list of semiconductor materials - wikipedia, the free encyclopedia

19
List of semiconductor materials From Wikipedia, the free encyclopedia Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be doped with impurities that alter its electronic properties in a controllable way. Because of their application in the computer and photovoltaic industry—in devices such as transistors, lasers and solar cells—the search for new semiconductor materials and the improvement of existing materials is an important field of study in materials science. Most commonly used semiconductor materials are crystalline inorganic solids. These materials are classified according to the periodic table groups of their constituent atoms. Different semiconductor materials differ in their properties. Thus, in comparison with silicon, compound semiconductors have both advantages and disadvantages. For example, gallium arsenide (GaAs) has six times higher electron mobility than silicon, which allows faster operation; wider band gap, which allows operation of power devices at higher temperatures, and gives lower thermal noise to low power devices at room temperature; its direct band gap gives it more favorable optoelectronic properties than the indirect band gap of silicon; it can be alloyed to ternary and quaternary compositions, with adjustable band gap width, allowing light emission at chosen wavelengths, and allowing e.g. matching to wavelengths with lowest losses in optical fibers. GaAs can be also grown in a semiinsulating form, which is suitable as a latticematching insulating substrate for GaAs devices. Conversely, silicon is robust, cheap, and easy to process, whereas GaAs is brittle and expensive, and insulation layers can not be created by just growing an oxide layer; GaAs is therefore used only where silicon is not sufficient. [1] By alloying multiple compounds, some semiconductor materials are tunable, e.g., in band gap or lattice constant. The result is ternary, quaternary, or even quinary compositions. Ternary compositions allow adjusting the band gap within the range of the involved binary compounds; however, in case of combination of direct and indirect band gap materials there is a ratio where indirect band gap prevails, limiting the range usable for optoelectronics; e.g. AlGaAs LEDs are limited to 660 nm by this. Lattice constants of the compounds also tend to be different, and the lattice mismatch against the substrate, dependent on the mixing ratio, causes defects in amounts dependent on the mismatch magnitude; this influences the ratio of achievable radiative/nonradiative recombinations and determines the luminous efficiency of the device. Quaternary and higher compositions allow adjusting simultaneously the band gap and the lattice constant, allowing increasing radiant efficiency at wider range of wavelengths; for example AlGaInP is used for LEDs . Materials transparent to the generated wavelength of light are advantageous, as this allows more efficient extraction of photons from the bulk of the material. That is, in such transparent materials, light production is not limited to just the surface. Index of refraction is also compositiondependent and influences the extraction efficiency of photons from the material. [2] Contents 1 Types of semiconductor materials 2 Table of semiconductor materials 3 Table of semiconductor alloy systems 4 See also 5 References Types of semiconductor materials Group IV elemental semiconductors

Upload: sarthak-das

Post on 09-Dec-2015

14 views

Category:

Documents


0 download

DESCRIPTION

semiconducting materials

TRANSCRIPT

Page 1: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 1/19

List of semiconductor materialsFrom Wikipedia, the free encyclopedia

Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductormaterial is that it can be doped with impurities that alter its electronic properties in a controllable way.

Because of their application in the computer and photovoltaic industry—in devices such as transistors, lasersand solar cells—the search for new semiconductor materials and the improvement of existing materials is animportant field of study in materials science.

Most commonly used semiconductor materials are crystalline inorganic solids. These materials are classifiedaccording to the periodic table groups of their constituent atoms.

Different semiconductor materials differ in their properties. Thus, in comparison with silicon, compoundsemiconductors have both advantages and disadvantages. For example, gallium arsenide (GaAs) has six timeshigher electron mobility than silicon, which allows faster operation; wider band gap, which allows operation ofpower devices at higher temperatures, and gives lower thermal noise to low power devices at room temperature;its direct band gap gives it more favorable optoelectronic properties than the indirect band gap of silicon; it canbe alloyed to ternary and quaternary compositions, with adjustable band gap width, allowing light emission atchosen wavelengths, and allowing e.g. matching to wavelengths with lowest losses in optical fibers. GaAs canbe also grown in a semi­insulating form, which is suitable as a lattice­matching insulating substrate for GaAsdevices. Conversely, silicon is robust, cheap, and easy to process, whereas GaAs is brittle and expensive, andinsulation layers can not be created by just growing an oxide layer; GaAs is therefore used only where silicon isnot sufficient.[1]

