (IRQ HOft ^^ IS ' ?l

XXXXX

2.3

5.5 5.4 5.7 6 6.8

5.4 5.2 5.6 5.8 6.7 6.3

3.3 X X 1.1 ——U^ 0.79 0.89 JJ.96

V 1.3 1.4 0.95 0.81L -—^ ' ^ '^— 1.6 ' 1.2 ' 0.86 1.1 1.5 2.1 2.8

2.1 2.70.9 .

1.2 f j 2.2 2.B

0=1

0=2 0=3 0=4 0=5 0=6 0=7 0=8

Possible Shear Zone Possible

Shear ZonePossible Shear Zone

Resistivity(ohm-m)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N

WH(5)^5

WH(7) n=l -n— r- - - - WH(6)3 VWH(7) "nVT H(7)

388 382 330 360 .—— 490 ^415 376 437 x 804 x J42 x 580 571- 1161 i 521 379——454 301- 631 431

0=2 265 250^,^-302 —— 297 —-- 378^^ 875 "N 620 ^""~ 496^x-538 - 790 ^ ~865 -s 615 559^^x801___918 f l 410-X 559 y 1146 ^ 2244 ^ 1047 . 532 .x- 806 \__646^-1103 v BOO —-.

0=3 354 448__458 ^ 583 iX 1297 ^ 855\ 623 536 7 1002 1512 904 822 -* 1166 -— 1531 l 735 ^"939 1115 X 3^~ 1678 X 539 941 909 x" "l805~N 1130 1010 .^~llft x "4011 "-V——' 2402 3669 ' 7881 8540^—~—^^/x^^ IN x/ x \ ^—^^ - i l __//x x x x 7 ^-~~"~S //^\ \ //Y } i i 'W S" 1782 ) 1124 785 604 .X 919 1588 1438 1145 1575 -^ 2124 y 1052 — 1044 1375 ^ 3218 X 2070 7 1109 1270 L 956/ 2272 ) 162a -^1297 1608 ' 4681 3845 y 2310 3107 6151

0=5 759 —' '1053 ^ 2326 ) 1433 932 l 689X^990 1267 1374 [1731 ^, 2053 2748 7 1272 1387 1457 X 3899 l 1968 X 1350 ^ 1541 j 203 X, 2342 1924 1742 1998 x 6144 4118 X 2501 2838 5043 7368

0=4 578 619

1962 2279 2222 3378 N 9530 x 4007 jyy696 394:;,- 1005 1180 y 306 383 307 313 269 198 y ^403

^ 2944 2914 2413 /4212 6838 5405 1^!^^. 308 fs 2070 — 1688 A/ 386 496 677 —— 710 ^ 551inn v^ — O.AO 1669 7 7flfl . j,,,,. /y 2322

2277 3680

2369 7 y"670 649 ^ 757 X1212

l \t 13^1252"^ 2876 1790 ' 1124' 818 ., 1109 1264 1036 1624 ' 2950 " 3451' 1606" ~ 1589^~~ 1858' S 4232 2282' f 1206 l 1798 ( 1398'/ 2802 1922 2000 ^ 2635 /7233 5049 2482 2938 4547 5587. , : : ; , ., : : .' ; : xx - xx/ l ux -, L x //^\ /l / ^' "3364 2129 1365 1945 X^ 1262 1342 994 1316 x 2709 4815 1994 1933 — 2062 5424 2408 /" 1300 i 1614 1560 3149 2228 2045 2948 ', 9118 x 5688 2898 2880 4548 4829'x/ ^ * //y 7 L^ xx;xx/ J ^ j / ) x// l / f s

2309 1573 1057 1385 1423 1000 1281 ' 2130 x 4330 2736 2255 2388 6027 ' 2929 - 1234 1679 ^ 1316 x 3204 ^ 2314 2272 2812 x 9817 6567 ' 'nM "nTC3025 4152 4716 '''ilB'^S'

,457^^2530 4757/1189 1243 1325^-1550^ 1309 1115 "x 3023' ,x'7473 0=5

504^- 29^0 /5905 x 1333 1512 1681 ^- 2055 1577 1044 X 3906 ., 9700 0=6^/X /XXX X X \ I /////S3048 7 6982 7 1476 — 1693 1855 2574 1993 J 1219 X 3978 y 12K 0=7

