link.springer.com978-3-319-12316-5/1.pdf · 706 bibliography [ac87] b.d. aguda and b.l. clarke....

110
Bibliography [AAA12] B. Ambrosio and M.A. Aziz-Alaoui. Synchronization and control of coupled reaction–diffusion sys- tems of the FitzHugh–Nagumo type. Comput. Math. Appl., 64(5):934–943, 2012. [AAF95] S. Adjerid, M. Aiffa, and J.E. Flaherty. High-order finite element methods for singularly perturbed elliptic and parabolic problems. SIAM J. Appl. Math., 55(2):520–543, 1995. [AAM98] J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch. Asymptotic Approaches in Nonlinear Dynamics. Springer, 1998. [AAN11] A. Arnold, N.B. Abdallah and C. Negulescu. WKB-based schemes for the oscillatory 1D Schr¨odinger equation in the semi-classical limit. SIAM J. Numer. Anal., 49(4):1436–1460, 2011. [AARR87] F. Argoul, A. Arneodo, P. Richetti, and J.C. Roux. From quasi-periodicity to chaos in the Belousov– Zhabotinskii reaction. I. Experiment. J. Chem. Phys., 86(6):3325–3338, 1987. [AB86] U. Ascher and G. Bader. Stability of collocation at Gaussian points. SIAM J. Numer. Anal., 23(2): 412–422, 1986. [AB93] P. Auger and E. Benoit. A prey-predator model in a multi-patch environment with different time scales. J. Biol. Syst., 1(2):187–197, 1993. [AB02] O. Alvarez and M. Bardi. Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim., 40(4):1159–1188, 2002. [AB03] O. Alvarez and M. Bardi. Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Rat. Mech. Anal., 170(1):17–61, 2003. [ABAC05] O.E. Akman, D.S. Broomhead, R.V. Abadi, and R.A. Clement. Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. J. Math. Biol., 51(6):661–694, 2005. [ABBG02] P. Ashwin, M.V. Bartuccelli, T.J. Bridges, and S.A. Gourley. Travelling fronts for the KPP equation with spatio-temporal delay. Zeitschr. Angewand. Math. Phys., 53(1):103–122, 2002. [ABC + 06] N.D. Alikakos, P.W. Bates, J.W. Cahn, P.C. Fife, G. Fusco, and G.B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discr. Cont. Dyn. Syst. B, 6(2):237–266, 2006. [Abd05] A. Abdulle. On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul., 4(2):447–459, 2005. [Abd12] A. Abdulle. Explicit methods for stiff stochastic differential equations. Lecture Notes in Comput. Sci. Engineer., 82:1–22, 2012. [Abe85a] E.H. Abed. Multiparameter singular perturbation problems: iterative expansions and asymptotic stability. Syst. Contr. Lett., 5(4):279–282, 1985. [Abe85b] E.H. Abed. Singularly perturbed Hopf bifurcation. IEEE Transactions on Circuits and Systems, 32(12):1270–1280, 1985. [Abe86a] E.H. Abed. Decomposition and stability for multiparameter singular perturbation problems. IEEE Transactions on Automatic Control, 31(10):925–934, 1986. [Abe86b] E.H. Abed. Strong D-stability. Syst. Contr. Lett., 7(3):207–212, 1986. [ABF91] N.D. Alikakos, P.W. Bates, and G. Fusco. Slow motion for the Cahn–Hilliard equation in one space dimension. J. Differential Equat., 90(1):81–135, 1991. [ABF97] N.D. Alikakos, L. Bronsard, and G. Fusco. Slow motion in the gradient theory of phase transitions via energy and spectrum. Calc. Var. Partial Diff. Equat., 6(1):39–66, 1997. [ABK12] D.C. Antonopoulou, D. Bl¨omker, and G.D. Karali. Front motion in the one-dimensional stochastic Cahn–Hilliard equation. SIAM J. Math. Anal., 44(5):3242–3280, 2012. [ABM07] O. Alvarez, M. Bardi, and C. Marchi. Multiscale problems and homogenization for second-order Hamilton–Jacobi equations. J. Differential Equat., 243(2):349–387, 2007. [Abo97] E.F. Aboufadel. Qualitative analysis of a singularly-perturbed system of differential equations re- lated to the van der Pol equations. Rocky Mountain J. Math., 27(2):367–385, 1997. [Abr10] R.V. Abramov. Approximate linear response for slow variables of dynamics with explicit time scale separation. J. Comp. Phys., 229(20):7739–7746, 2010. [Abr12a] R.V. Abramov. A simple linear response closure approximation for slow dynamics of a multiscale system with linear coupling. Multiscale Model. Simul., 10(1):28–47, 2012. [Abr12b] R.V. Abramov. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling. Comm. Math. Sci., 10(2):595–624, 2012. [Abr13a] R.V. Abramov. A simple closure approximation for slow dynamics of a multiscale system: nonlinear and multiplicative coupling. Multiscale Model. Simul., 11(1):134–151, 2013. [Abr13b] R.V. Abramov. A simple stochastic parameterization for reduced models of multiscale dynamics. arXiv:1302.4132v1, pages 1–23, 2013. © Springer International Publishing Switzerland 2015 C. Kuehn, Multiple Time Scale Dynamics, Applied Mathematical Sciences 191, DOI 10.1007/978-3-319-12316-5 705

Upload: others

Post on 10-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography

[AAA12] B. Ambrosio and M.A. Aziz-Alaoui. Synchronization and control of coupled reaction–diffusion sys-

tems of the FitzHugh–Nagumo type. Comput. Math. Appl., 64(5):934–943, 2012.

[AAF95] S. Adjerid, M. Aiffa, and J.E. Flaherty. High-order finite element methods for singularly perturbed

elliptic and parabolic problems. SIAM J. Appl. Math., 55(2):520–543, 1995.

[AAM98] J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch. Asymptotic Approaches in Nonlinear Dynamics.

Springer, 1998.

[AAN11] A. Arnold, N.B. Abdallah and C. Negulescu. WKB-based schemes for the oscillatory 1D Schrodinger

equation in the semi-classical limit. SIAM J. Numer. Anal., 49(4):1436–1460, 2011.

[AARR87] F. Argoul, A. Arneodo, P. Richetti, and J.C. Roux. From quasi-periodicity to chaos in the Belousov–

Zhabotinskii reaction. I. Experiment. J. Chem. Phys., 86(6):3325–3338, 1987.

[AB86] U. Ascher and G. Bader. Stability of collocation at Gaussian points. SIAM J. Numer. Anal., 23(2):

412–422, 1986.

[AB93] P. Auger and E. Benoit. A prey-predator model in a multi-patch environment with different time

scales. J. Biol. Syst., 1(2):187–197, 1993.

[AB02] O. Alvarez and M. Bardi. Viscosity solutions methods for singular perturbations in deterministic

and stochastic control. SIAM J. Control Optim., 40(4):1159–1188, 2002.

[AB03] O. Alvarez and M. Bardi. Singular perturbations of nonlinear degenerate parabolic PDEs: a general

convergence result. Arch. Rat. Mech. Anal., 170(1):17–61, 2003.

[ABAC05] O.E. Akman, D.S. Broomhead, R.V. Abadi, and R.A. Clement. Eye movement instabilities and

nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. J. Math. Biol.,

51(6):661–694, 2005.

[ABBG02] P. Ashwin, M.V. Bartuccelli, T.J. Bridges, and S.A. Gourley. Travelling fronts for the KPP equation

with spatio-temporal delay. Zeitschr. Angewand. Math. Phys., 53(1):103–122, 2002.

[ABC+06] N.D. Alikakos, P.W. Bates, J.W. Cahn, P.C. Fife, G. Fusco, and G.B. Tanoglu. Analysis of a corner

layer problem in anisotropic interfaces. Discr. Cont. Dyn. Syst. B, 6(2):237–266, 2006.

[Abd05] A. Abdulle. On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale

Model. Simul., 4(2):447–459, 2005.

[Abd12] A. Abdulle. Explicit methods for stiff stochastic differential equations. Lecture Notes in Comput. Sci.

Engineer., 82:1–22, 2012.

[Abe85a] E.H. Abed. Multiparameter singular perturbation problems: iterative expansions and asymptotic

stability. Syst. Contr. Lett., 5(4):279–282, 1985.

[Abe85b] E.H. Abed. Singularly perturbed Hopf bifurcation. IEEE Transactions on Circuits and Systems,

32(12):1270–1280, 1985.

[Abe86a] E.H. Abed. Decomposition and stability for multiparameter singular perturbation problems. IEEE

Transactions on Automatic Control, 31(10):925–934, 1986.

[Abe86b] E.H. Abed. Strong D-stability. Syst. Contr. Lett., 7(3):207–212, 1986.

[ABF91] N.D. Alikakos, P.W. Bates, and G. Fusco. Slow motion for the Cahn–Hilliard equation in one space

dimension. J. Differential Equat., 90(1):81–135, 1991.

[ABF97] N.D. Alikakos, L. Bronsard, and G. Fusco. Slow motion in the gradient theory of phase transitions

via energy and spectrum. Calc. Var. Partial Diff. Equat., 6(1):39–66, 1997.

[ABK12] D.C. Antonopoulou, D. Blomker, and G.D. Karali. Front motion in the one-dimensional stochastic

Cahn–Hilliard equation. SIAM J. Math. Anal., 44(5):3242–3280, 2012.

[ABM07] O. Alvarez, M. Bardi, and C. Marchi. Multiscale problems and homogenization for second-order

Hamilton–Jacobi equations. J. Differential Equat., 243(2):349–387, 2007.

[Abo97] E.F. Aboufadel. Qualitative analysis of a singularly-perturbed system of differential equations re-

lated to the van der Pol equations. Rocky Mountain J. Math., 27(2):367–385, 1997.

[Abr10] R.V. Abramov. Approximate linear response for slow variables of dynamics with explicit time scale

separation. J. Comp. Phys., 229(20):7739–7746, 2010.

[Abr12a] R.V. Abramov. A simple linear response closure approximation for slow dynamics of a multiscale

system with linear coupling. Multiscale Model. Simul., 10(1):28–47, 2012.

[Abr12b] R.V. Abramov. Suppression of chaos at slow variables by rapidly mixing fast dynamics through

linear energy-preserving coupling. Comm. Math. Sci., 10(2):595–624, 2012.

[Abr13a] R.V. Abramov. A simple closure approximation for slow dynamics of a multiscale system: nonlinear

and multiplicative coupling. Multiscale Model. Simul., 11(1):134–151, 2013.