By alloying multiple compounds, some semiconductor materials are tunable, e.g., in band gap or latticeconstant. The result is ternary, quaternary, or even quinary compositions. Ternary compositions allow adjustingthe band gap within the range of the involved binary compounds; however, in case of combination of direct andindirect band gap materials there is a ratio where indirect band gap prevails, limiting the range usable foroptoelectronics; e.g. AlGaAs LEDs are limited to 660 nm by this. Lattice constants of the compounds also tendto be different, and the lattice mismatch against the substrate, dependent on the mixing ratio, causes defects inamounts dependent on the mismatch magnitude; this influences the ratio of achievable radiative/nonradiativerecombinations and determines the luminous efficiency of the device. Quaternary and higher compositionsallow adjusting simultaneously the band gap and the lattice constant, allowing increasing radiant efficiency atwider range of wavelengths; for example AlGaInP is used for LEDs . Materials transparent to the generatedwavelength of light are advantageous, as this allows more efficient extraction of photons from the bulk of thematerial. That is, in such transparent materials, light production is not limited to just the surface. Index ofrefraction is also composition­dependent and influences the extraction efficiency of photons from thematerial.[2]

Contents

1 Types of semiconductor materials2 Table of semiconductor materials3 Table of semiconductor alloy systems4 See also5 References

Types of semiconductor materials

Group IV elemental semiconductors

Page 2: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 2/19

Group IV compound semiconductorsGroup VI elemental semiconductorsIII­V semiconductors (See also: Template:III­V compounds): Crystallizing with high degree ofstoichiometry, most can be obtained as both n­type and p­type. Many have high carrier mobilities anddirect energy gaps, making them useful for optoelectronics.II­VI semiconductors: usually p­type, except ZnTe and ZnO which is n­typeI­VII semiconductorsIV­VI semiconductorsIV­VI semiconductorsV­VI semiconductorsII­V semiconductorsI­III­VI2 semiconductorsOxidesLayered semiconductorsMagnetic semiconductorsOrganic semiconductorsCharge­transfer complexesOthers

Table of semiconductor materials

Group Elem. Material FormulaBandgap(eV)

Gap type Description

IV 1 Diamond C 5.47[3][4] indirect

Excellent thermalconductivity.Superior mechanicaland opticalproperties.Extremely highmechanical qualityfactor.[5]

IV 1 Silicon Si 1.12[3][4] indirect

Used in conventionalcrystalline silicon (c­Si) solar cells, and inits amorphous formas amorphous silicon(a­Si) in thin filmsolar cells. Mostcommonsemiconductormaterial inphotovoltaics;dominatesworldwide PVMARKET ; easyto fabricate; goodelectrical andmechanicalproperties. Formshigh quality thermaloxide for insulationpurposes.Used in early radardetection diodes and

Page 3: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 3/19

IV 1 Germanium Ge 0.67[3][4] indirect

first transistors;requires lower puritythan silicon. Asubstrate for high­efficiencymultijunctionphotovoltaic cells.Very similar latticeconstant to galliumarsenide. High­purity crystals usedfor gammaspectroscopy. Maygrow whiskers,which impairreliability of somedevices.

IV 1 Gray tin, α­Sn Sn 0.00,[6]

0.08[7]indirect

Low temperatureallotrope (diamondcubic lattice).

IV 2Siliconcarbide, 3C­SiC

SiC 2.3[3] indirect used for early yellowLEDs

IV 2Siliconcarbide, 4H­SiC

SiC 3.3[3] indirect

IV 2Siliconcarbide, 6H­SiC

SiC 3.0[3] indirect used for early blueLEDs

VI 1 Sulfur, α­S S8 2.6[8]

VI 1 Gray selenium Se 1.74 Used in seleniumrectifiers.

VI 1 Tellurium Te 0.33

III­V 2 Boron nitride,cubic BN 6.36[9] indirect potentially useful for

ultraviolet LEDs

III­V 2 Boron nitride,hexagonal BN 5.96[9] quasi­direct potentially useful for

ultraviolet LEDs

III­V 2 Boron nitridenanotube BN ~5.5

III­V 2 Boronphosphide BP 2 indirect

III­V 2 Boronarsenide BAs 1.5 indirect

Resistant to radiationdamage, possibleapplications inbetavoltaics.

III­V 2 Boronarsenide

B12As2 3.47 indirect

Resistant to radiationdamage, possibleapplications inbetavoltaics.Piezoelectric. Notused on its own as asemiconductor; AlN­

Page 4: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 4/19

III­V 2 Aluminiumnitride AlN 6.28[3] direct

close GaAlNpossibly usable forultraviolet LEDs.Inefficient emissionat 210 nm wasachieved on AlN.