~2404 x 7318 x 1508 1778 1824 ' 2507 2355 1440 ' 4076 9022 0 = 8

Tau (sec)

Spectral-M(mV/V)

Chargeability(mV/V)

Resistivity(ohm-m)

Line 3200 E

Pole-Dipole Arraya na a

J^

a = 50.0 M

plot point

Resistivity and Chargeability Anomalies

——————.— . . . . . . . . .Very Strong________ ..... . . . Strong

^ — ___,. . . . . . . . . Medium.-------......... .Weak

.......... . . . . .....Very Weak

xxxxx xxxxx . . . . . . . . .Extremely Weak

Scale 1:500050 O 50 100 150 200 250 300

•af^aas^sis,(metres)

Plate PS-4QUEENSTON MINING INC.

INDUCED POLARIZATION SURVEYHOLLOWAY PROJECT

Holloway-Marriott Twps.Date: 97/11/12

IPR-12JVX Ltd. re f. no. 9774

Page 32: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

lau(sec)

Spectral-M(mV/V)

Chargeability(mV/V)

Resistivity(ohm-m)

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

11=1

11=2 11=3

11=4

11=5 11=6

11=7 11=8

O 0.25 0,018 0.13 0.031 - 0.50 0.0020 0.016 0.063 0.50 0.s /

O O

O O 0.25 O O 0,1.3

0.0040 0.0020 0.25 O O 0.25 0.25

0.031 0.031 0.25 0.063 0.50_ ^ ^ (* \

0.063 0.031 0.031 0.50 0.016 O.lf B 0.0080 0.0040 0.13 0.031 0.25

0.016 0.031 0.063 0.0040 0.25 0.13 0.031 O ^Oi^Mok. 0.25

0.0020 0.50 0.13 O 0.031 0.018 ~ o7031 0.063 0.063 0.031 O 0.13 - 0,016 O TI(((( '2048~ )VT.031 0.063-1/^^i "^IliK^sse^ZzL

0.50 0.063 O 0.0020 O 0.063 0.016 0.063 0.0040 0.0040 0.0040 S^J4Ml'ni3 0.50 ^OgBf 0.031 0.031

0.016 O 0.063 O O 0.0080 0.063 O 0.13 0.063 O.OOlO" " "

O 0.13 O 0.0040 O 0.016 0.063 0.13 0.063 0.063

0.0010 O 0.063 0.0040 0.0020 O 0.063 0.13 0.13 O

0.0010 0.0040 O O

^-0 O O O

O" " O O O O O*''"''''' 128

0.50^ 0.25

0.50 0.063 ^\

0.25

0,25^^2.56.^^^5 - 1.00 _ 0.13 0.031 0.13

v 1.06"^ 0.25 0.13 0.25l , '

0.50 0.25 0.13 0.25 0.:X ,#.0.25 0.13 0.25 0.25 lu /' jm

0.50 0.25 0.25 0.25'- -- X J-^SJ

1.00 ^ 0.250.50 ~ - 0.25 0.25'

0,13 0.13 11=1

0,25

0,13

0.13

0.25

.0.13 0.50 - 0.50

0.063 i.OO ~0 - -

0.50

0.25 0.13

0.25

9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

11=1

11=2 11=3

11=4

11=5

11=6 11=7 11=8 -10 "-^ 32 "* -40 -38 "* 37 ' 63

17 x 44 38

74 102 133 95 ) 68 ) ) 20 ——- 22 S 47 39 43 46 35 50

99 129 116/ y 60 s/ 23 28 50 43 49 41 ^30 32 v 56

""^— 96 121 106 /^U (22 29/57 J 47 ^s 52 y 45 /26 J 35 ' 26

f 156j 118 102 ,^( 44..__ 34 ^~ 33 /60 51 56 .47 .28. ^36 29

93 112 .101^ ISfclJ^JfOHKrt 58 62 54 58 50 30 40 28

28 \ 63 56 58 53 C^32 41 31

43 50 58 65 56 /""glT*- 49 32

117 96

90 S 108 99 83

IP - 2 l P -9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

xxxxxxxxxx

11=111=2

11=3

11=4

11=5

11=6

11=7 11=8

^ -.^^n.*****.*****. • ••••••l* l- — — — — m m m m m m m^mm ••••III m m^ m m

1*1=82 1=0.063 MslOO 1=0.50 111=60 1=0.50 11=64" 1=0.130.34 0.50 0.23 0.31 0.81 0.78 0.85 1.3 1.1 r 3.3 \ 2,6 4.3 j 1.6 , 2.4 2.9 2.6 ^ 1.6 1.7 ., 0.85 0.99 0.88 f 1.1 , 0.64 - - 0.72 . - 0.12 -0.90 xyrx 2 i 4.8 6.4 l 4.1 i i 0.79 0.77 , 1.1 x 2.5 \ 1.8 \ 3.6 , 2.4 x i-3 '' 4 [ - 3