[Abr13b] R.V. Abramov. A simple stochastic parameterization for reduced models of multiscale dynamics.

arXiv:1302.4132v1, pages 1–23, 2013.

© Springer International Publishing Switzerland 2015C. Kuehn, Multiple Time Scale Dynamics, Applied MathematicalSciences 191, DOI 10.1007/978-3-319-12316-5

705

Page 2: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

706 Bibliography

[AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to

the peroxidase-oxidase reaction. J. Chem. Phys., 87(6):3461–3470, 1987.

[AC91] J.C. Alexander and D. Cai. On the dynamics of bursting systems. J. Math. Biol., 29:405–423, 1991.

[AC08] A. Abdulle and S. Cirilli. S-ROCK: Chebyshev methods for stiff stochastic differential equations.

SIAM J. Sci. Comput., 30(2):997–1014, 2008.

[ACC99] B. Amini, J.W. Clark, and C.C. Canavier. Calcium dynamics underlying pacemaker-like and

burst firing oscillations in midbrain dopaminergic neurons: a computational study. J. Neurophysiol.,

82(5):2249–2261, 1999.

[ACC+07] A. Adrover, F. Creta, S. Cerbelli, M. Valorani, and M. Giona. The structure of slow invariant

manifolds and their bifurcational routes in chemical kinetic models. Comput. Chem. Eng., 31(11):

1456–1474, 2007.

[ACDG84] J. Argemi, H. Chagneux, C. Ducreux, and M. Gola. Qualitative study of a dynamical system for

metrazol-induced paroxysmal depolarization shifts. Bull. Math. Biol., 46(5):903–922, 1984.

[ACGV07] A. Adrover, F. Creta, M. Giona, and M. Valorani. Stretching-based diagnostics and reduction of

chemical kinetic models with diffusion. J. Comp. Phys., 225(2):1442–1471, 2007.

[ACM08a] N. Ben Abdallah, F. Castella, and F. Mehats. Time averaging for the strongly confined nonlinear

Schrodinger equation, using almost-periodicity. J. Differential Equations, 245(1): 154–200, 2008.

[ACM08b] M.H. Adhikari, E.A. Coutsias, and J.K. McIver. Periodic solutions of a singularly perturbed delay

differential equation. Physica D, 237:3307–3321, 2008.

[ACR79] U. Ascher, J. Christiansen, and R.D. Russell. COLSYS-A collocation code for boundary-value prob-

lems. In Codes for Boundary-Value Problems in Ordinary Differential Equations, pages 164–185. Springer,

1979.

[ACR81] U. Ascher, J. Christiansen, and R.D. Russell. Collocation software for boundary-value ODEs. ACM

Trans. Math. Software, 7(2):209–222, 1981.

[ACV13] M. Avendano-Camacho and Yu. Vorobiev. On the global structure of normal forms for slow–fast

Hamiltonian systems. Russ. J. Math. Phys., pages 138–148, 2013.

[ACVV13] M. Avendano-Camacho, J.A. Vallejo, and Yu. Vorobiev. Higher order corrections to adiabatic in-

variants of generalized slow–fast Hamiltonian systems. arXiv:1305.3974v1, pages 1–22, 2013.

[ACY03] S. Ai, S.-N. Chow, and Y. Yi. Travelling wave solutions in a tissue interaction model for skin pattern

formation. J. Dyn. Diff. Eq., 15(2):517–534, 2003.

[ADD12] E.O. Alzahrani, F.A. Davidson, and N. Dodds. Reversing invasion in bistable systems. J. Math. Biol.,

65:1101–1124, 2012.

[ADF90] F. Awiszus, J. Dehnhardt, and T. Funke. The singularly perturbed Hodgkin–Huxley equations as a

tool for the analysis of repetitive nerve activity. J. Math. Biol., 28(2):177–195, 1990.

[AE99] J.E. Avron and A. Elgart. Adiabatic theorem without a gap condition. Commun. Math. Phys., 203:

445–463, 1999.

[AE03] A. Abdulle and W. E. Finite difference heterogeneous multi-scale method for homogenization prob-

lems. J. Comp. Phys., 191(1):18–39, 2003.

[AEEVE12] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden. The heterogeneous multiscale method. Acta

Numerica, 21:1–87, 2012.

[AF92] M. Abbad and J.A. Filar. Perturbation and stability theory for Markov control problems. IEEE Trans.

Aut. Contr., 37(9): 1415–1420, 1992.

[AF94] N.D. Alikakos and G. Fusco. Slow dynamics for the Cahn–Hilliard equation in higher space dimension

part I: spectral estimates. Comm. Partial Diff. Equat., 19(9):1387–1447, 1994.

[AF95] M. Abbad and J.A. Filar. Algorithms for singularly perturbed Markov control problems: a survey.

Contr. Dynamic Syst., 73:257–287, 1995.

[AF98] N.D. Alikakos and G. Fusco. Slow dynamics for the Cahn–Hilliard equation in higher space dimen-

sions: the motion of bubbles. Arch. Rat. Mech. Anal., 141(1):1–61, 1998.

[AF03] R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Elsevier, 2003.

[AF09] B. Ambrosio and J.-P. Francoise. Propagation of bursting oscillations. Phil. Trans. R. Soc. A, 367:

4863–4875, 2009.

[AFB90] M. Abbad, J.A. Filar, and T.R. Bielecki. Algorithms for singularly perturbed limiting average

Markov control problems. Decision and Control: Proc. 29th IEEE Conf., pages 1402–1497, 1990.

[AFFS06] N.D. Alikakos, P.C. Fife, G. Fusco, and C. Sourdis. Analysis of the heteroclinic connection in a

singularly perturbed system arising from the study of crystalline grain boundaries. Interfaces & Free

Boundaries, 8(2):159–183, 2006.

[AFGG12] J.E. Avron, M. Fraas, G.M. Graf, and P. Grech. Adiabatic theorems for generators of contracting

evolutions. Commun. Math. Phys., 314:163–191, 2012.

[AFH13] K.E. Avrachenkov, J.A. Filar, and P.G. Howett. Analytic Perturbation Theory and Its Applications. SIAM,

2013.

[AFR13] A.H. Abbasian, H. Fallah, and M.R. Razvan. Symmetric bursting behaviors in the generalized

FitzHugh–Nagumo model. Biol. Cybern., pages 1–12, 2013. to appear.

[AG82] C.M. Andersen and J.F. Geer. Power series expansions for the frequency and period of the limit

cycle of the van der Pol equation. SIAM J. Appl. Math., 42(3):678–693, 1982.

[AG97a] Z. Artstein and V. Gaitsgory. Linear-quadratic tracking of coupled slow and fast targets. Math. Control

Signals Systems, 10: 1–30, 1997.

[AG97b] Z. Artstein and V. Gaitsgory. Tracking fast trajectories along a slow dynamics: a singular pertur-

bations approach. SIAM J. Contr. Optim., 35:1487, 1997.

[AG00] Z. Artstein and V. Gaitsgory. The value function of singularly perturbed control systems. Appl. Math.

Optim., 41:425–445, 2000.

[AG13] G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular

perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

[AGJ90] J.C. Alexander, R.A. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability

analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.

Page 3: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 707

[AGK+11] Z. Artstein, C.W. Gear, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Analysis and computation of

a discrete KdV-Burgers type equation with fast dispersion and slow diffusion. SIAM J. Numer. Anal.,

49(5):2124–2143, 2011.

[AGMR89] F.T. Arecchi, W. Gadomski, R. Meucci, and J.A. Roversi. Delayed bifurcation at the threshold of a

swept gain CO2 laser. Optics Commun., 70(2):155–160, 1989.

[AH78] D. Altshuler and A.H. Haddad. Near optimal smoothing for singularly perturbed linear systems.

Automatica, 14:81–87, 1978.

[AHL10] A. Abdulle, Y. Hu, and T. Li. Chebyshev methods with discrete noise: the tau-ROCK methods. J.

Comp. Math., 28(2):195–217, 2010.

[AHM08] M. Alfaro, D. Hilhorst, and H. Matano. The singular limit of the Allen–Cahn equation and the

FitzHugh–Nagumo system. J. Differen. Equat., 245(2):505–565, 2008.

[Ai07] S. Ai. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differ-

ential Equat., 232(1):104–133, 2007.

[Ai10] S. Ai. Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal., 42(2):

833–856, 2010.

[AIT09] D. Arotaritei, M. Ilea, and M. Turnea. Boundary functions method from differential equations sys-

tems with small parameter in enzyme kinetics. Int. J. Math. Model. Simul. Appl., 2:77–91, 2009.

[AJ89] U. Ascher and S. Jacobs. On collocation implementation for singularly perturbed two-point problems.

SIAM J. Sci. Stat. Comput., 10(3):533–549, 1989.

[AK00] A.N. Atassi and H.K. Khalil. Separation results for the stabilization of nonlinear systems using

different high-gain observer designs. Syst. Contr. Lett., 39(3):183–191, 2000.

[AK12] D.F. Anderson and M. Koyama. Weak error analysis of approximate simulation methods for multi-

scale stochastic chemical kinetic systems. Multiscale Model. Simul., 10(4):1493–1524, 2012.

[AK13a] R.V. Abramov and M.P. Kjerland. The response of reduced models of multiscale dynamics to small

external perturbations. arXiv:1305.0862, pages 1–20, 2013.

[AK13b] F. Achleitner and C. Kuehn. On bounded positive stationary solutions for a nonlocal Fisher-KPP

equation. arXiv:1307.3480, pages 1–20, 2013.

[AK13c] F. Achleitner and C. Kuehn. Traveling waves for a bistable equation with nonlocal-diffusion.

arXiv:1312.6304, pages 1–45, 2013.

[AK13d] H. Aoki and K. Kaneko. Slow stochastic switching by collective chaos of fast elements. Phys. Rev.

Lett., 111(14):144102, 2013.

[AKK74] L.R. Abrahamsson, H.B. Keller, and H.-O. Kreiss. Difference approximations for singular perturba-

tions of systems of ordinary differential equations. Numer. Math., 22:367–391, 1974.

[aKM89] E. Yanagida amd K. Maginu. Stability of double-pulse solutions in nerve axon equations. SIAM J.

Appl. Math., 49(4):1158–1173, 1989.

[AKN00] A. Andreini, M. Kamenskii, and P. Nistri. A result on the singular perturbation theory for differential

inclusions in Banach spaces. Top. Meth. Nonl. Anal. J. Juliuz Schauder Center, 15: 1–15, 2000.