III­V 2 Aluminiumphosphide AlP 2.45[4] indirect

III­V 2 Aluminiumarsenide AlAs 2.16[4] indirect

III­V 2 Aluminiumantimonide AlSb 1.6/2.2[4] indirect/direct

III­V 2 Galliumnitride GaN 3.44[3][4] direct

problematic to bedoped to p­type, p­doping with Mg andannealing allowedfirst high­efficiencyblue LEDs[2] andblue lasers. Verysensitive to ESD.Insensitive toionizing radiation,suitable forspacecraft solarpanels. GaNtransistors canoperate at highervoltages and highertemperatures thanGaAs, used inmicrowave poweramplifiers. Whendoped with e.g.manganese, becomesa magneticsemiconductor.

III­V 2 Galliumphosphide GaP 2.26[3][4] indirect

Used in early low tomedium brightnesscheapred/orange/greenLEDs. Usedstandalone or withGaAsP. Transparentfor yellow and redlight, used assubstrate for GaAsPred/yellow LEDs.Doped with S or Tefor n­type, with Znfor p­type. Pure GaPemits green,nitrogen­doped GaPemits yellow­green,ZnO­doped GaPemits red.

Page 5: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 5/19

III­V 2 Galliumarsenide GaAs 1.43[3][4] direct

second mostcommon in use aftersilicon, commonlyused as substrate forother III­Vsemiconductors, e.g.InGaAs andGaInNAs. Brittle.Lower hole mobilitythan Si, P­typeCMOS transistorsunfeasible. Highimpurity density,difficult to fabricatesmall structures.Used for near­IRLEDs, fastelectronics, andhigh­efficiency solarcells. Very similarlattice constant togermanium, can begrown ongermaniumsubstrates.

III­V 2 Galliumantimonide GaSb 0.726[3][4] direct

Used for infrareddetectors and LEDsandthermophotovoltaics.Doped n with Te, pwith Zn.

III­V 2 Indium nitride InN 0.7[3] direct

Possible use in solarcells, but p­typedoping difficult.Used frequently asalloys.

III­V 2 Indiumphosphide InP 1.35[3] direct

Commonly used assubstrate forepitaxial InGaAs.Superior electronvelocity, used inhigh­power andhigh­frequencyapplications. Used inoptoelectronics.

III­V 2 Indiumarsenide InAs 0.36[3] direct

Used for infrareddetectors for 1–3.8 µm, cooled oruncooled. Highelectron mobility.InAs dots in InGaAsmatrix can serve asquantum dots.Quantum dots maybe formed from amonolayer of InAs

Page 6: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 6/19

on InP or GaAs.Strong photo­Dember emitter,used as a terahertzradiation source.

III­V 2 Indiumantimonide InSb 0.17[3] direct

Used in infrareddetectors andthermal imagingsensors, highquantum efficiency,low stability, requirecooling, used inmilitary long­rangethermal imagersystems. AlInSb­InSb­AlInSbstructure used asquantum well. Veryhigh electronmobility, electronvelocity and ballisticlength. Transistorscan operate below0.5V and above200 GHz. Terahertzfrequencies maybeachievable.

II­VI 2 Cadmiumselenide CdSe 1.74[4] direct

Nanoparticles usedas quantum dots.Intrinsic n­type,difficult to dope p­type, but can be p­type doped withnitrogen. Possibleuse inoptoelectronics.Tested for high­efficiency solarcells.

II­VI 2 Cadmiumsulfide CdS 2.42[4] direct

Used inphotoresistors andsolar cells;CdS/Cu2S was thefirst efficient solarcell. Used in solarcells with CdTe.Common asquantum dots.Crystals can act assolid­state lasers.Electroluminescent.When doped, can actas a phosphor.Used in solar cellswith CdS. Used inthin film solar cells

Page 7: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 7/19

II­VI 2 Cadmiumtelluride CdTe 1.49[4] direct

and other cadmiumtelluridephotovoltaics; lessefficient thancrystalline siliconbut cheaper. Highelectro­optic effect,used in electro­opticmodulators.Fluorescent at790 nm.Nanoparticles usableas quantum dots.