,-0.34 -0.11 0.35 0.81 - 0.58 0.34

0.26 0.34 0.79 0.29 O l s ' x l t l s'- f//// l

0.35 0.77 ' 0.47 -0.040 f 0.81 . ^ 0.37 'X 2.1 x 1.6 Xx- -' x 7 x ://0.78 x 0.36 0.10 x " 0'66 0.0100 Y.. y;r-1 /.. x.v

-0.14 0.65 1.31 0.59 0.71 0.96 ' 0.18 -l -1.8 -1.6

1.1 ^0.82 \x—\\)

^//x/ x y / ( ,1.5 xx 0.37 0.44 (L 1.4 -, 0.75 0.58 0.89 x 0.'/f ^-" i "^^rrr-^-'i ; x, /x-X v - l

1.7 ^ 1.3 7 2.5 X/ 0.77n . 1.8 ' 2.3 .^ 1.6 ^ 0.55 0.84 , 0.16 ~ 0.40 0.40. ., ,-, /'' s/?' y// /-^ ' -- x -'' " s--'-'0.32 0.13 x, 0.90 , 0.11 ^ C/1,2 ^.—l X (32 "X* 0 '49 x^X '- 6 2 ' 5 X ''^__—'"x 0' 8,3 x 0-36 0 ' 20 0 -34 ^ c -34 "M2 - ] ' 5 ~u ~ 2 - z

0.25 " 0.79 'X 0.12 -^X 1.3 X 0.78 X 1.9 xy D.50 x/1.5 X 2.1 --^1.4 X "o.M ' 0.98 Xx '"'o.lg 0.37 -0.40 0.63 -0.40 -1.5 -2.3 -2.2 J'i'A ' 3.9 X 5.8'/X 1.3 X 0.78 X 1.9 Xy l X/ 7.. VX x/A'

0.050 -1.2 -1.9 -2.3

-0,19 -1.4 -2 -2.2 x^"2.2 s.

4.6 6.7 f 8.8 ^ 5.8 l 2.3 \ 1.2 1.4X 2.8 2.2 2.5 2.6 X J 1.1 *. Q..82 \ 1.3

4.5 X 6.4 X 8.3 7.4 7 2.6 ^x^ 1.4 ---' 1.7 ' 3 2.4 2.8 2.4 X^ 1-3 X 1.9 "N " l"

4.3 7 6.2 X 7.9 X 6.7 xXj.4 [l. O^ij 1,6 X 3.4 7 2.6 x 3^l) 2.7 X 1.6 1.8 1.6

1.5' X 3,8 3—'

x

^ 2.2 X 4 X 6.1 7.6 '^ 6.4 .X 2.9

.A 2.3 X 3.8 7 5.9 7.5 6.1 X . 2.3 X^ol ^ X .V A Sv/s

? '0.71 ''-0.0100 ' -1.5 0,87 ~~ ' 1.8 -^- "0.19 ''1.5 ' 2.2 ' - "l.l "" - 0.55 - 0,90 '-'-0.11 -0.45 0.36 0,23 -0,44 -1.5 -2,5 -2.4 '212 ' 3.9 ' 5.8

Possible Geol.Contact

. , . . . . ,

' ' - - '

9+00 S 8+00 S 7+00 SJ

Possible Shear Zone

6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N

n^WH(7)--r2--WH(l) H(2) -—i—————————WH(3)

11=1

11=2

11=3

11=4

11=5

11=6

11=7 11=8

136 113 125 -— 148 155 130 x 243—~——-^ ^ \ x/208 —— 204 ""~236 "~"~ 196 152 */ 272

302

1943 i 4592 8278 13K XX 2MO -~ * 192 — 4387 4178 ' 18C1 1627 ( 697 594 -v. 385 " M1 __ 65L^ 865^^^, 967 1171 ^ 1770___2369

