lino%eugene%–research%assistant...

43
Lino Eugene – Research assistant McGill Nanotools Microfab Email: [email protected]

Upload: others

Post on 18-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Lino  Eugene  –  Research  assistant  McGill  Nanotools  Microfab  

E-­‐mail:  [email protected]  

Page 2: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   2  

Page 3: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Origins  of  microfabrica@on  �  Key  dates  

-­‐  1947:  First  point-­‐contact  transfert  resistor  (with  Germanium  crystal),  Bell  Labs  

-­‐  1958:  First  integrated  circuit  (IC),  Texas  Instrument  

 -­‐  1961:  First  silicon  IC  chip,  Fairchild  Camera  

Introduc@on  to  Microfabrica@on  04/03/2012   3  

Page 4: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Origins  of  microfabrica@on  �  Key  dates  

-­‐  1971:  First  microprocessor,  i4004,    Intel  

   -­‐  2011:  core  i7-­‐  3960x,  Intel  

⇒  Development  of  microfabrica@on  methods     Introduc@on  to  Microfabrica@on  

2300  transistors  10  µm  node  Max  CPU  frequency:  748  kHz  

2.27  billion  transistors  !  32  nm  node  Max  CPU  frequency:  3.3  GHz  

04/03/2012   4  

Page 5: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Microtechnology  subfields  � Microelectronics:  transistors,  capacitors,  inductors,  resistors,  diodes  

�  Optoelectronics:  photodiodes,  solar  cells,  CCDs,  LEDs,  laser  diodes,  ...    

� Microelectromechanical  systems  (MEMS):  ink  jet  heads,  micro-­‐accelerometers,  gyroscopes,  microphones,  micromirrors,  microbolometers,  …  

� Microbiotechnology:  DNA  microarrays,  microfluidic  systems,  BioMEMS,  lab-­‐on-­‐a-­‐chip  

Introduc@on  to  Microfabrica@on  04/03/2012   5  

Page 6: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Towards  nanotechnology/nanofabrica@on  

� Nanoelectronics:  nanowires,  nanocrystals,  nanotubes  for  logic  and  memory        ⇒  quantum  computer  

� Nanoelectromechanical  systems  (NEMS):  @ps  for  AFM,  carbon  nanotubes  for  nanomotors  or  sensors  

� Nanobiotechnology:  nanopar@cles  as  drug  delivery  systems  or  as  sensors  

Introduc@on  to  Microfabrica@on  04/03/2012   6  

Page 7: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   7  

Page 8: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Cleanrooms  � Why?  -­‐  Reduc@on  of  par@cle  contamina@on  from  air  and  people  -­‐  Control  of  temperature,  humidity,  vibra@ons,  light  

�  How?  -­‐  Filtered  and  circula@ng  air  -­‐  Overpressure  -­‐  Cleanroom  suits  -­‐  Highly  pure  water,  gases  and  chemicals  -­‐  Special  furniture  (notebooks,  pencils,  fabrics,  …)  and  compa@ble  materials  

Introduc@on  to  Microfabrica@on  04/03/2012   8  

Page 9: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Cleanrooms  �  Cleanroom  classifica@on  

-­‐  Intel:  class  1  to  100  

-­‐  Surgery  room  :  class  100  to  10000  

-­‐  House:  ∼300000  

Introduc@on  to  Microfabrica@on  04/03/2012   9  

Page 10: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   10  

Page 11: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Substrates  �  Silicon  wafer:  most  widely  used  in  microfabrica@on  -­‐  Single  crystal  ingots  of  various  diameters  

grown  from  melted  electronic  grade  silicon  (Czochralski  method)  

-­‐  wafers  of  various  sizes  and  thicknesses  sliced  from  ingots  and  polished  

-­‐  Typical  wafer  diameters:  2,  4,  6,  8  and  12”  

 

Introduc@on  to  Microfabrica@on  04/03/2012   11  

Page 12: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Substrates  � Quartz  (crystalline  SiO2),  fused  silica  (amorphous  SiO2)  and  glass  (SiO2  and  metal  oxides)  wafers  

�  III-­‐V  wafers:  GaAs,  AlGaAs,  GaP,  InAs,  InP,  etc  �  SiC  wafer  �  Sapphire  (crystalline  Al2O3)  wafer  �  Plas@c  substrates  

Introduc@on  to  Microfabrica@on  04/03/2012   12  

Page 13: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   13  

Page 14: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Film  deposi@on  techniques  �  Physical  Vapor  Deposi@on  (PVD):  elemental  metals  (Al,  Cr,  Au,  Ni),  refractory  metals  (W,  Ta,  Ti,...),  metal  oxides  and  nitrides,  alloys  