II­VI,oxide 2 Zinc oxide ZnO 3.37[4] direct

Photocatalytic.Bandwidth tunablefrom 3 to 4 eV byalloying withmagnesium oxideand cadmium oxide.Intrinsic n­type, p­type doping isdifficult. Heavyaluminium, indium,or gallium dopingyields transparentconductive coatings;ZnO:Al is used aswindow coatingstransparent in visibleand reflective ininfrared region andas conductive filmsin LCD displays andsolar panels as areplacement ofindium tin oxide.Resistant to radiationdamage. Possibleuse in LEDs andlaser diodes.Possible use inrandom lasers.

II­VI 2 Zinc selenide ZnSe 2.7[4] direct

Used for blue lasersand LEDs. Easy ton­type doping, p­type doping isdifficult but can bedone with e.g.nitrogen. Commonoptical material ininfrared optics.

II­VI 2 Zinc sulfide ZnS 3.54/3.91[4] direct

Band gap 3.54 eV(cubic), 3.91(hexagonal). Can bedoped both n­typeand p­type. Common

Page 8: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 8/19

scintillator/phosphorwhen suitablydoped.

II­VI 2 Zinc telluride ZnTe 2.25[4] direct

Can be grown onAlSb, GaSb, InAs,and PbSe. Used insolar cells,compoments ofmicrowavegenerators, blueLEDs and lasers.Used inelectrooptics.Together withlithium niobate usedto generate terahertzradiation.

I­VII 2 Cuprouschloride CuCl 3.4[10] direct

I­VI 2 Copper sulfide Cu2S 1.2 directp­type, Cu2S/CdSwas the first efficientthin film solar cell

IV­VI 2 Lead selenide PbSe 0.27 direct

Used in infrareddetectors for thermalimaging.Nanocrystals usableas quantum dots.Good hightemperaturethermoelectricmaterial.

IV­VI 2 Lead(II)sulfide PbS 0.37

Mineral galena, firstsemiconductor inpractical use, used incat's whiskerdetectors; thedetectors are slowdue to high dielectricconstant of PbS.Oldest material usedin infrared detectors.At room temperaturecan detect SWIR,longer wavelengthsrequire cooling.

IV­VI 2 Lead telluride PbTe 0.32

Low thermalconductivity, goodthermoelectricmaterial at elevatedtemperature forthermoelectricgenerators.Tin sulfide (SnS) is asemiconductor withdirect optical band

Page 9: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 9/19

IV­VI 2 Tin sulfide SnS 1.3/1.0[11] direct/indirect

gap of 1.3 eV andabsorptioncoefficient above 104

cm−1 for photonenergies above 1.3eV. It is a p­typesemiconductorwhose electricalproperties can betailored by dopingand structuralmodification and hasemerged as one ofthe simple, non­toxicand affordablematerial for thinfilms solar cellssince a decade.

IV­VI 2 Tin sulfide SnS2 2.2

IV­VI 2 Tin telluride SnTe Complex bandstructure.

IV­VI 3 Lead tintelluride PbSnTe

Used in infrareddetectors and forthermal imaging.

IV­VI 3 Thallium tintelluride

Tl2SnTe5

IV­VI 3Thalliumgermaniumtelluride

Tl2GeTe5

V­VI,layered 2 Bismuth

tellurideBi2Te3

Efficientthermoelectricmaterial near roomtemperature whenalloyed withselenium orantimony. Narrow­gap layeredsemiconductor. Highelectricalconductivity, lowthermalconductivity.Topologicalinsulator.

II­V 2 Cadmiumphosphide

Cd3P2

N­type intrinsicsemiconductor. Veryhigh electronmobility. Used ininfrared detectors,photodetectors,dynamic thin­film

Page 10: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 10/19

II­V 2 Cadmiumarsenide

Cd3As2 0.14pressure sensors, andmagnetoresistors.Recentmeasurementssuggest that 3DCd3As2 is actually azero band­gap Diracsemimetal in whichelectrons behaverelativistically as ingraphene.[12]

II­V 2 Cadmiumantimonide

Cd3Sb2

II­V 2 Zincphosphide

Zn3P2

II­V 2 Zinc arsenide Zn3As2

II­V 2 Zincantimonide

Zn3Sb2

Used in infrareddetectors andthermal imagers,transistors, andmagnetoresistors.

Oxide 2Titaniumdioxide,anatase

TiO2 3.2 indirect photocatalytic, n­type

Oxide 2 Titaniumdioxide, rutile

TiO2 3.02 direct photocatalytic, n­type

Oxide 2Titaniumdioxide,brookite

TiO2 2.96 [13]

Oxide 2 Copper(I)oxide

Cu2O 2.17 [14]

One of the moststudiedsemiconductors.Many applicationsand effects firstdemonstrated with it.Formerly used inrectifier diodes,before silicon.