1684 3077 5443 v 10K xx 2224 X 5317 6491 j 2659 -^ 1397 2102 , 1162 .^ 888^—746.^^ W U78" -^ 923 S 1267 x' 175.5 ^^2669 3820

\ 249 X m'Sim 55i^X' 1587 2145 \ 3767 5261 -^"2157 x 4661 X 8196 3885 7 1120 1490 -~ 1339 1131 "^__913 "^ 1853 — 1833 "* 1404___1383 ' 2011 3177 4194 y 2811

413 296 213 X 439 x' 715 -^ 1801 1832 2690 ^^458 ^ 1374 X 4253 8094 4462 X 1642 ^ 1363 1106 1234 1160 ^. 2276 2515 1983 — 1945 -" 2299 ^ 3418 4460 x 2858

367 X 249 ' . 534 8481// 2186^^ J903 ^ 2362 2357 -^1153 X 2798 7 7339 4421 X 1978 1805 J 1109 1060 1060 ' ^ 3118 " 2967 2624 2614 ^ 3058 " 3878 4552 ^ 2826 / 9

302 /" 637 ^- 1015 V 2483 2192 2529 2039 S 997 x 2460 5187 -- 3919 ^ 1938 1930 1349 1052 1063 1063' ) 3858 3U6 "~~ 3372 3942 4917 -" 5032 27862039 x' 997 x 2460///y //x173 X. 824 .X 1970

'903 ' 20ll

756 ^ 1241 X 2865 2364 2937 2173 f . 824 J 1970 4864 2792 x^ 1633 1890 1307 1202 1094 x 2692 -" 3951 4085 3902 4930 60B5 8145 3050 X 9374 15K/^ -, /yx ///y /s'^~~\ x x/ x x y1374 ^ 3057 2593 2936 2415 x 903 ' 2014 -^ 4519 2557 - 1172 1581 - 1225 1037 1180 ^ 2589 ' 3319 3863 4653 5303 7033 6967 ' 3499 ' 9562 14K

WH(1) n-!

1922 — 1806 7380 7590 - 2083 , 1134 899

4559 3480 ^^2857 l 7652 X 1318 <'844' l 2310

5083 — 6062 ^ 596 377

339 388

304 6.90 Y/ 7625 -s. 5862 -~ 4556 ^ 4716 "x" 'llVl 1236 ^2190

461 / m 'y/ 7152 8178 -~ 7009 — 8684 Xx 874"^"** 1157 X 2839

480~~") y 836 i/T 6406 7381 9524 — 9207 S 1225 —^ 980 /x 2791^/^//^-^ \ t ;///// ,821. ^X. B577 N 6539 8282. 12K /x 1671 ^ 1307 S 2391

570. "' -'

508

612 897 '

75 y/ 8589 8342 \7192 11 OK X. 2099 1700 ^ 2894

7403 8495 9126 ^1815 1960 3196

11=2 11=3

11=4 11=5

11=6

11=7 11=8

11=2

11=3

11=4 11=5

11=6

11=7 11=8

11=1

11=2 11=3

11=4

11=5

11=6

11=7 11=8

11=1

11=2

11=3

11=4

11=5

11=6 11=7 0=8

Tausec

Spectral-MmV/V

Chargeability(mV/V)

Resistivity (ohm-m)

Line 4400 E

Pole —Dipole Arrayna a

a = 50.0 M

plot point

Resistivity and Chargeability Anomalies

^—..i.^.. . . . . . . . . Very Strong________....... . . Strong

_______ . . . . . . . . .Medium

.-------. ........ Weak

.......... . . . . . . . .. Very Weak

xxxxx xxxxx . . . . . . . . . Extremely Weak

Scale 1:500050 O 50 100 150 200 250 300

—l L-(metres)

Plate PS-5QUEENSTON MINING INC.

INDUCED POLARIZATION SURVEYHOLLOWAY PROJECT

Holloway-Marriott Twps.Date: 97/11/12

IPR-12•AT Ltd. re/, no. 9774

Page 33: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

@ Ontario Ministry ofNorthern Developmentand Mines

Declaration of Assessment Work Performed on Mining LandMining Act, Subsection 65(2) and 66(3), R.S.0.1990

Transaction Number (office use)

Assessment Files Research Imaging

Personal information collected o this information is a public recorc collection should be directed to Ontario. P3E 6B5

Mining Act. Under section 8 of the Mining Act, th the mining land holder. Questions about this 3rd Floor, 933 Ramsey Lake Road, Sudbury,

32D05NE2003 2.18124 MARRIOTT 900

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. - Please type or print in ink. ^ -t

^ * l1. Recorded holder(s) (Attach a list if necessary)

O "to IName

AddressL-Hik^ :^H^^Qo*^ (oG,^^^/c)-s-rikP^ ;

j)L *\T~

O O 1 i^O ^ 1 1 OName ^ — .