[AKN06] V.I. Arnold, V.V. Kozlov, and A.I. Neishstadt. Mathematical Aspects of Classical and Celestial Mechanics.

Springer, 3rd edition, 2006.

[AKST07] Z. Artstein, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Slow observables of singularly perturbed

differential equations. Nonlinearity, 20(11):2463–2481, 2007.

[AKW03] C.D. Acker, N. Kopell, and J.A. White. Synchronization of strongly coupled excitatory neurons:

Relating network behaviour to biophysics. J. Comput. Neurosci., 15:71–90, 2003.

[AKWC80] B. Avramovic, P.V. Kokotovic, J.R. Winkleman, and J.H. Chow. Area decomposition for electrome-

chanical models of power systems. Automatica, 16(6):637–648, 1980.

[AL91] B.D. Aguda and R. Larter. Periodic-chaotic sequences in a detailed mechanism of the peroxidase-

oxidase reaction. J. Am. Chem. Soc., 113:7913–7916, 1991.

[AL08] A. Abdulle and T. Li. S-ROCK methods for stiff Ito SDEs. Comm. Math. Sci., 6(4):845–868, 2008.

[ALC89] B.D. Aguda, R. Larter, and B.L. Clarke. Dynamic elements of mixed-mode oscillations and chaos in

a peroxidase-oxidase network. J. Chem. Phys., 90(8):4168–4175, 1989.

[Ale77] R. Alexander. Diagonally implicit Runge–Kutta methods for stiff ODE’s. SIAM J. Numer. Anal.,

14(6):1006–1021, 1977.

[All92] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6):1482–1518, 1992.

[ALS12] A. Abdulle, P. Lin, and A. Shapeev. Numerical methods for multilattices. Multiscale Model. Simul.,

10(3):696–726, 2012.

[ALT07] Z. Artstein, J. Linshiz, and E.S. Titi. Young measure approach to computing slowly advancing fast

oscillations. Multiscale Model. Simul., 243:1085–1097, 2007.

[AM86] K. Aihara and G. Matsumoto. Chaotic oscillations and bifurcations in squid giant axons. In

A. Holden, editor, Chaos, pages 257–269. Manchester University Press, 1986.

[AM88] U.M. Ascher and R.M.M. Mattheij. General framework, stability and error analysis for numerical

stiff boundary value methods. Numer. Math., 54:355–372, 1988.

[AM06] A. Ambrosetti and A. Malchiodi. Perturbation Methods and Semilinear Elliptic Problems on Rn. Birkhauser,

2006.

[Ami84] D.J. Amit. Field theory, the renormalization group, and critical phenomena. World Scientific, 1984.

[AMN+03] R.B. Alley, J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke Jr., R.T. Pierre-

humbert, P.B. Rhines, T.F. Stocker, L.D. Talley, and J.M. Wallace. Abrupt climate change. Science,

299:2005–2010, 2003.

[AMP+12] S. Arnrich, A. Mielke, M.A. Peletier, G. Savare, and M. Veneroni. Passing to the limit in a Wasser-

stein gradient flow: from diffusion to reaction. Calc. Var. Partial Differential Equat., 44:419–454, 2012.

[AMPP87] S.B. Angenent, J. Mallet-Paret, and L.A. Peletier. Stable transition layers in a semilinear boundary

value problem. J. Differential Equat., 67(2):212–242, 1987.

[AMPS91] U.M. Ascher, P.A. Markowich, P. Pietra, and C. Schmeiser. A phase plane analysis of transonic

solutions for the hydrodynamic semiconductor model. Math. Mod. Meth. Appl. Sci., 1(3):347–376, 1991.

[AMR87] U.M. Ascher, R.M.M. Mattheij, and R.D. Russell. Numerical Solution of Boundary Value Problems for

Ordinary Differential Equations. SIAM, 1987.

[AMR88] R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis and Applications. Springer, 1988.

Page 4: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

708 Bibliography

[AMR02] M. De Angelis, A.M. Monte, and P. Renno. On fast and slow times in models with diffusion. Math.

Models Methods Appl. Sci., 12:1741–1749, 2002.

[Ana83] K.K. Anand. On relaxation oscillations governed by a second order differential equation for a large

parameter and with a piecewise linear function. Canad. Math. Bull., 26(1):80–91, 1983.

[And87] J.L. Anderson. Equidistribution schemes, Poisson generators, and adaptive grids. Appl. Math. Comput.,

24(3):211–227, 1987.

[And92] J.L. Anderson. Multiple time scale methods for adiabatic systems. Amer. J. Phys., 60:923–927, 1992.

[ANMC+09] K. Al-Naimee, F. Marino, M. Ciszak, R. Meucci, and F.T. Arecchi. Chaotic spiking and incom-

plete homoclinic scenarios in semiconductor lasers with optoelectric feedback. New Journal of Physics,

11:073022, 2009.

[Ano99] O.D. Anosova. On invariant manifolds in singularly perturbed systems. J. Dyn. Contr. Syst., 5(4):

501–507, 1999.

[ANZ11] A.V. Artemyev, A.I. Neishtadt, and L.M. Zelenyi. Jumps of adiabatic invariant at the separatrix of

a degenerate saddle point. Chaos, 21:043120, 2011.

[ANZV10] A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, and D.L. Vainchtein. Adiabatic description of cap-

ture into resonance and surfatron acceleration of charged particles by electromagnetic waves. Chaos,

20:043128, 2010.

[AO70] R.C. Ackerberg and R.E. O’Malley. Boundary layer problems exhibiting resonance. Stud. Appl. Math.,

49:277–295, 1970.

[AP98a] P. Auger and J.-C. Poggiale. Aggregation and emergence in systems of ordinary differential equa-

tions. Math. Comput. Model., 27(4):1–21, 1998.

[AP98b] P. Auger and D. Pontier. Fast game dynamics coupled to slow population dynamics: a single popu-

lation with hawk–dove strategies. Aggregation and emergence in population dynamics. Math. Comput.

Modelling, 27(4):81–88, 1998.

[AP98c] P. Auger and D. Pontier. Fast game theory coupled to slow population dynamics: the case of domestic

cat populations. Math. Biosci., 148:65–82, 1998.

[AP06] N. Ben Abdallah and O. Pinaud. Multiscale simulation of transport in an open quantum system:

Resonances and WKB interpolation. J. Comp. Phys., 213(1):288–310, 2006.

[AP12] A. Abdulle and G. Pavliotis. Numerical methods for stochastic partial differential equations with

multiple scales. J. Comput. Phys., 231(6):2482–2497, 2012.

[AR81] U. Ascher and R.D. Russell. Reformulation of boundary value problems into standard form. SIAM

Rev., 23(2):238–254, 1981.

[AR85] F. Argoul and J.C. Roux. Quasiperiodicity in chemistry: an experimental path in the neighbourhood

of a codimension-two bifurcation. Phys. Lett. A, 108(8):426–430, 1985.

[Ard80] M.D. Ardema. Nonlinear singularly perturbed optimal control problems with singular arcs. Automat-

ica, 16:99–104, 1980.

[ARLS11] M. Assaf, E. Roberts, and Z. Luthey-Schulten. Determining the stability of genetic switches: explic-

itly accounting for mRNA noise. Phys. Rev. Lett., 106:248102, 2011.

[Arn73] V.I. Arnold. Ordinary Differential Equations. MIT Press, 1973.

[Arn74] L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley, 1974.

[Arn83] V.I. Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York, NY,

1983.

[Arn92] V.I. Arnold. Catastrophe Theory. Springer, 1992.

[Arn94] V.I. Arnold. Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, 1994.

[Arn95] L. Arnold. Random dynamical systems. In Dynamical Systems (Montecatini Terme, 1994), pages 1–43.

Springer, 1995.

[Arn97] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer, 1997.

[Arn01] L. Arnold. Recent progress in stochastic bifurcation theory. In IUTAM Symposium on Nonlinearity and

Stochastic Structural Dynamics, pages 15–27. Springer, 2001.

[Arn03] L. Arnold. Random Dynamical Systems. Springer, Berlin Heidelberg, Germany, 2003.

[Arr89] S. Arrhenius. Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren.

Zeitschr. Phys. Chem., 4:226–248, 1889.

[ARS89] F.N. Albahadily, J. Ringland, and M. Schell. Mixed-mode oscillations in an electrochemical system.

I. A Farey sequence which does not occur on a torus. J. Chem. Phys., 90:813–821, 1989.

[Art98] Z. Artstein. Stability in the presence of singular perturbations. Nonlinear Analysis, 34:817–827, 1998.

[Art99a] Z. Artstein. Invariant measures of differential inclusions applied to singular perturbations. J. Differ-

ential Equat., 152:289–307, 1999.

[Art99b] Z. Artstein. Singularly perturbed ordinary differential equations with nonautonomous fast dynamics.

J. Dyn. Diff. Eq., 11(2):297–318, 1999.

[Art04] Z. Artstein. Distributional convergence in planar dynamics and singular perturbations. J. Differential

Equations, 201:250–286, 2004.

[Art05] Z. Artstein. Bang-bang controls in the singular perturbations limit. Control and Cybernetics, 34(3):

645–663, 2005.

[Art07] Z. Artstein. Averaging of time-varying differential equations revisited. J. Differen. Equat., 243:146–167,

2007.

[Art09] Z. Artstein. Pontryagin Maximum Principle for coupled slow and fast systems. Control and Cybernetics,

38(4):1003–1019, 2009.

[Art10] Z. Artstein. Averaging of ordinary differential equations with slowly varying averages. Discr. Cont.

Dyn. Syst. B, 14(2):353–360, 2010.

[AS65] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover, 1965.

[AS86] R.H. Abraham and H.B. Stewart. A chaotic blue sky catastrophe in forced relaxation oscillations.

Physica D, 21(2):394–400, 1986.

[AS96] Y. Ando and M. Suzuki. Control of active suspension systems using the singular perturbation

method. Contr. Eng. Prac., 4(3):287–293, 1996.

[AS01] Z. Artstein and M. Slemrod. On singularly perturbed retarded functional differential equations. J.

Differential Equat., 171:88–109, 2001.

Page 5: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 709

[AS12] F. Achleitner and P. Szmolyan. Saddle-node bifurcation of viscous profiles. Physica D, 241(20):

1703–1717, 2012.

[ASBT10] S. Ahn, B.H. Smith, A. Borisyuk, and D. Terman. Analyzing neuronal networks using discrete-time

dynamics. Physica D, 239(9):515–528, 2010.