Oxide 2 Copper(II)oxide CuO 1.2 P­type

semiconductor.

Oxide 2 Uraniumdioxide

UO2 1.3

High Seebeckcoefficient, resistantto high temperatures,promisingthermoelectric andthermophotovoltaicapplications.Formerly used inURDOX resistors,conducting at hightemperature.Resistant to radiationdamage.

Page 11: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 11/19

Oxide 2 Uraniumtrioxide

UO3

Oxide 2 Bismuthtrioxide

Bi2O3Ionic conductor,applications in fuelcells.

Oxide 2 Tin dioxide SnO2 3.7Oxygen­deficient n­type semiconductor.Used in gas sensors.

Oxide 3 Bariumtitanate

BaTiO3 3

Ferroelectric,piezoelectric. Usedin some uncooledthermal imagers.Used in nonlinearoptics.

Oxide 3 Strontiumtitanate

SrTiO3 3.3

Ferroelectric,piezoelectric. Usedin varistors.Conductive whenniobium­doped.

Oxide 3 Lithiumniobate

LiNbO3 4

Ferroelectric,piezoelectric, showsPockels effect. Wideuses in electroopticsand photonics.

Oxide 3 Lanthanumcopper oxide

La2CuO4 2superconductivewhen doped withbarium or strontium

Layered 2 Lead(II)iodide

PbI2

Layered 2 Molybdenumdisulfide

MoS2

Layered 2 Galliumselenide GaSe 2.1 indirect

Photoconductor.Uses in nonlinearoptics.

Layered 2 Tin sulfide SnS

Layered 2 Bismuthsulfide

Bi2S3

Magnetic,diluted(DMS)[15]

3Galliummanganesearsenide

GaMnAs

Magnetic,diluted(DMS)

3Indiummanganesearsenide

InMnAs

Magnetic,diluted(DMS)

3Cadmiummanganesetelluride

CdMnTe

Magnetic,diluted(DMS)

3Leadmanganesetelluride

PbMnTe

Magnetic 4Lanthanumcalcium La0.7Ca0.3MnO3

colossalmagnetoresistance

Page 12: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 12/19

manganateMagnetic 2 Iron(II) oxide FeO antiferromagnetic

Magnetic 2 Nickel(II)oxide NiO 3.6 – 4.0

eV direct[16][17] antiferromagnetic

Magnetic 2 Europium(II)oxide EuO ferromagnetic

Magnetic 2 Europium(II)sulfide EuS ferromagnetic

Magnetic 2 Chromium(III)bromide

CrBr3

other 3Copperindiumselenide, CIS

CuInSe2 1 direct

other 3 Silver galliumsulfide

AgGaS2nonlinear opticalproperties

other 3 Zinc siliconphosphide

ZnSiP2

other 2ArsenicsulfideOrpiment

As2S3semiconductive inboth crystalline andglassy state

other 2ArsenicsulfideRealgar

As4S4semiconductive inboth crystalline andglassy state

other 2 Platinumsilicide PtSi

Used in infrareddetectors for 1–5 µm. Used ininfrared astronomy.High stability, lowdrift, used formeasurements. Lowquantum efficiency.

other 2 Bismuth(III)iodide

BiI3

other 2 Mercury(II)iodide

HgI2

Used in somegamma­ray and x­ray detectors andimaging systemsoperating at roomtemperature.

other 2 Thallium(I)bromide TlBr

Used in somegamma­ray and x­ray detectors andimaging systemsoperating at roomtemperature. Used asa real­time x­rayimage sensor.

other 2 Silver sulfide Ag2S 0.9 [18]

other 2 Iron disulfide FeS2 0.95

Mineral pyrite. Usedin later cat's whiskerdetectors,

Page 13: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 13/19

investigated for solarcells.

other 4Copper zinctin sulfide,CZTS

Cu2ZnSnS4 1.49 direct

Cu2ZnSnS4 isderived from CIGS,replacing theIndium/Gallium withearth abundantZinc/Tin.

other 4Copper zincantimonysulfide, CZAS

Cu1.18Zn0.40Sb1.90S7.2 2.2[19] direct

Copper zincantimony sulfide isderived from copperantimony sulfide(CAS), a famatiniteclass of compound.

other 3 Copper tinsulfide, CTS

Cu2SnS3 0.91 direct

Cu2SnS3 is p­typesemiconductor and itcan be used in thinfilm solar cellapplication.