�  Chemical  Vapor  Deposi@on  (CVD):  a-­‐Si,  poly-­‐Si,  SiO2,  Si3N4,  SiOxNy  

�  Epitaxy:  silicon,  germanium,  III-­‐V  materials  �  Electrochemical  Deposi@on  (ECD):  Cr,  Au,  Ni,  Ag,  Cu  

�  Spin  and  spray  coa@ngs:  photoresists  and  polymers  

Introduc@on  to  Microfabrica@on  04/03/2012   14  

Page 15: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  

�  Example:  SU-­‐8  master  for  PDMS  molding  

Introduc@on  to  Microfabrica@on  04/03/2012   15  

Page 16: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Photolithography  �  Spin  coa@ng:    

⇒  Thicknesses  from  10  nm  to  100  µm  

Introduc@on  to  Microfabrica@on  

Main  parameters:    -­‐   viscosity  of  the  resist  -­‐   spin  speed  -­‐   bake  temperature  and  

dura@on  

 

04/03/2012   16  

Page 17: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Photolithography  � UV  exposure:  Hg  lamp,  peaks  at  365,  405  and  436  nm  

⇒  Resolu@on  of  ∼  500  nm  in  the  best  condi@ons    � Development:  alkaline  developer,  typically  diluted  TMAH  

Introduc@on  to  Microfabrica@on  

Main  parameters:    -­‐  resist  thickness  -­‐  gap  between  the  substrate  

and  the  photomask  -­‐  exposure  dose  or  @me  

04/03/2012   17  

Page 18: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Photolithography  � Nega@ve  or  posi@ve  resist  

Introduc@on  to  Microfabrica@on  

-­‐   For  posi@ve  resists,  dissolu@on  of  the  exposed  areas  in  the  developer.  -­‐   For  nega@ve  resists,  dissolu@on  of  the    unexposed  areas    

04/03/2012   18  

Page 19: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Electrolithography  �  Posi@ve  or  nega@ve  electrosensi@ve  resist  � Maskless  process  

⇒Resolu@on  dependant  on  the  resist  material,  the  thickness  and  the  electron  energy  

Introduc@on  to  Microfabrica@on  

30  nm  spaces/lines  in  PMMA  

04/03/2012   19  

Page 20: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   20  

Page 21: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Etching  � Wet  etching  

-­‐  solid  +  liquid  etchant  ð  soluble  products  -­‐  Isotropic,  except  for  crystal  silicon  or  quartz  -­‐  Mask  undercut  -­‐  Difficult  to  control  precisely  with  small  

geometries,  and  closely  spaced  structures  -­‐  Batch  processing  

Introduc@on  to  Microfabrica@on  

Etching  

Paoerned  resist  

04/03/2012   21  

Page 22: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Etching  � Anisotropic  wet  etching  of  Si  

-­‐  Base  etchant:  KOH  or  TMAH  at  T>70  °C  -­‐  Fast  etch  in  (100)  crystal  planes,  limited  in  

(111)  planes  -­‐  V-­‐groove  geometries  -­‐  Angle  between  (100)  and  (111):  54.7°  

   

⇒  Bulk  silicon  micromachining  

Introduc@on  to  Microfabrica@on  04/03/2012   22  

Page 23: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Etching  �  Reac@ve  Ion  Etching    

-­‐  Solid  +  gaseous  etchant  ð  vola@le  products  -­‐  Chemical  and  physical  (spuoering)  etching  -­‐  Excellent  control  -­‐  High  resolu@on  -­‐  Single  wafer  processing  

Introduc@on  to  Microfabrica@on  04/03/2012   23  

Page 24: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Process  integra@on  Substrate  prepara@on  

• Chemical  wet  cleaning  • Physical  wet  cleaning  • Dry  cleaning  

Addi@ve  microfabrica@on  

• PVD  • CVD  • Epitaxy  • Electropla@ng  • Spin  and  spray  coa@ng  

Paoerning  

• Direct    laser  wri@ng  • Photolithography  • EBL  • Sos  lithography  • Nanoimprint  

Subtrac@ve  microfabrica@on    

• Wet  etching  • Dry  etching  

Property  modifica@on  

• Doping  • Ion  implanta@on  • Annealing  

Packaging  

• Wafer  bonding  • Dicing  • Wire  bonding  • Characteriza@on  • Test  

Introduc@on  to  Microfabrica@on  

N•  The  steps  are  used  and  repeated  as  necessary  to  build  up  or  take  down  mul@ple  layers  (“addi@ve”  vs.  “subtrac@ve”)  