[Asc85] U. Ascher. On some difference schemes for singular singularly-perturbed boundary value problems.

Numer. Math., 46:1–30, 1985.

[ASS13] P. Antonelli, J.-C. Saut, and C. Sparber. Well-posedness and averaging of NLS with time-periodic

dispersion management. Adv. Differential Equations, 18(1):49–68, 2013.

[ASST12] G. Ariel, J.M. Sanz-Serna, and R. Tsai. A multiscale technique for finding slow manifolds of stiff

mechanical systems. Multiscale Model. Simul., 10(4):1180–1203, 2012.

[ASY96] K.T. Alligood, T.D. Sauer, and J.A. Yorke. Chaos: An Introduction to Dynamical Systems. Springer, 1996.

[ATB+12] D. Anderson, A. Tenzer, G. Barlev, M. Girvan, T.M. Antonsen, and E. Ott. Multiscale dynamics in

communities of phase oscillators. Chaos, 22(1):013102, 2012.

[Att11] B.S. Attili. Numerical treatment of singularly perturbed two point boundary value problems exhibit-

ing boundary layers. Commun. Nonlinear Sci. Numer. Simulat., 16:3504–3511, 2011.

[AW74] D.G. Aronson and H.F. Weinberger. Nonlinear diffusion in population genetics, combustion, and

nerve pulse propagation. In Partial Differential Equations and Related Topics, volume 446 of Lecture Notes

in Mathematics, pages 5–49. Springer, 1974.

[AW83] U. Ascher and R. Weiss. Collocation for singular perturbation problems I: first order systems with

constant coefficients. SIAM J. Numer. Anal., 20(3):537–557, 1983.

[AW84a] U. Ascher and R. Weiss. Collocation for singular perturbation problems II: linear first order systems

without turning points. Mathematics of Computation, 43(167):157–187, 1984.

[AW84b] U. Ascher and R. Weiss. Collocation for singular perturbation problems III: nonlinear problems

without turning points. SIAM J. Sci. Stat. Comput., 5(4):811–829, 1984.

[AWVC12] P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox. Tipping points in open systems: bifurcation, noise-

induced and rate-dependent examples in the climate system. Phil. Trans. R. Soc. A, 370:1166–1184,

2012.

[AZSPS82] S. Ahmed-Zaid, P. Sauer, M. Pai, and M. Sarioglu. Reduced order modeling of synchronous machines

using singular perturbation. IEEE Trans. Circ. Syst., 29(11):782–786, 1982.

[Bae91a] C. Baesens. Noise effect on dynamic bifurcations: the case of a period-doubling cascade. In E. Benoıt,

editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 107–130. Springer, 1991.

[Bae91b] C. Baesens. Slow sweep through a period-doubling cascade: delayed bifurcations and renormalisa-

tion. Physica D, 53(2):319–375, 1991.

[Bae95] C. Baesens. Gevrey series and dynamic bifurcations for analytic slow–fast mappings. Nonlinearity,

8(2):179, 1995.

[Bak86] V.I. Bakhtin. Averaging in multifrequency systems. Func. Anal. Appl., 20(2):83–88, 1986.

[Bak96] V.I. Bakhtin. Averaging along a Markov chain. Funct. Anal. Appl., 30(1):42–44, 1996.

[Bak00] V.I. Bakhtin. Cramer asymptotics in a system with slow and fast Markovian motions. Theor. Prob.

Appl., 44(1):1–17, 2000.

[Bak03] V.I. Bakhtin. Cramer’s asymptotics in systems with fast and slow motions. Stochastics Stoch. Rep.,

75(5):319–341, 2003.

[Bal77] J.M. Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart.

J. Math.., 28(4):473–486, 1977.

[Bal82] M.J. Balas. Reduced-order feedback control of distributed parameter systems via singular perturba-

tion methods. J. Math. Anal. Appl., 87:281–294, 1982.

[Bal00] W. Balser. Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer,

2000.

[Bar83] J.W. Barker. Interactions of fast and slow waves in hyperbolic systems with two time scales. Math.

Methods Appl. Sci., 5(3):292–307, 1983.

[Bar84] J.W. Barker. Interactions of fast and slow waves in problems with two time scales. SIAM J. Math.

Anal., 15(3):500–513, 1984.

[Bar88] D. Barkley. Slow manifolds and mixed-mode oscillations in the Belousov–Zhabotinskii reaction. J.

Chem. Phys., 89(9):5547–5559, 1988.

[Bar91] D. Barkley. A model for fast computer simulation of waves in excitable media. Physica D, 49:61–70,

1991.

[Bar92] D. Barkley. Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett.,

68(13):2090–2093, 1992.

[Bar97] D. Barkley. Fast simulation of waves in three-dimensional excitable media. Int. J. Bif. Chaos,

7(11):2529–2545, 1997.

[Bat67] G.K. Batchelor. An Introduction to Fluid Dynamics. CUP, 1967.

[Bat94] F. Battelli. Heteroclinic orbits in singular systems: a unifying approach. J. Dyn. Diff. Eq., 6(1):

147–173, 1994.

[BB79] K. Burrage and J.C. Butcher. Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer.

Anal., 16(1):46–57, 1979.

[BB80] K. Burrage and J.C. Butcher. Nonlinear stability of a general class of differential equation methods.

BIT, 20(2):185–203, 1980.

[BB87] A. Bensoussan and G.L. Blankenship. Singular perturbations in stochastic control. In Singular Per-

turbations and Asymptotic Analysis in Control Systems, volume 90 of Lecture Notes in Control and Information

Sciences, pages 171–260. Springer, 1987.

[BB12a] C.G. Diniz Behn and V. Booth. A fast–slow analysis of the dynamics of REM sleep. SIAM J. Appl.

Dyn. Syst., 11(1):212–242, 2012.

[BB12b] Yu.N. Bibikov and V.R. Bukaty. Multifrequency oscillations of singularly perturbed systems. Differ-

ential Equat., 48(1):19–25, 2012.

[BB13] P. Berger and A. Bounemoura. A geometrical proof of the persistence of normally hyperbolic sub-

manifolds. Dynamical Systems, pages 1–15, 2013. to appear.

Page 6: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

710 Bibliography

[BBE91] M. Brøns and K. Bar-Eli. Canard explosion and excitation in a model of the Belousov–Zhabotinsky

reaction. J. Phys. Chem., 95:8706–8713, 1991.

[BBE94] M. Brøns and K. Bar-Eli. Asymptotic analysis of canards in the EOE equations and the role of the

inflection line. Proc. R. Soc. Lond. A, 445:305–322, 1994.

[BBK+11] G.N. Benes, A.M. Barry, T.J. Kaper, M.A. Kramer, and J. Burke. An elementary model of torus

canards. Chaos, 21:023131, 2011.

[BBKS95] R. Bertram, M.J. Butte, T. Kiemel, and A. Sherman. Topological and phenomenological classifica-

tion of bursting oscillations. Bull. Math. Biol., 57(3):413–429, 1995.

[BBR+05] J. Best, A. Borisyuk, J. Rubin, D. Terman, and M. Wechselberger. The dynamic range of bursting

in a model respiratory pacemaker network. SIAM J. Appl. Dyn. Syst., 4(4):1107–1139, 2005.

[BBRS91] W. Balser and B.L.J. Braaksma, J.P. Ramis and Y. Sibuya. Multisummability of formal power series

solutions of linear ordinary differential equations. Asymp. Anal., 5(1):27–45, 1991.

[BBS96] J.A. Borghans, R.J. De Boer, and L.A. Segel. Extending the quasi-steady state approximation by

changing variables. Bull. Math. Biol., 58(1):43–63, 1996.

[BBV08] A. Barrat, M. Barthelemy, and A. Vespignani. Dynamical Processes on Complex Networks. CUP, 2008.

[BC91] M. Benedicks and L. Carleson. The dynamics of the Henon map. Annals of Mathematics, 133:73–169,

1991.

[BC94a] D. Bainov and V. Covachev. Impulsive differential equations with a small parameter. World Scientific, 1994.

[BC94b] C. Berzuini and D. Clayton. Bayesian analysis of survival on multiple time scales. Statistics in Medicine,

13(8):823–838, 1994.

[BC98] P.C. Bressloff and S. Coombes. Desynchronization, mode locking, and bursting in strongly coupled

integrate-and-fire oscillators. Phys. Rev. Lett., 81(10):2168–2171, 1998.

[BCB96] R.J. Butera, J.W. Clark, and J.H. Byrne. Dissection and reduction of a modeled bursting neuron.

J. Comput. Neurosci., 3(3):199–223, 1996.

[BCB97] R.J. Butera, J.W. Clark, and J.H. Byrne. Transient responses of a modeled bursting neuron: analysis

with equilibrium and averaged nullclines. Biol. Cybernet., 77(5):307–322, 1997.

[BCC+95] R.J. Butera, J.W. Clark, C.C. Canavier, D.A. Baxter, and J.H. Byrne. Analysis of the effects of

modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium

dependent systems. J. Comput. Neurosci., 2(1):19–44, 1995.

[BCD08] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equa-

tions. Birkhauser, 2008.

[BCGFS13] T. Berry, J.R. Cressman, Z. Greguric-Ferencek, and T. Sauer. Time-scale separation from diffusion-

mapped delay coordinates. SIAM J. Appl. Dyn. Syst., 12(2):618–649, 2013.

[BCHV93] H.W. Broer, S.N. Chow, A. Hagen, and G. Vegter. A normally elliptic Hamiltonian bifurcation. Z.

Angewand. Math. Phys., 44(3):389–432, 1993.

[BCMW13] M. Burger, L. Caffarelli, P. Markowich, and M.-T. Wolfram. On a Boltzmann type price formation

model. Proc. R. Soc. A, 469:1–21, 2013.

[BCP87] K.E. Brenan, S.L. Campbell, and L.R. Petzhold. Numerical solution of initial-value problems in differential-

algebraic equations. SIAM, 1987.

[BD80] J. Boissonade and P. DeKepper. Transitions from bistability to limit cycle oscillations. Theoretical

analysis and experimental evidence in an open chemical system. J. Phys. Chem., 84:501–506, 1980.

[BD86] S.V. Belokopytov and M.G. Dmitriev. Direct scheme in optimal control problems with fast and slow

motions. Syst. Contr. Lett., pages 129–135, 1986.

[BD97] E. Brunet and B. Derrida. Shift in the velocity front due to a cutoff. Phys. Rev. E, 56(3):2597–2604,

1997.