Table of semiconductor alloy systems

The following semiconducting systems can be tuned to some extent, and represent not a single material but aclass of materials.

Group Elem. Materialclass Formula

Bandgap(eV)lower

upper Gap type Description

IV 2 Silicon­germanium

Si1­xGex 0.67 1.11[3] indirect

adjustable band gap,allows construction ofheterojunction structures.Certain thicknesses ofsuperlattices have directband gap.[20]

IV 2 Silicon­tin Si1­xSnx 1.0 1.11 indirect Adjustable band gap.[21]

III­V 3Aluminiumgalliumarsenide

AlxGa1­xAs 1.42 2.16[3] direct/indirect

direct band gap for x<0.4(corresponding to 1.42–1.95 eV); can be lattice­matched to GaAssubstrate over entirecomposition range; tendsto oxidize; n­doping withSi, Se, Te; p­doping withZn, C, Be, Mg.[2] Can beused for infrared laserdiodes. Used as a barrierlayer in GaAs devices toconfine electrons to GaAs(see e.g. QWIP). AlGaAswith composition close toAlAs is almosttransparent to sunlight.

Page 14: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 14/19

Used in GaAs/AlGaAssolar cells.

III­V 3Indiumgalliumarsenide

InxGa1­xAs 0.36 1.43 direct

Well­developed material.Can be lattice matched toInP substrates. Use ininfrared technology andthermophotovoltaics.Indium contentdetermines charge carrierdensity. For x=0.015,InGaAs perfectly lattice­matches germanium; canbe used in multijunctionphotovoltaic cells. Usedin infrared sensors,avalanche photodiodes,laser diodes, optical fibercommunication detectors,and short­wavelengthinfrared cameras.

III­V 3Indiumgalliumphosphide

InxGa1­xP 1.35 2.26 direct/indirect

used for HEMT and HBTstructures and high­efficiency multijunctionsolar cells for e.g.satellites. Ga0.5In0.5P isalmost lattice­matched toGaAs, with AlGaIn usedfor quantum wells for redlasers.

III­V 3Aluminiumindiumarsenide

AlxIn1­xAs 0.36 2.16 direct/indirect

Buffer layer inmetamorphic HEMTtransistors, adjustinglattice constant betweenGaAs substrate andGaInAs channel. Canform layeredheterostructures acting asquantum wells, in e.g.quantum cascade lasers.

III­V 3Aluminiumindiumantimonide

AlxIn1­xSb

III­V 3Galliumarsenidenitride

GaAsN

III­V 3Galliumarsenidephosphide

GaAsP 1.43 2.26 direct/indirect

Used in red, orange andyellow LEDs. Oftengrown on GaP. Can bedoped with nitrogen.

III­V 3Galliumarsenideantimonide

GaAsSb 0.7 1.42[3] direct

Used in blue laser diodes,ultraviolet LEDs (down

Page 15: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 15/19

III­V 3Aluminiumgalliumnitride

AlGaN 3.44 6.28 directto 250 nm), andAlGaN/GaN HEMTs.Can be grown onsapphire. Used inheterojunctions with AlNand GaN.

III­V 3Aluminiumgalliumphosphide

AlGaP 2.26 2.45 indirect Used in some greenLEDs.

III­V 3Indiumgalliumnitride

InGaN 2 3.4 direct

InxGa1–xN, x usuallybetween 0.02–0.3 (0.02for near­UV, 0.1 for390 nm, 0.2 for 420 nm,0.3 for 440 nm). Can begrown epitaxially onsapphire, SiC wafers orsilicon. Used in modernblue and green LEDs,InGaN quantum wells areeffective emitters fromgreen to ultraviolet.Insensitive to radiationdamage, possible use insatellite solar cells.Insensitive to defects,tolerant to latticemismatch damage. Highheat capacity.

III­V 3Indiumarsenideantimonide

InAsSb

III­V 3Indiumgalliumantimonide

InGaSb

III­V 4

Aluminiumgalliumindiumphosphide

AlGaInP direct/indirect

also InAlGaP, InGaAlP,AlInGaP; for latticematching to GaAssubstrates the In molefraction is fixed at about0.48, the Al/Ga ratio isadjusted to achieve bandgaps between about 1.9and 2.35 eV; direct orindirect band gapsdepending on theAl/Ga/In ratios; used forwaveengths between560–650 nm; tends toform ordered phasesduring deposition, whichhas to be prevented[2]

III­V 4

Aluminiumgalliumarsenide AlGaAsP

Page 16: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 16/19

phosphide

III­V 4

Indiumgalliumarsenidephosphide

InGaAsP

III­V 4

Indiumgalliumarsenideantimonide

InGaAsSb Use inthermophotovoltaics.