Address

2. Type

Ml 1?V(LUM.oU~DTc? ̂ o 10 TO OO~T

of work performed: Check (^)

ST; oo . Sturg. n/^Ms H ^6^*

Client Number ^

Telephone Number

Fax Number

Client Number , ^ ̂

Telephone Number

Fax Number

and report on only ONE of the following groups for this declaration.

/" Geotechnical: prospecting, surveys, assays and work under section 18 (regs)

Physical: drilling stripping, trenching and associated assays

Rehabilitation

Work Type *

Dates Work From To Performed 1 Day | Month | O | Year q ~J Day ( S \ Month || | Year q ~f

Global Positioning System Data (if available) Township/Area i i , i 5 i i Hoi loojjcii-/ f MW?Rio"TT

M or G-Plan Number ,

Office UseCommodity

Total S Value of , Work Claimed 3^* 2*1 HNTS Reference

Mining Division 1 j . l i - LOAoArv U-tfJt-ft^*Resident Geologist . .

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;- provide proper notice to surface rights holders before starting work;- complete and attach a Statement of Costs, form 0212;- provide a map showing contiguous mining lands that are linked for assigning work;- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)Name *O *

i l Cr^ {~^i'^ 1 (E,i^ rt^J r~~ T-^SK/ oi/^iZ.Name

Address

Name ' A. 4 B iMC,

Address

4^JJertif^tiorrbyJ?ecorded Holde/or Agent

Telephone Number /OS — 5b*7 — Co f o 7

Fax Number

Telephone Number

Fax Number

Telephone Number

Fax Number

•ersonal knowledge

nrcEiwED1 lL—^~'^ 1 ' —— —

LARDER LAKEMlNlNy ur/.-'i^" 1

JAN 27 l"t. ex; ^- (2,^?

of the facts set forth ininl Name)

this DeclaratiorTofAssessment Wortctraving caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge^toe-annexed report is true.

corden HoBder or Agent

Telephone Number "70S' -

0241 (03^7) RECEIVERJAN Z 8

GEOSCIENCE ASSESSMENT

Page 34: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

5. Work to be recorded and distributed. Work can only be assigned to claims that die contiguous (adjoining; iu the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

Mining Clai.n Number. Or if wori( was done on other eligible mining land, show in this column the location number Indicated on the claim map.

eg

eg

eg

1

2

3

4

5

6

7

8

g

10

11

12

13

14

15

TB 7827

1234567

1234568

i a M ^04

12.11967 JA./.l^.O.fa......

ja^5|2# f

f -*9i isqg *^Lgjj.-'-^o

|P*i ft^

1 ^yt ^-^ fl^N t-^ ^^ ^f

^r\ y\ l r^^J-ta?

Number ol Claim Units. For other mining land, list hectares.

16 ha

12

2

.1.5..........

4i-

' 4' 4* ^' --c--

^GColumn Totals

Value of work performed on this claim or other mining land.

S26, 825

0

S 8. 892

9(p.9.Q..-

ty ~JQ

(p^-tr

1 (pi ~3

Ifcl5

toot45'

- — 1 -- — —

Value of we applied to l claim.

N/A

524,00

S 4,00

C?ooc(jp&O C

(^OOC

Sot 8oc

!(ooc ... 3®ot

(00 0(

3 \{0Q

Value of work assigned to other mining claims.

