lista 1 lei da temodinamica

3
Lista 1 1° Lei da Termodinâmica Exercícios sugeridos do Atkins cap 2 8ed Exercícios -3, 8,14,18, 25; problema 5 1 - Consider an ideal gas that occupies 3.00 dm 3 and has a pressure of 3.00 bar. This gas is compressed isothermally at a constant pressure of P ext . Calculate the smallest value that Pext can have if the final volume is 0.50 dm 3 . Using the value of P ext obtained, calculate the work done on the gas. (a) -4500 J (b) 125 J (c) 300 J (d) 3225 J (e) 3000 J (f) 4500 J 2 - Calculate the work done when one mole of an ideal gas is compressed reversibly from 3.00 bar to 10.00 bar at a constant temperature of 300 K. (a) 3002 kJ (b) 2740 J (c) 2494 kJ (d) 3002 J (e) 1,20 J (f) 1,86 J (g) 1,86 kJ 3 - Consider the reversible adiabatic expansion of one mole of an ideal gas from T 1 and P 1 to T 2 and P 2 . What is the correct relationship between the temperatures, pressures, and the molar constant pressure heat capacity, C P ? 4 - Given the following data, ½ H 2(g) + ½ F 2(g) HF (g) r H = -273,3 kJ H 2(g) +½O 2(g) H2O (l) r H = -285,8 kJ What is the value of r H for the reaction, 2F 2(g) + 2H 2 O (l) 4HF (g) + O 2(g) ? (a) r H = -521,6 kJ (b) r H = -11,7 kJ

Upload: jailson-da-silva

Post on 26-Nov-2015

16 views

Category:

Documents


1 download

TRANSCRIPT

  • Lista 1 1 Lei da Termodinmica

    Exerccios sugeridos do Atkins cap 2 8ed Exerccios -3, 8,14,18, 25; problema 5

    1 - Consider an ideal gas that occupies 3.00 dm3 and has a pressure of 3.00 bar. This gas is

    compressed isothermally at a constant pressure of Pext. Calculate the smallest value that Pext can

    have if the final volume is 0.50 dm3. Using the value of Pext obtained, calculate the work done

    on the gas.

    (a) -4500 J

    (b) 125 J

    (c) 300 J

    (d) 3225 J

    (e) 3000 J

    (f) 4500 J

    2 - Calculate the work done when one mole of an ideal gas is compressed reversibly from 3.00

    bar to 10.00 bar at a constant temperature of 300 K.

    (a) 3002 kJ

    (b) 2740 J

    (c) 2494 kJ

    (d) 3002 J

    (e) 1,20 J

    (f) 1,86 J

    (g) 1,86 kJ

    3 - Consider the reversible adiabatic expansion of one mole of an ideal gas from T1 and P1 to T2

    and P2. What is the correct relationship between the temperatures, pressures, and the molar

    constant pressure heat capacity, CP ?

    4 - Given the following data,

    H2(g) + F2(g) HF(g) rH = -273,3 kJ

    H2(g) +O2(g) H2O(l) rH = -285,8 kJ

    What is the value of rH for the reaction,

    2F2(g) + 2H2O(l) 4HF(g) + O2(g) ?

    (a) rH = -521,6 kJ

    (b) rH = -11,7 kJ

  • (c) rH = -596,6 kJ

    (d) rH = 1118,2 kJ

    (e) rH = -1689,8 kJ

    (f) rH = 559,1 kJ

    5 - For a monatomic ideal gas

    2

    1

    2/3

    1

    2

    V

    V

    T

    T

    Now consider a diatomic gas, N2, at 298 K. This gas is compressed reversibly and adiabatically

    from 15 dm3 to 5.0 dm

    3. Assume that the heat capacity of this gas is CV = 5R/2, and that it

    behaves ideally. Calculate the final temperature, T2, of the gas.

    (a) 462 K

    (b) 751 K

    (c) 303 K

    (d) 1033 K

    (e) 433 K

    6 - Calculate the work done in the isothermal reversible expansion of one mole of CH4(g)

    from 1.00 dm3 mol

    -1 to 10.00 dm

    3 mol

    -1 at 300 K. Treat methane as a van der Waals

    gas. The van der Waals gas constants for methane are: a = 2,3026 dm6 .bar . mol

    -2

    and b = 0,043067 dm3 .mol

    -1.

    (a) -4100 J

    (b) 5630 J

    (c) -5,63 kJ

    (d) -46,37 J

    (e) -230,07 J

    (f) -2,307 kJ

    7 - Given the following data for water, determine vapH at 298 K :

    vapH at 373 K = 40,7 kJ mol-1

    CP (l) = 75,2 J mol-1

    K-1

    CP (g) = 33,6 J mol-1

    K-1

    (a) 43,8 J mol-1

    (b) 149,3 J mol-1

    (c) 149,3 kJ mol-1

    (d) 48,9 J mol-1

    (e) 40,7 kJ mol-1

  • (f) 48,9 kJ mol-1

    (g) 43,8 kJ mol-1

    Respostas: 1-a; 2-d; 3- pC

    R

    PP

    TT

    2

    121 ; 4 a; 5-a;6-c;7-g