•  Aser  microfabrica@on,  packaging  may  be  needed  for  protec@on  from  and  connec@on  to  the  outside  world  

04/03/2012   24  

Page 25: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   25  

Page 26: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

SU-­‐8  master  for  PDMS  molding  �  What  you  should  think  about  prior  fabrica@on:  -­‐  Process  flow:  tools  available,  limita@ons,  cri@cal  steps  

-­‐  Layout  design:  linewidths,  spacings,  wafer  size  -­‐  Feature  height  ⇒ Dimensions  determined  by  simula@ons  some@mes  �  What  you  need:  -­‐  Materials:  Si  wafer,  SU-­‐8  nega@ve  epoxy  resist,  SU-­‐8  developer,  IPA,  diluted  HF  or  BOE,  DI  water  

-­‐  Equipment:  wet  benches,  spin  coater,  hot  plate,  oven,  photomask+UV  mask  aligner,  plasma  chamber,  op@cal  microscope,  profiler  

Introduc@on  to  Microfabrica@on  04/03/2012   26  

Page 27: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

SU-­‐8  master  for  PDMS  molding  �  Process  flow  

04/03/2012   Introduc@on  to  Microfabrica@on   27  

1)  Na@ve  oxide  etching    

2)  Dehydra@on  

3)  SU-­‐8  spin  coa@ng  

4)  Resist  bake  

5)  UV  exposure  

6)  Post-­‐exposure  bake    

7)  Development  

8)  Hard  bake  

9)  Plasma  treatment  

Photolithography  Process  

Metrology:  op@cal  microscope  and  profiler,  to  verify  dimensions  

Cri@cal  steps  -­‐  Step  3:  air  bubbles  trapped  in  the  resist  -­‐  Steps  4  and  6:  thermal  stress    

Page 28: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Outline  �  Introduc@on  

-­‐  Origins  of  microfabrica@on  -­‐  Microtechnology  subfields  -­‐  Towards  nanotechnology/nanofabrica@on  

�  Fabrica@on  basics  -­‐  Cleanrooms  -­‐  Wafers  -­‐  Thin  film  deposi@on  techniques  -­‐  Lithography  -­‐  Etching  -­‐  Example  of  fabrica@on:  SU-­‐8  master  for  PDMS  molding  

� McGill  Nanotools  Microfab  

Introduc@on  to  Microfabrica@on  20/02/2012   28  

Page 29: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

McGill  Nanotools  Microfab  �  1000  sq.  s,  class  100  and  1000  

Introduc@on  to  Microfabrica@on  

Gowning  room  

Photolithography  room,  class  100  

Deposi@on  and  etching  room,  class  1000  

20/02/2012   29  

Page 30: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

McGill  Nanotools  Microfab  �  Process  capabili@es  

-­‐  Thermal  oxida@on  -­‐  Deposi@on:  E-­‐beam  evapora@on  of  

metals,  spuoering  of  metals  and  oxides  ,  LPCVD  of  a-­‐Si,  poly-­‐Si  and  Si3N4  ,  PECVD  SiO2  and  Si3N4    

-­‐  Lithography:  spin  coa@ng,  spray  coa@ng,  mask  aligner,  EBL  

-­‐  Wet  etching:  Si,  SiO2,  metals,  resists  -­‐  Plasma  etching:  Si,  SiO2,  Si3N4,  III-­‐V,  

metals,  resists  -­‐  Packaging:  wafer  bonding,  dicing,  

wire  bonding    

Introduc@on  to  Microfabrica@on  04/03/2012   30  

Page 31: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

McGill  Nanotools  Microfab  �  Characteriza@on  

-­‐  Visualiza@on/metrology:  op@cal  microscopes,  scanning  electron  microscope  (SEM)  

-­‐  Metrology:  op@cal  and  mechanical  profilers,  spectroscopic  ellipsometer,  reflectometer,  atomic  force  microscope  (AFM)  

-­‐  Electrical  measurements:  4-­‐point  probes,  DC  probe  sta@on  

Introduc@on  to  Microfabrica@on  04/03/2012   31  

Page 32: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Examples  of  micro/nanostructures  from  McGill  Nanotools  Microfab  

� MEMS  

Introduc@on  to  Microfabrica@on  

Nanopaoerning  on  micromachined  structures  

Silicon  nitride  nanocan@levers  

11  nm  thick  and  260  nm  wide  Al  nanowires  

100  µm  long,  300  nm  high  and  400  nm  wide  can@levers    

04/03/2012   32  

Page 33: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Examples  of  micro/nanostructures  from  McGill  Nanotools  Microfab  