III­V 4

Indiumarsenideantimonidephosphide

InAsSbP Use inthermophotovoltaics.

III­V 4

Aluminiumindiumarsenidephosphide

AlInAsP

III­V 4

Aluminiumgalliumarsenidenitride

AlGaAsN

III­V 4

Indiumgalliumarsenidenitride

InGaAsN

III­V 4

Indiumaluminiumarsenidenitride

InAlAsN

III­V 4

Galliumarsenideantimonidenitride

GaAsSbN

III­V 5

Galliumindiumnitridearsenideantimonide

GaInNAsSb

III­V 5

Galliumindiumarsenideantimonidephosphide

GaInAsSbP

Can be grown on InAs,GaSb, and othersubstrates. Can be latticematched by varyingcomposition. Possiblyusable for mid­infraredLEDs.

II­VI 3

Cadmiumzinctelluride,CZT

CdZnTe 1.4 2.2 direct

Efficient solid­state x­rayand gamma­ray detector,can operate at roomtemperature. Highelectro­optic coefficient.Used in solar cells. Canbe used to generate anddetect terahertz radiation.

Page 17: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 17/19

Can be used as a substratefor epitaxial growth ofHgCdTe.

II­VI 3Mercurycadmiumtelluride

HgCdTe 0 1.5

Known as "MerCad".Extensive use in sensitivecooled infrared imagingsensors, infraredastronomy, and infrareddetectors. Alloy ofmercury telluride (asemimetal, zero bandgap) and CdTe. Highelectron mobility. Theonly common materialcapable of operating inboth 3–5 µm and 12–15 µm atmosphericwindows. Can be grownon CdZnTe.

II­VI 3Mercuryzinctelluride

HgZnTe 0 2.25

Used in infrareddetectors, infraredimaging sensors, andinfrared astronomy.Better mechanical andthermal properties thanHgCdTe but moredifficult to control thecomposition. Moredifficult to form complexheterostructures.

II­VI 3Mercuryzincselenide

HgZnSe

other 4

Copperindiumgalliumselenide,CIGS

Cu(In,Ga)Se2 1 1.7 directCuInxGa1–xSe2.Polycrystalline. Used inthin film solar cells.

See alsoHeterojunctionOrganic semiconductorsSemiconductor characterization techniques

References1. Milton Ohring Reliability and failure of electronic materials and devices (http://books.google.com/books?

id=gxSyMjosCwcC&pg=PA310&dq=semiconductor+failure+microphotograph&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=32#v=onepage&q=&f=false) Academic Press,1998 ISBN 0­12­524985­3, p. 310

Page 18: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 18/19

2. John Dakin, Robert G. W. Brown Handbook of optoelectronics, Volume 1 (http://books.google.com/books?id=3GmcgL7Z­6YC&pg=PA57&lpg=PA57&dq=gas+discharge+properties+mercury+neon+hydrogen+deuterium&source=bl&ots=ivxVbrcyip&sig=8ozlMgy­CAtNgmXRd9eTFIDioSc&hl=en&ei=WKXNS66xFYqy0gSfs4nqDw&sa=X&oi=book_result&ct=result&resnum=34&ved=0CH4Q6AEwIQ#v=onepage&q&f=false), CRC Press, 2006 ISBN 0­7503­0646­7 p. 57

3. Ioffe database (http://www.ioffe.ru/SVA/NSM/Semicond/)4. Safa O. Kasap, Peter Capper (2006). Springer handbook of electronic and photonic materials

(http://books.google.com/?id=rVVW22pnzhoC&pg=PA54). Springer. pp. 54,327. ISBN 0­387­26059­5.5. Y. Tao, J. M. Boss, B. A. Moores, C. L. Degen (2012). Single­Crystal Diamond Nanomechanical Resonators with

Quality Factors exceeding one Million (http://arxiv.org/abs/1212.1347). arXiv:1212.13476. Kittel, Charles. Introduction to Solid State Physics, 7th Edition. Wiley.7. http://www.matweb.com/search/datasheet.aspx?matguid=64d7cf04332e428dbca9f755f4624a6c8. Abass, A. K.; Ahmad, N. H. (1986). "Indirect band gap investigation of orthorhombic single crystals of sulfur".Journal of Physics and Chemistry of Solids 47 (2): 143. doi:10.1016/0022­3697(86)90123­X(https://dx.doi.org/10.1016%2F0022­3697%2886%2990123­X).

9. Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J (2008)."Determination of the optical band­gap energy of cubic and hexagonal boron nitride using luminescence excitationspectroscopy". Journal of Physics: Condensed Matter 20 (7): 075233. Bibcode:2008JPCM...20g5233E(http://adsabs.harvard.edu/abs/2008JPCM...20g5233E). doi:10.1088/0953­8984/20/7/075233(https://dx.doi.org/10.1088%2F0953­8984%2F20%2F7%2F075233).

10. Claus F. Klingshirn (1997). Semiconductor optics (http://books.google.com/?id=QRQU7S2CKCYC&pg=PA127).Springer. p. 127. ISBN 3­540­61687­X.

11. Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray (26 May 2013). "Annealing influence over structural andoptical properties of sprayed SnS thin films". Optical Materials 35: 1693–1699. Bibcode:2013OptMa..35.1693P(http://adsabs.harvard.edu/abs/2013OptMa..35.1693P). doi:10.1016/j.optmat.2013.04.034(https://dx.doi.org/10.1016%2Fj.optmat.2013.04.034).

12. Borisenko, Sergey et al. "Experimental Realization of a Three­Dimensional Dirac Semimetal". Physical ReviewLetters (PRL) 113 (027603). arXiv:1309.7978 (https://arxiv.org/abs/1309.7978). Bibcode:2014PhRvL.113b7603B(http://adsabs.harvard.edu/abs/2014PhRvL.113b7603B). doi:10.1103/PhysRevLett.113.027603(https://dx.doi.org/10.1103%2FPhysRevLett.113.027603).

13. S. Banerjee et al. (2006). "Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidalactivity using atomic force microscopy" (http://www.ias.ac.in/currsci/may252006/1378.pdf) (PDF). Current Science 90(10): 1378.

14. O. Madelung, U. Rössler, M. Schulz (ed.). "Cuprous oxide (Cu2O) band structure, band energies". Landolt­Börnstein– Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. 41C: Non­Tetrahedrally Bonded Elements and Binary Compounds I. doi:10.1007/10681727_62(https://dx.doi.org/10.1007%2F10681727_62).

15. B. G. Yacobi Semiconductor materials: an introduction to basic principles (http://books.google.com/books?id=6FAbQCiaNPEC&pg=PA153&dq=%22MAGNETIC+SEMICONDUCTORS%22&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=3#v=onepage&q=%22MAGNETIC%20SEMICONDUCTORS%22&f=false) Springer, 2003, ISBN 0­306­47361­5

16. Synthesis and Characterization of Nano­Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K.Chatterjee

17. Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a]and Santi Maensiri [b]

18. HODES; Ebooks Corporation (8 October 2002). Chemical Solution Deposition of Semiconductor Films(http://books.google.com/books?id=RLeR6v2Nq84C&pg=PA319). CRC Press. pp. 319–. ISBN 978­0­8247­4345­1.Retrieved 28 June 2011.

19. Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc SulfideThin Films on Transparent Conducting Electrode,International Journal of Photoenergy, vol. 2013, Article ID154694, 7 pages, 2013. doi:10.1155/2013/154694 (http://www.hindawi.com/journals/ijp/2013/154694/cta/).

20. Rajakarunanayake, Yasantha Nirmal (1991) Optical properties of Si­Ge superlattices and wide band gap II­VIsuperlattices (http://thesis.library.caltech.edu/2857/) Dissertation (Ph.D.), California Institute of Technology

21. Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo A. Torres; Schwingenschlögl, Udo; Hussain,Muhammad M. "Tin ­ an unlikely ally for silicon field effect transistors?". physica status solidi (RRL) ­ RapidResearch Letters 8 (4): 332–335. Bibcode:2014PSSRR...8..332H(http://adsabs.harvard.edu/abs/2014PSSRR...8..332H). doi:10.1002/pssr.201308300(https://dx.doi.org/10.1002%2Fpssr.201308300).

Page 19: List of Semiconductor Materials - Wikipedia, The Free Encyclopedia

7/29/2015 List of semiconductor materials ­ Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/List_of_semiconductor_materials 19/19

Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_semiconductor_materials&oldid=665501724"

Categories: Semiconductor materials

This page was last modified on 4 June 2015, at 18:02.Text is available under the Creative Commons Attribution­ShareAlike License; additional terms mayapply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registeredtrademark of the Wikimedia Foundation, Inc., a non­profit organization.