[BD02] D.C. Bell and B. Deng. Singular perturbation of n-front travelling waves in the FitzHugh–Nagumo

equations. Nonl. Anal.: Real World Appl., 3:515–541, 2002.

[BDB+12] J. Burke, M. Desroches, A.M. Barry, T.J. Kaper, and M.A. Kramer. A showcase of torus canards in

neuronal bursters. J. Math. Neurosci., 2:3, 2012.

[BdCdS10] C.A. Buzzi, T. de Carvalho, and P.R. da Silva. Canard cycles and Poincare index of non-smooth

vector fields on the plane. arXiv:1002:4169v2, pages 1–20, 2010.

[BDFN92] J.J. Binney, N.J. Dowrick, A.J. Fisher, and M. Newman. The Theory of Critical Phenomena: An Introduc-

tion to the Renormalization Group. OUP, 1992.

[BdHN06] A. Bovier, F. den Hollander, and F.R. Nardi. Sharp asymptotics for Kawasaki dynamics on a finite

box with open boundary. Prob. Theory Rel. Fields, 135(2):265–310, 2006.

[BdHS10] A. Bovier, F. den Hollander, and C. Spitoni. Homogeneous nucleation for Glauber and Kawasaki

dynamics in large volumes at low temperatures. Ann. Prob., 38(2):661–713, 2010.

[BDK06] M. Beck, A. Doelman, and T.J. Kaper. A geometric construction of traveling waves in a bioremedi-

ation model. J. Nonlinear Sci., 16(4):329–349, 2006.

[BDM99] T.J. Burns, R.W. Davis, and E.F. Moore. A perturbation study of particle dynamics in a plane wake

flow. J. Fluid Mech., 384(1):1–26, 1999.

[BDMNC96] J.P. Barbot, M. Djemai, S. Monaco, and D. Normand-Cyrot. Analysis and control of nonlinear

singularly perturbed systems under sampling. Control and Dynamic Systems, 79:203–246, 1996.

[BDS99] P.W. Bates, E.N. Dancer, and J. Shi. Multi-spike stationary solutions of the Cahn–Hilliard equation

in higher-dimension and instability. Adv. Differential Equat., 4(1):1–70, 1999.

[BdST05] C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. Singular perturbation problems for time-reversible

systems. Proc. Amer. Math. Soc., 133(11):3323–3331, 2005.

[BdST06] C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. A singular approach to discontinuous vector fields on

the plane. J. Diff. Eq., 231:633–655, 2006.

[BdST12] C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. Slow-fast systems on algebraic varieties bordering

piecewise-smooth dynamical systems. Bull. Sci. Math., 136(4):444–462, 2012.

[BDV04] C. Bonatti, L.J. Dıaz, and M. Viana. Dynamics Beyond Uniform Hyperbolicity. Springer, 2004.

[BE86] S.M. Baer and T. Erneux. Singular Hopf bifurcation to relaxation oscillations I. SIAM J. Appl. Math.,

46(5):721–739, 1986.

[BE92] S.M. Baer and T. Erneux. Singular Hopf bifurcation to relaxation oscillations II. SIAM J. Appl. Math.,

52(6):1651–1664, 1992.

Page 7: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 711

[BE95] V. Booth and T. Erneux. Understanding propagation failure as a slow capture near a limit point.

SIAM J. Appl. Math., 55(5):1372–1389, 1995.

[Bea00] R.R. Beardmore. Double singularity-induced bifurcation points and singular Hopf bifurcations. Dyn.

Stab. Syst., 15(4):319–342, 2000.

[BEG+03] K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and

W. Weckesser. The forced van der Pol equation II: canards in the reduced system. SIAM Journal

of Applied Dynamical Systems, 2(4):570–608, 2003.

[BEGK04] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes.

I. Sharp asymptotics for capacities and exit times. J. Euro. Math. Soc., 6(4):399–424, 2004.

[Bel59] B.P. Belousov. A periodic reaction and its mechanism (in Russian). Collections of Abstracts on Radiation

Medicine, page 145, 1959.

[Bel60] R. Bellman. Introduction to Matrix Analysis. McGraw-Hill, 1960.

[Ben82] E. Benoıt. Systems lents-rapides dans R3 et leurs canards. In Third Snepfenried geometry conference,

volume 2, pages 159–191. Soc. Math. France, 1982.

[Ben84] A. Bensoussan. On some singular perturbation problems arising in stochastic control. Stoch. Anal.

Appl., 2:13–53, 1984.

[Ben85] E. Benoıt. Enlacements de canards. C.R. Acad. Sc. Paris, 300(8):225–230, 1985.

[Ben90] E. Benoıt. Canards et enlacements. Publ. Math. IHES, 72:63–91, 1990.

[Ben91a] E. Benoıt, editor. Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics. Springer, 1991.

[Ben91b] E. Benoıt. Linear dynamic bifurcation with noise. In E. Benoıt, editor, Dynamic Bifurcations,

volume 1493 of Lecture Notes in Mathematics, pages 131–150. Springer, 1991.

[Ben96] E. Benoıt. Asymptotic expansions of canards with poles. Application to the stationary unidimen-

sional Schrodinger equation. Nonstandard analysis. Bull. Belg. Math. Soc., pages 71–90, 1996. suppl.

[Ben01] E. Benoıt. Perturbation singuliere en dimension trois: canards en un point pseudo-singulier noeud.

Bull. Soc. Math. France, 129:91–113, 2001.

[Ben09] E. Benoıt. Bifurcation delay - the case of the sequence: stable focus - unstable focus - unstable node.

Discr. Cont. Dyn. Sys. - Series S, 2(4):911–929, 2009.

[Ber60] P.G. Bergmann. Introduction to the Theory of Relativity. Prentice Hall, 1960.

[Ber84] M.V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A, 392(1802):45–57,

1984.

[Ber85] M.V. Berry. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A, 18(1):15, 1985.

[Ber87] M.V. Berry. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. A, 414(1846):31–46,

1987.

[BER89] S.M. Baer, T. Erneux, and J. Rinzel. The slow passage through a Hopf bifurcation: delay, memory

effects, and resonance. SIAM J. Appl. Math., 49(1):55–71, 1989.

[Ber91] A.J. Bernoff. Spiral wave solutions for reaction–diffusion equations in a fast reaction/slow diffusion

limit. Phsica D, 53:125–150, 1991.

[Ber93] R. Bertram. A computational study of the effects of serotonin on a molluscan burster neuron. Biol.

Cybern., 69(3):257–267, 1993.

[Ber98a] M. Berg. Viscoelastic continuum model of nonpolar solvation. 1. Implications for multiple time scales

in liquid dynamics. J. Phys. Chem., 102:17–30, 1998.

[Ber98b] N. Berglund. Adiabatic Dynamical Systems and Hysteresis. PhD thesis, EPFL, 1998.

[Ber00] N. Berglund. Control of dynamic Hopf bifurcations. Nonlinearity, 13:225–248, 2000.

[Ber01] N. Berglund. Perturbation theory of dynamical systems. arXiv:math/0111178, pages 1–111, 2001.

[Ber13] N. Berglund. Kramers’ law: validity, derivations and generalisations. Markov Processes Relat. Fields,

pages 1–24, 2013. to appear.

[BF28] M. Born and V. Fock. Beweis des Adiabatensatzes. Z. Phys., 51:165–169, 1928.

[BF70] M. Berger and L. Fraenkel. On the asymptotic solution of a nonlinear Dirichlet problem. Indiana

Univ. Math. J., 19:553–585, 1970.

[BF71] M. Berger and L. Fraenkel. On singular perturbations of nonlinear operator equations. Indiana Univ.

Math. J., 20:623–631, 1971.

[BF90] P.W. Bates and P.C. Fife. Spectral comparison principles for the Cahn–Hilliard and phase-field

equations, and time scales for coarsening. Physica D, 43(2):335–348, 1990.

[BF91] T.R. Bielecki and J.A. Filar. Singularly perturbed Markov control problem: limiting average cost.

Annals of Operations Research, 28(1):152–168, 1991.

[BF93] P.W. Bates and P.C. Fife. The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J. Appl.

Math., 53(4):990–1008, 1993.

[BF96] F. Battelli and M. Feckan. Global centre manifolds in singular systems. Nonlinear Different. Equat.

Appl., 3:19–34, 1996.

[BF00] P.W. Bates and G. Fusco. Equilibria with many nuclei for the Cahn–Hilliard equation. J. Differential

Equat., 160(2):283–356, 2000.

[BF13] F. Battelli and M. Feckan. Fast-slow dynamical approximation of forced impact systems near periodic

solutions. Bound. Value Probl., 2013:71, 2013.

[BFF99] D. Brown, J. Feng, and S. Feerick. Variability of firing of Hodgkin–Huxley and FitzHugh–Nagumo

neurons with stochastic synaptic input. Phys. Rev. Lett., 82(23):4731–4734, 1999.

[BFM06] P. Breitenlohner, P. Forgacs, and D. Maison. Classification of static, spherically symmetric solu-

tions of the Einstein-Yang-Mills theory with positive cosmological constant. Commun. Math. Phys.,

261(3):569–611, 2006.

[BFS08] B. Brighi, A. Fruchard, and T. Sari. On the Blasius problem. Adv. Differential Equat., 13(5):509–600,

2008.

[BFSO95] T.V. Bronnikova, V.R. Fed’kina, W.M. Schaffer, and L.F. Olsen. Period-doubling bifurcations and

chaos in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem., 99(23):9309–9312, 1995.

[BFSW98a] E. Benoıt, A. Fruchard, R. Schafke, and G. Wallet. Overstability: towards a global study. C. R. Acad.

Sci. Paris Ser. I Math., 326:873–878, 1998.

[BFSW98b] E. Benoıt, A. Fruchard, R. Schafke, and G. Wallet. Solutions surstables des equations differentielles

complexes lentes-rapides a point tournant. Ann. Fac. Sci. Toulouse Math., 6(7):627–658, 1998.

Page 8: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

712 Bibliography

[BG74] H. Bavinck and J. Grasman. The method of matched asymptotic expansions for the periodic solution

of the van der Pol equation. Int. J. Nonl. Mech., 9(6):421–434, 1974.

[BG88] I. Borno and Z. Gajic. Parallel algorithms for optimal control of weakly coupled and singularly

perturbed jump linear systems. Automatica, 31(7):985–988, 1988.

[BG92] J.J.W. Bruce and P.J. Giblin. Curves and Singularities: a geometrical introduction to singularity theory. CUP,

1992.