-4S HS24."000

o

o

170

3(^57

970

'jT7S^

Bank. Value of work lo be distributed at a future date

12,825

O

S4.892

i, , do hereby certify that the above work credits are eligible under(Print Full Name)

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to

the claim where the work was done.Signature otoRecordfed Holder or Agent Author/zed in Writing Dale

6. Instructions foncutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check ( ^ ) in the boxes below lo show how

you wish to prioritize the deletion of credits:

LZI 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

D 2. Credits are to be cut back starting with the claims listed last, working backwards; or

D 3. Credits are to be cut back equally over all claims listed in this declaration; or

H 4. Credits are to be cut back as prioritized on the attached appendix or as fc

|853

OJO fZE(D\

FROM L, l . UQT&' t-vjMku •

FRoro 6iu2.e eJAN 2 8

GEOSCIENCE ASSESSMENT _____ OFFICE

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use OnlyReceived Stamp

JAN 27 1996

0241 [02/96)

Deemed Approved Date

Date Approved

Dale Notification Sent

Total Value of Credit Approved

Approved lor Recording by Mining Recorder (Signature)

Page 35: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Ontario Ministry ofNorthern DevelopmentendMtnet

Statement of Costs for AsMSsment Credit

transaction Number (office use)

1/03880-60653Pereon* Information collected on this form Is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the MMng Act, the Information Is a pubNo record. This Information wM be used lo review the assessment work and correspond with the mining land holder Questions about this collection shouWJw directed to the Chief Mining Recorder, Ministry of Northern DevetopmenTjnd. ,- ,.^ -. l ^ 4Minee, 6th Floor, 933 Ranney Lake Road. Sudbury, Ontario, WE 688.

Work TypeUnits of Work

Depending on the type of work, tot the number of hours/days worked, metres of driMng, kHo- metres of grid line, number of samples, etc.

f 3.

s/

Associated Costs (e.g. supplies, mobilization and demobilization).

Transportation Costs

Food

JAN 27 1990

Cost Per Unit of work

GEOSCIENCE ASSESSMfgJ r^ of A88e88ment Work___ urHUr ..——^—

Total Cost

ScbT/.fy

Calculatlons of Filing Discounts:

t. Work filed within two years of performance is claimed at tOOtyb of the above Total Value of Assessment Work.2 M work Is filed after two years and up to five years after performance, It can only be claimed at SO'to of the Total

1 Value of Assessment Work. If this situation applies to your claims, use the calculation below:TOTAL VALUE OF ASSESSMENT WORK x 0.50 Total $ value of worked claimed.

Note: "- Work older than 5 years is not eligible for credit. *- A recorded holder may be required to verify expenditures claimed In this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification Is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

___ _____ , do hereby certify, that the amounts shown are as accurate as may(plssis print M name)

reasonably be determined and the costs were Incurred while conducting assessment work on the lands Indicated on

the accompanying Declaration of Work form as

to make this certification.

i(recorded holder, agent, or ttri* np*ny wMt •Ignlog authority)

am authorized

Dale

Page 36: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Ministry ofNorthern Developmentand Mines

Ministere du Developpement du Nord et des Mines Ontario

March 27, 1998

QUEENSTON MINING INC. 1116-111 RICHMOND STREET WEST TORONTO, ONTARIO M5H-2G4

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888)415-9846 Fax: (705) 670-5881

Dear Sir or Madam:

Subject: Transaction Number(s):

Submission Number: 2.18124

StatusW9880.00053 Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at [email protected] or by telephone at (705) 670-5855.

Yours sincerely,

ORIGINAL SIGNED BYBlair KiteSupervisor, Geoscience Assessment OfficeMining Lands Section

Correspondence ID: 12082

Copy for: Assessment Librar

Page 37: LOGISTICAL & INTERP RPT ON SPECTRAL IP/RESISTIVITY …€¦ · Andrew Hwang (Special Project Geophvsicist) Mr. Hwang processed and interpreted the Deep-EP results. Slaine Webster

Work Report Assessment Results

Submission Number: 2.18124

Date Correspondence Sent: March 27, 1998 Assessor:Steve Beneteau

Transaction NumberW9880.00053

Section:14 Geophysical IP

First Claim Number1211903

Township(s) l Area(s)HOLLOWAY, MARRIOTT

StatusDeemed Approval

Approval Date

March 25, 1998

Correspondence to:Resident Geologist Kirkland Lake, ON

Assessment Files Library Sudbury, ON

Recorded Holder(s) and/or Agent(s):QUEENSTON MINING INC. TORONTO, ONTARIO

LESLIE MICHAEL DYMENT Swastika, Ontario

YVON MICHAEL GAGNE Kirkland Lake, Ontario

STEWART JAMES CARMICHAEL KIRKLAND LAKE, ONTARIO

Page: 1Correspondence ID: 12082