� Microbiotechnology  

Introduc@on  to  Microfabrica@on  

Straight  SU-­‐8  pins  Microfluidics  

Bond  on  glass  slide  to  create  channels  

04/03/2012   33  

Page 34: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Examples  of  micro/nanostructures  from  McGill  Nanotools  Microfab  

� Optoelectronics  

Introduc@on  to  Microfabrica@on  

White  LED  with  InGaN/GaN  dot-­‐in-­‐a-­‐wire  heterostructures  

GaAs/AlGaAs  far  IR  quantum  well  photodetectors  

GaAs/AlGaAs  mesa  

Schooky  gate  of  250  nm  wide    04/03/2012   34  

Page 35: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Have  an  idea  ?  Where  to  start  ?  �  Gather  informa@on  in  literature  and  with  colleagues  �  Dras  a  process  flow  �  Schedule  an  appointment  with  the  fab  manager  

�  Review  process  flow  and  assess  feasibility  �  Make  modifica@ons;  revised  version  of  the  process  flow  

�  Get  access  to  the  cleanroom  and  start  training  process  �  WHMIS  (hop://www.mcgill.ca/ehs/training/whmis/)  �  Safety  quiz  �  Microfab  policies  �  Reserva@on  sosware  and  document  repository  �  Equipment  training  

Introduc@on  to  Microfabrica@on  04/03/2012   35  

Page 36: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

McGill  Nanotools  Microfab  �  For  more  informa@on,  please  visit  us  at  hop://www.mcgill.ca/microfab/  

� Or  contact  Lino  Eugene@  514-­‐398-­‐7329  [email protected]  

   

Introduc@on  to  Microfabrica@on  04/03/2012   36  

Page 37: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Learn  more  about  microfabrica@on  �  hop://mcgill.worldcat.org/oclc/772698654  

�  hop://www.amazon.ca/Introduc@on-­‐Microfabrica@on-­‐Sami-­‐Franssila/dp/0470749830  

04/03/2012   Introduc@on  to  Microfabrica@on   37  

Page 38: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Introduc@on  to  Microfabrica@on  

Thank  you  for  your  aoen@on  !  

04/03/2012   38  

Page 39: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

TSMC  fab  tour  

04/03/2012   Introduc@on  to  Microfabrica@on   39  

Page 40: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Physical  Vapor  Deposi@on  �  Electron-­‐beam  evapora@on  

Introduc@on  to  Microfabrica@on  

-­‐   Elemental  metals:  Au,  Al,  Cr,  Ti,  Ni,  Pt,...  -­‐   HV  (10-­‐7  Torr)  and  UHV  (10-­‐11  Torr)  -­‐   Line-­‐of-­‐sight  transport  -­‐   Rates  from  1  nm/min  to  few  µm/min  -­‐   Mul@-­‐layers  

 

04/03/2012   40  

Page 41: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Physical  Vapor  Deposi@on  �  Spuoering  

Introduc@on  to  Microfabrica@on  

-­‐   DC  field  for  conduc@ve  materials  and  RF  field  for  insulators  -­‐   Medium  vacuum:  10-­‐2-­‐10-­‐3  Torr  -­‐   Good  step  coverage  -­‐   Rates  between  1  and  10  nm/s  -­‐   Reac@ve  spuoering  by  adding  gas  -­‐   Co-­‐spuoering  for  alloys  -­‐   Mul@-­‐layers  

 

04/03/2012   41  

Page 42: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Chemical  Vapor  Deposi@on  �  Low  pressure  CVD  (LPCVD)    

 

Introduc@on  to  Microfabrica@on  

-­‐     Reac@on  between  gases  at  high  temperature,  500-­‐900  °C  -­‐   High  purity  -­‐   Good  step  coverage  and  uniformity  -­‐   Deposi@on  of  SiO2,  Si3N4,  poly-­‐Si,  a-­‐Si  -­‐   Batch  processing  

 

04/03/2012   42  

Page 43: Lino%Eugene%–Research%assistant …mnm.physics.mcgill.ca/~micronano/2013/micronano_protected/Prot… · Process%integraon % Substrate% preparaon % •Chemical%wet cleaning% •Physical%wet

Chemical  Vapor  Deposi@on  �  Plasma-­‐enhanced  CVD  (PECVD)  

Introduc@on  to  Microfabrica@on  

-­‐   Reac@on  between  gases  at  ~300  °C,  and  enhanced  by  plasma  -­‐   Less  dense  and  non-­‐stoichiometric  films  -­‐   Deposi@on  of  SiO2,  Si3N4,  SiOxNy  ,  a-­‐Si  -­‐   Single  wafer  

 

04/03/2012   43