[BG93] B. Braaksma and J. Grasman. Critical dynamics of the Bonhoeffer–van der Pol equation and its

chaotic response to periodic stimulation. Physica D, 68(2):265–280, 1993.

[BG95] G. Benfatto and G. Gallavotti. Renormalization Group. Princeton University Press, 1995.

[BG01] V.F. Butuzov and E.A. Gromova. A boundary value problem for a system of fast and slow second-

order equations in the case of intersecting roots of the degenerate equation. Comp. Math. Math. Phys.,

41(8):1108–1121, 2001.

[BG02a] N. Berglund and B. Gentz. As sample-paths approach to noise-induced synchronization: stochastic

resonance in a double-well potential. Ann. Appl. Prob., 12(4):1419–1470, 2002.

[BG02b] N. Berglund and B. Gentz. Beyond the Fokker–Planck equation: pathwise control of noisy bistable

systems. J. Phys. A: Math. Gen., 35:2057–2091, 2002.

[BG02c] N. Berglund and B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity, 15:

605–632, 2002.

[BG02d] N. Berglund and B. Gentz. Metastability in simple climate models: Pathwise analysis of slowly

driven Langevin equations. Stoch. Dyn., 2:327–356, 2002.

[BG02e] N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive

noise. Probab. Theory Related Fields, 3:341–388, 2002.

[BG03] N. Berglund and B. Gentz. Geometric singular perturbation theory for stochastic differential

equations. J. Diff. Eqs., 191:1–54, 2003.

[BG04] N. Berglund and B. Gentz. On the noise-induced passage through an unstable periodic orbit I:

Two-level model. J. Statist. Phys., 114(5):1577–1618, 2004.

[BG05] V.S. Buslaev and E.A. Grinina. Remarks on the quantum adiabatic theorem. St. Petersburg Math. J.,

16(4):639–649, 2005.

[BG06] N. Berglund and B. Gentz. Noise-Induced Phenomena in Slow–Fast Dynamical Systems. Springer, 2006.

[BG07a] V.S. Borkar and V. Gaitsgory. Averaging of singularly perturbed controlled stochastic differential

equations. Appl. Math. Optim., 56(2):169–209, 2007.

[BG07b] V.S. Borkar and V. Gaitsgory. Singular perturbations in ergodic control of diffusions. SIAM J. Control

Optim., 46:1562–1577, 2007.

[BG08a] S.M. Baer and E.M. Gaekel. Slow acceleration and deacceleration through a Hopf bifurcation: power

ramps, target nucleation, and elliptic bursting. Phys. Rev. E, 78:036205, 2008.

[BG08b] N. Brannstrom and V. Gelfreich. Drift of slow variables in slow–fast Hamiltonian systems. Physica

D, 237:2913–2921, 2008.

[BG09] N. Berglund and B. Gentz. Stochastic dynamic bifurcations and excitability. In C. Laing and G. Lord,

editors, Stochastic methods in Neuroscience, volume 2, pages 65–93. OUP, 2009.

[BG13a] N. Berglund and B. Gentz. On the noise-induced passage through an unstable periodic orbit II: The

general case. SIAM J. Math. Anal., 2013. accepted, to appear.

[BG13b] N. Berglund and B. Gentz. Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’

law and beyond. Electronic J. Probability, 18(24):1–58, 2013.

[BG13c] V. Bykov and V. Gol’dshtein. Fast and slow invariant manifolds in chemical kinetics. Comput. Math.

Appl., 65(10):1502–1515, 2013.

[BGG08] S. Borok, I. Goldfarb, and V. Gol’dshtein. About non-coincidence of invariant manifolds and intrinsic

low dimensional manifolds (ILDM). Comm. Nonl. Sci. Numer. Simul., 13(6):1029–1038, 2008.

[BGGG02] V. Bykov, I. Goldfarb, V. Gol’dshtein, and J.B. Greenberg. Thermal explosion in a hot gas mixture

with fuel droplets: a two reactant model. Combust. Theor. Model., 6(2):339–359, 2002.

[BGGM06] V. Bykov, I. Goldfarb, V. Gol’dshtein, and U. Maas. On a modified version of ILDM approach:

asymptotic analysis based on integral manifolds. IMA J. Appl. Math., 71(3):359–382, 2006.

[BGK05] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes. II. Precise

estimates for small eigenvalues. J. Euro. Math. Soc., 7:69–99, 2005.

[BGK12] N. Berglund, B. Gentz, and C. Kuehn. Hunting French ducks in a noisy environment. J. Differential

Equat., 252(9):4786–4841, 2012.

[BGK13] N. Berglund, B. Gentz, and C. Kuehn. From random Poincare maps to stochastic mixed-mode-

oscillation patterns. arXiv:1312. 6353, pages 1–55, 2013.

[BGM08] V. Bykov, V. Gol’dshtein, and U. Maas. Simple global reduction technique based on decomposition

approach. Combust. Theor. Model., 12(2):389–405, 2008.

[BGS97] F. Broner, G.H. Goldsztein, and S.H. Strogatz. Dynamical hysteresis without static hysteresis: scal-

ing laws and asymptotic expansions. SIAM J. Appl. Math., 57(4):1163–1187, 1997.

[BGW10] D. Blomker, B. Gawron, and T. Wanner. Nucleation in the one-dimensional stochastic Cahn–Hilliard

model. Discr. Cont. Dyn. Syst. A, 27:25–52, 2010.

[BH25] G.E. Briggs and J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem. J., 19(2):338–339,

1925.

[BH88] F.J. Bourland and R. Haberman. The modulated phase shift for strongly nonlinear, slowly varying,

and weakly damped oscillators. SIAM J. Appl. Math., 48(4):737–748, 1988.

[BH90] M.V. Berry and C.J. Howls. Hyperasymptotics. Proc. R. Soc. A, 430(1880):653–668, 1990.

[BH92] L. Bronsard and D. Hilhorst. On the slow dynamics for the Cahn–Hilliard equation in one space

dimension. Proc. R. Soc. A, 439(1907):669–682, 1992.

[BH98a] J.D. Brothers and R. Haberman. Accurate phase after slow passage through subharmonic resonance.

SIAM J. Appl. Math., 59(1):347–364, 1998.

[BH98b] J.D. Brothers and R. Haberman. Slow passage through a homoclinic orbit with subharmonic reso-

nances. Stud. Appl. Math., 101(2):211–232, 1998.

[BH04] D. Blomker and M. Hairer. Multiscale expansion of invariant measures for SPDEs. Comm. Math. Phys.,

251(3):515–555, 2004.

Page 9: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 713

[BH13] A. Banyaga and D.E. Hurtubise. Cascades and perturbed Morse–Bott functions. Algebraic Geom. Topol.,

13:237–275, 2013.

[BHF02] E. Benoıt, A. El Hamidi, and A. Fruchard. On combined asymptotic expansions in singular pertur-

bations. Electron. J. Differential Equat., 2002(51):1–27, 2002.

[BHJ94] R. Bartussek, P. Hanggi, and P. Jung. Stochastic resonance in optical bistable systems. Phys. Rev. E,

49(5):3930, 1994.

[BHK91] F.J. Bourland, R. Haberman, and W.L. Kath. Averaging methods for the phase shift of arbitrar-

ily perturbed strongly nonlinear oscillators with an application to capture. SIAM J. Appl. Math.,

51(4):1150–1167, 1991.

[BHP05] D. Blomker, M. Hairer, and G.A. Pavliotis. Modulation equation for SPDEs on large domains. Comm.

Math. Phys., 258:479–512, 2005.

[BHP07] D. Blomker, M. Hairer, and G.A. Pavliotis. Multiscale analysis for stochastic partial differential

equations with quadratic nonlinearities. Nonlinearity, 20(7):1721–1744, 2007.

[BHR01] C.J. Budd, H. Huang, and R.D. Russell. Mesh selection for a nearly singular boundary value problem.

J. Sci. Comput., 16(4):525–552, 2001.

[BHS87] C. De Boor, K. Hollig, and M. Sabin. High accuracy geometric Hermite interpolation. Computer Aided

Geometric Design, 4(4):269–278, 1987.

[BHV07] H.W. Broer, A. Hagen, and G. Vegter. Numerical continuation of normally hyperbolic invariant

manifolds. Nonlinearity, 20(6):1499–1534, 2007.

[BI00] V.A. Baikov and N.H. Ibragimov. Continuation of approximate transformation groups via multiple

time scales method. Modern group analysis. Nonlinear Dynam., 22:3–13, 2000.

[Bi04] Q. Bi. Dynamical analysis of two coupled parametrically excited van der Pol oscillators. Int. J. Non-

Linear Mech., 39(1):33–54, 2004.

[Bil10] A. Billoire. Distribution of timescales in the Sherrington–Kirkpatrick model. J. Stat. Mech., 11:P11034,

2010.

[Bir08a] G.D. Birkhoff. Boundary value and expansion problems of ordinary linear differential equations.

Trans. Amer. Math. Soc., 9(4):373–395, 1908.

[Bir08b] G.D. Birkhoff. On the asymptotic character of the solutions of certain linear differential equations

containing a parameter. Trans. Amer. Math. Soc., 9(2):219–231, 1908.

[BJ78] T.A. Bickart and E.I. Jury. Arithmetic tests for A-stability, A[α]-stability, and stiff-stability. BIT,

18:9–21, 1978.

[BJ89] P.W. Bates and C.K.R.T. Jones. Invariant manifolds for semilinear partial differential equations. In

U. Kirchgraber and H.O. Walther, editors, Dynamics Reported, volume 2, pages 1–37. Wiley, 1989.

[BJ12] C.M. Bender and H.F. Jones. WKB analysis of PT-symmetric Sturm–Liouville problems. J. Phys. A,

45(44):444004, 2012.

[BJBMS82] E. Ben-Jacob, D.J. Bergman, B.J. Matkowsky, and Z. Schuss. Lifetime of oscillatory steady states.

Phys. Rev. A, 26(5):2805, 1982.

[BJLM05] O. Brandman, J.E. Ferrell Jr, R. Li, and T. Meyer. Interlinked fast and slow positive feedback loops

drive reliable cell decisions. Science, 310:496–498, 2005.

[BJSW08] M. Beck, C.K.R.T. Jones, D. Schaeffer, and M. Wechselberger. Electrical waves in a one-dimensional

model of cardiac tissue. SIAM J. Appl. Dyn. Syst., 7(4):1558–1581, 2008.

[BK82] G.L. Browning and H.-O. Kreiss. Problems with different time scales for nonlinear partial differential

equations. SIAM J. Appl. Math., 42(4):704–718, 1982.

[BK90] L. Bronsard and R.V. Kohn. On the slowness of phase boundary motion in one space dimension.

Comm. Pure Appl. Math., 43(8):983–997, 1990.

[BK91] D.L. Bosley and J. Kevorkian. Sustained resonance in very slowly varying oscillatory Hamiltonian

systems. SIAM J. Appl. Math., 51(2):439–471, 1991.

[BK92] D.L. Bosley and J. Kevorkian. Adiabatic invariance and transient resonance in very slowly varying

oscillatory Hamiltonian systems. SIAM J. Appl. Math., 52(2):494–527, 1992.

[BK94] I.U. Bronstein and A.Ya. Kopanskii. Smooth invariant manifolds and normal forms. World Scientific, 1994.

[BK96] G.L. Browning and H.-O. Kreiss. Analysis of periodic updating for systems with multiple timescales.

H. Atmos. Sci., 53(2):335–348, 1996.

[BK99] N. Berglund and H. Kunz. Memory effects and scaling laws in slowly driven systems. J. Phys. A: Math.

Gen., 32:15–39, 1999.

[BK04] V.I. Bakhtin and Yu. Kifer. Diffusion approximation for slow motion in fully coupled averaging.

Probab. Theory Relat. Fields, 129:157–181, 2004.

[BK08a] N. Baba and K. Krischer. Mixed-mode oscillations and cluster patterns in an electrochemical relax-

ation oscillator under galvanostatic control. Chaos, 18, 2008.

[BK08b] V.I. Bakhtin and Yu. Kifer. Nonconvergence examples in averaging. Contemp. Math., 469:1–17, 2008.

[BK10a] A. Birzu and K. Krischer. Resonance tongues in a system of globally coupled FitzHugh–Nagumo

oscillators with time-periodic coupling strength. Chaos, 20:043114, 2010.

[BK10b] M. Brøns and R. Kaasen. Canards and mixed-mode oscillations in a forest pest model. Theor. Popul.

Biol., 77:238–242, 2010.

[BKK13] H.W. Broer, T.J. Kaper, and M. Krupa. Geometric desingularization of a cusp singularity in slow–

fast systems with applications to Zeeman’s examples. J. Dyn. Diff. Eq., 25(4):925–958, 2013.

[BKLC10] P. Borowski, R. Kuske, X.-X. Li, and J.L. Cabrera. Characterizing mixed mode oscillations shaped

by noise and bifurcation structure. Chaos, 20:043117, 2010.

[BKM12] L.L. Bonilla, A. Klar, and S. Martin. Higher order averaging of linear Fokker–Planck equations with

periodic forcing. SIAM J. Appl. Math., 72(4):1315–1342, 2012.

[BKP06] L. Buric, A. Klic, and L. Purmova. Canard solutions and travelling waves in the spruce budworm

population model. Appl. Math. Comput., 183(2):1039–1051, 2006.

[BKPR06] K. Ball, T.G. Kurtz, L. Popovic, and G. Rempala. Asymptotic analysis of multiscale approximations

to reaction networks. Ann. Appl. Prob., 16(4):1925–1961, 2006.

[BKR02] A.S. Bobkova, A.Y. Kolesov, and N.K. Rozov. The “duck survival” problem in three-dimensional

singularly perturbed systems with two slow variables. Math. Notes, 71(5):749–760, 2002.

Page 10: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

714 Bibliography

[BKT00] A. Bose, N. Kopell, and D. Terman. Almost-synchronous solutions for mutually coupled excitatory

neurons. Physica D, 140(1):69–94, 2000.

[BKVD12] T. Bakri, Y.A. Kuznetsov, F. Verhulst, and E. Doedel. Multiple solutions of a generalized singular

perturbed Bratu problem. Int. J. Bif. Chaos, 22(4), 2012.

[BKW06] M. Brøns, M. Krupa, and M. Wechselberger. Mixed mode oscillations due to the generalized canard

phenomenon. Fields Institute Communications, 49:39–63, 2006.

[BKWL12] P. Bokes, J.R. King, A.T.A. Wood, and M. Loose. Multiscale stochastic modelling of gene expression.

J. Math. Biol., 65:493–520, 2012.

[BL23] G.D. Birkhoff and R.E. Langer. The boundary problems and developments associated with a system

of ordinary linear differential equations of the first order. Proc. Amer. Acad. Arts Sci., 58(2):51–128,

1923.

[BL82] E. Benoıt and C. Lobry. Les canards de R3. C.R. Acad. Sc. Paris, 294:483–488, 1982.

[BL87] D. Brown and J. Lorenz. A higher-order method for stiff boundary-value problems with turning

points. SIAM J. Sci. Stat. Comp., 8:790–805, 1987.

[BL04] A. Buica and J. Llibre. Averaging methods for finding periodic orbits via Brouwer degree. Bull. des

Sci. Math., 128(1):7–22, 2004.

[BL12] N. Berglund and D. Landon. Mixed-mode oscillations and interspike interval statistics in the stochas-

tic FitzHugh–Nagumo model. Nonlinearity, 25:2303–2335, 2012.

[Bla81] G. Blankenship. Singularly perturbed difference equations in optimal control problems. IEEE Trans.

Auto. Contr., 1981:911–917, 1981.

[Bla91] F. Blais. Asymptotic expansions of rivers. In E. Benoıt, editor, Dynamic Bifurcations, volume 1493 of

Lecture Notes in Mathematics, pages 181–189. Springer, 1991.

[BLH+09] J. Bakke, Ø. Lie, E. Heegaard, T. Dokken, G.H. Haug, H.H. Birks, P. Dulski, and T. Nilsen. Rapid

oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci., 2:202–205,

2009.

[BLM09] A. Buica, J. Llibre, and O. Makarenkov. Asymptotic stability of periodic solutions for nonsmooth

differential equations with application to the nonsmooth van der Pol oscillator. SIAM J. Math. Anal.,

40(6):2478–2495, 2009.

[Blo03] D. Blomker. Amplitude equations for locally cubic nonautonomous nonlinearities. SIAM J. Appl. Dyn.

Syst., 2(3):464–486, 2003.

[Blo07] D. Blomker. Amplitude Equations for Stochastic Partial Differential Equations. World Scientific, 2007.

[BLP11] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures. Chelsea,

2011.

[BLP12] C. Le Bris, T. Lelievre, and M. Perez. A mathematical formalization of the parallel replica dynamics.

Monte Carlo Meth. Appl., 18(2):119–146, 2012.

[BLZ98] P.W. Bates, K. Lu, and C. Zeng. Existence and persistence of invariant manifolds for semiflows in

Banach spaces. Mem. Amer. Math. Soc., 135, 1998.

[BLZ00] P.W. Bates, K. Lu, and C. Zeng. Invariant foliations near normally hyperbolic invariant manifolds

for semiflows. Transactions of the AMS, 352(10):4641–4676, 2000.

[BLZ08] P.W. Bates, K. Lu, and C. Zeng. Approximately invariant manifolds and global dynamics of spike

states. Invent. Math., 174:355–433, 2008.

[BM61] N.N. Bogoliubov and I.A. Mitropol’skii. Asymptotic methods in the theory of non-linear oscillations. Gordon

Breach Science Pub., 1961.

[BM72] M.V. Berry and K.E. Mount. Semiclassical approximations in wave mechanics. Rep. Prog. Phys.,

35(1):315, 1972.

[BM81] D. Bainov and S. Milusheva. Justification of the averaging method for a system of differential equa-

tions with fast and slow variables and with impulses. Z. Angew. Math. Phys., 32(3):237–254, 1981.

[BM90] M. Brunella and M. Miari. Topological equivalence of a plane vector field with its principal part

defined through newton polyhedra. J. Differential Equat., 85:338–366, 1990.

[BM05] J.A. Biello and A.J. Majda. A new multiscale model for the Madden Julian oscillation. J. Atmosph.

Sci., 62:1694–1720, 2005.

[BM07a] V. Bykov and U. Maas. The extension of the ILDM concept to reaction–diffusion manifolds. Comust.

Theor. Model., 11(6):839–862, 2007.

[BM07b] V. Bykov and U. Maas. Extension of the ILDM method to the domain of slow chemistry. Proceed.

Comust. Inst., 31(1):465–472, 2007.

[BM09] D. Blomker and W.W. Mohammed. Amplitude equation for SPDEs with quadratic nonlinearities.

Electron. J. Prob., 14(88):2527–2550, 2009.

[BM10] J.A. Biello and A.J. Majda. Intraseasonal multi-scale moist dynamics of the tropical tropospheres.

Commun. Math. Sci., 8(2):519–540, 2010.

[BM11] A.J. Black and A.J. McKane. WKB calculation of an epidemic outbreak distribution. J. Stat. Mech.,

2011:P12006, 2011.

[BMD11] P. Bonckaert, P. De Maesschalck, and F. Dumortier. Well adapted normal linearization in singular

perturbation problems. J. Dyn. Diff. Eq., 23(1):115–139, 2011.

[BMF02] W. Balser and J. Mozo-Fernandez. Multisummability of formal solutions of singular perturbation

problems. J. Differential Equat., 183:526–545, 2002.

[BMH04] E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural

oscillator populations. Neural Comput., 16(4):673–715, 2004.

[BMN10] M. Bobienski, P. Mardesic, and D. Novikov. Pseudo-abelian integrals on slow–fast Darboux systems.

arXiv:1007.2001v1, pages 1–11, 2010.

[BMS08] A. Braides, M. Maslennikov, and L. Sigalotti. Homogenization by blow-up. Applicable Analysis,

87(12):1341–1356, 2008.

[BN11] C.L. Buckley and T. Nowotny. Multiscale model of an inhibitory network shows optimal properties

near bifurcation. Phys. Rev. Lett., 106:238109, 2011.

[BN13] P.C. Bressloff and J.M. Newby. Metastability in a stochastic neural network modeled as a velocity

jump Markov process. SIAM J. Appl. Dyn Syst., 12:1394–1435, 2013.

Page 11: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 715

[BNR82] H.L. Berk, W.M. Nevins, and K.V. Roberts. New Stokes line in WKB theory. J. Math. Phys., 23(6):

988–1002, 1982.

[BNS85] H. Berestycki, B. Nicolaenko, and B. Scheurer. Traveling wave solutions to combustion models and

their singular limits. SIAM J. Math. Anal., 16(6):1207–1242, 1985.

[BNS99] V.F. Butuzov, N.N. Nefedov, and K.R. Schneider. Singularly perturbed boundary value problems

for systems of Tichonov’s type in case of exchange of stabilities. J. Differential Equat., 159(2):427–446,

1999.

[BNS01] V.F. Butuzov, N.N. Nefedov, and K.R. Schneider. Singularly perturbed elliptic problems in the case

of exchange of stabilities. J. Differential Equat., 169(2):373–395, 2001.

[BNS04] V.F. Butuzov, N.N. Nefedov, and K.R. Schneider. Singularly perturbed problems in case of exchange

of stabilities. J. Math. Sci., 121(1):1973–2079, 2004.

[BO84] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J.

Comput. Phys., 53(3):484–512, 1984.

[BO99] C.M. Bender and S.A. Orszag. Asymptotic Methods and Perturbation Theory. Springer, 1999.

[Bob07] R.V. Bobryk. Closure method and asymptotic expansions for linear stochastic systems. J. Math. Anal.

Appl., 329(1):703–711, 2007.

[Bog07] V.I. Bogachev. Measure Theory, volume 1. Springer, 2007.

[Bom78] E. Bombieri. On exponential sums in finite fields, II. Invent. Math., 47(1):29–39, 1978.

[Bon87] C. Bonet. Singular perturbation of relaxed periodic orbits. J. Differential Equat., 66(3):301–339, 1987.

[Bor97] V.S. Borkar. Stochastic approximation with two time scales. Syst. Contr. Lett., 29(5):291–294, 1997.

[Bor98] F. Bornemann. Homogenization in Time of Singularly Perturbed Mechanical Systems. Springer, 1998.

[Bor04a] A.V. Borovskikh. Investigation of relaxation oscillations by constructive nonstandard analysis. I.

Differ. Equ., 40(3):309–317, 2004.

[Bor04b] A.V. Borovskikh. Investigation of relaxation oscillations by constructive nonstandard analysis. II.

Differ. Equ., 40(4):491–501, 2004.

[Bos95] A. Bose. Symmetric and antisymmetric pulses in parallel coupled nerve fibres. SIAM J. Appl. Math.,

55(6):1650–1674, 1995.

[Bos96] D.L. Bosley. An improved matching procedure for transient resonance layers in weakly nonlinear

oscillatory systems. SIAM J. Appl. Math., 56(2):420–445, 1996.

[Bos00] A. Bose. A geometric approach to singularly perturbed nonlocal reaction–diffusion equations. SIAM

J. Math. Anal., 31(2):431–454, 2000.

[Bot95] S. Bottani. Pulse-coupled relaxation oscillators: from biological synchronization to self-organized

criticality. Phys. Rev. Lett., 74:4189–4192, 1995.

[Boy99] J.P. Boyd. The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series. Acta Appl.

Math., 56:1–98, 1999.

[Boy05] J.P. Boyd. Hyperasymptotics and the linear boundary layer problem: Why asymptotic series diverge.

SIAM Rev., 47:553–575, 2005.

[BP89] N.S. Bakhvalov and G.P. Panasenko. Homogenisation: averaging processes in periodic media: mathematical

problems in the mechanics of composite materials. Kluwer, 1989.

[BP91] V.N. Bogaevski and A. Povzner. Algebraic Methods in Nonlinear Perturbation Theory. Springer, 1991.

[BP01] F. Battelli and K.J. Palmer. Transverse intersection of invariant manifolds in singular systems. J.

Different. Equat., 177:77–120, 2001.

[BP03] F. Battelli and K.J. Palmer. Singular perturbations, transversality, and Sil’nikov saddle-focus

homoclinic orbits. J. Dynam. Different. Equat., 15:357–425, 2003.

[BP08] F. Battelli and K.J. Palmer. Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits

in singularly perturbed systems. Ukrainian Math. J., 60(1):28–55, 2008.

[BPH+00] R. Bertram, J. Previte, A. Herman, T.A. Kinard, and L.S. Satin. The phantom burster model for

pancreatic β-cells. Biophys. J., 79(6):2880–2892, 2000.

[BPH94] L. Bocquet and J. Piasecki and J.-P. Hansen. On the Brownian motion of a massive sphere suspended

in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction

coefficient. J. Statist. Phys., 76:505–526, 1994.

[BPL13] J. Banasiak, E.K. Phongi, and M. Lachowicz. A singularly perturbed SIS model with age structure.

Math. Biosci. Eng., 10(3):499–521, 2013.

[BPPV85] R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani. Characterisation of intermittency in chaotic sys-

tems. J. Phys. A, 18(12):2157–2165, 1985.

[BPSV82] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climatic change. Tellus,

34(11):10–16, 1982.

[BPSV83] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic resonance in climatic change.

SIAM J. Appl. Math., 43(3):565–578, 1983.

[BPTW07] J. Best, C. Park, D. Terman, and C. Wilson. Transitions between irregular and rhythmic firing

patterns in excitatory-inhibitory neuronal networks. J. Comput. Neurosci., 23(2):217–235, 2007.

[BR73] T.S. Briggs and W.C. Rauscher. An oscillating iodine clock. J. Chem. Educ., 50:496, 1973.

[BR93] M.V. Berry and J.M. Robbins. Chaotic classical and half-classical adiabatic reactions: geometric

magnetism and deterministic friction. Proc. R. Soc. A, 442(1916):659–672, 1993.

[BR00] S. Bornholdt and T. Rohlf. Topological evolution of dynamical networks: global criticality from local

dynamics. Phys. Rev. Lett., 84(26):6114–6117, 2000.

[Bra92] B. Braaksma. Phantom ducks and models of excitability. J. Dyn. Diff. Equat., 4(3):485–513, 1992.

[Bra93] M. Braun. Differential Equations and Their Applications. Springer, 1993.

[Bra98] B. Braaksma. Singular Hopf bifurcation in systems with fast and slow variables. J. Nonlinear Sci.,

8(5):457–490, 1998.

[Bra03] P.A. Braza. The bifurcation structure of the Holling–Tanner model for predator–prey interactions

using two-timing. SIAM J. Appl. Math., 63(3):889–904, 2003.

[BRC95] S.M. Baer, J. Rinzel, and H. Carrillo. Analysis of an autonomous phase model for neuronal parabolic

bursting. J. Math. Biol., 33(3):309–333, 1995.

[Bre51] H. Bremmer. The WKB approximation as the first term of a geometric-optical series. Comm. Pure.

Appl. Math., 4(1):105–115, 1951.

Page 12: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

716 Bibliography

[Bre60] H. Bremmer. The scientific work of Balthasar van der Pol. Philips Tech. Rev., 22:36–52, 1960.

[Bre62] F.P. Bretherton. Slow viscous motion round a cylinder in a simple shear. J. Fluid Mech., 12:591–613,

1962.

[Bre97] G.E. Bredon. Topology and Geometry. Springer, 1997.

[Bre12a] C.-E. Brehier. Strong and weak orders in averaging for SPDEs. Stoch. Proc. Appl., 122(7):2553–2593,

2012.

[Bre12b] P.C. Bressloff. Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor.,

45:(033001), 2012.

[Bre13a] R. Breban. Role of environmental persistence in pathogen transmission: a mathematical modeling

approach. J. Math. Biol., 66(3):535–546, 2013.

[Bre13b] C.-E. Brehier. Analysis of an HMM time-discretization scheme for a system of stochastic PDEs.

SIAM J. Numer. Anal., 51(2):1185–1210, 2013.

[Bri26] L. Brillouin. La mecanique ondulatoire de Schrodinger: une methode generale de resolution par

approximations successives. Comptes Rendus de l’Academie des Sciences, 183:24–26, 1926.

[Bri09] I. Bright. Tight estimates for general averaging applied to almost-periodic differential equations. J.

Differential Equat., 246(7):2922–2937, 2009.

[Bri11] I. Bright. Moving averages of ordinary differential equations via convolution. J. Differential Equat.,

250(3):1267–1284, 2011.

[Bro28] R. Brown. A brief account of microscopical observations made in the months of June, July and

August, 1827, on the particles contained in the pollen of plants; and on the general existence of

active molecules in organic and inorganic bodies. Phil. Mag., 4:161–173, 1828.

[Bro95] R. Brown. Horseshoes in the measure-preserving Henon map. Ergodic Theor. Dyn.Syst., 15(6):

1045–1060, 1995.

[Brø05] M. Brøns. Relaxation oscillations and canards in a nonlinear model of discontinuous plastic defor-

mation in metals at very low temperature. Proc. R. Soc. A, 461:2289–2302, 2005.

[Brø11] M. Brøns. Canard explosion of limit cycles in templator models of self-replication mechanisms. J.

Chem. Phys., 134(14):144105, 2011.

[Brø12] M. Brøns. An iterative method for the canard explosion in general planar systems. arXiv:1209.1109,

pages 1–9, 2012.

[BRS99a] R.J. Butera, J. Rinzel, and J.C. Smith. Models of respiratory rhythm generation in the pre-Botzinger

complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82(1):382–397, 1999.

[BRS99b] R.J. Butera, J. Rinzel, and J.C. Smith. Models of respiratory rhythm generation in the pre-Botzinger

complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol., 82(1):398–415, 1999.

[Bru70] N.G. De Bruijn. Asymptotic Methods in Analysis. Dover, 1970.

[Bru89] Alexander D. Bruno. Local Methods in Nonlinear Differential Equations. Springer, 1989.

[Bru96] P. Brunovsky. Tracking invariant manifolds without differential forms. Acta Math. Univ. Comenianae,

LXV(1):23–32, 1996.

[Bru98] P. Brunovsky. S-shaped bifurcation of a singularly perturbed boundary value problem. J. Differential

Equat., 145(1):52–100, 1998.

[Bru99] P. Brunovsky. Cr -inclination theorems for singularly perturbed equations. J. Differential Equat.,

155(1):133–152, 1999.

[BS73] C. De Boor and B. Swartz. Collocation at Gaussian points. SIAM J. Numer. Anal., 10:582–606, 1973.

[BS79] G. Blankenship and S. Sachs. Singularly perturbed linear stochastic ordinary differential equations.

SIAM J. Math. Anal., 1979:306–320, 1979.

[BS82] B.Z. Bobrovsky and Z. Schuss. A singular perturbation method for the computation of the mean

first passage time in a nonlinear filter. SIAM J. Appl. Math., 42(1):174–187, 1982.

[BS88] S.V. Bogatyrev and V.A. Sobolev. Separating the rapid and slow motions in the problems of the

dynamics of systems of rigid bodies and gyroscopes. J. Appl. Math. Mech., 52(1):41–48, 1988.

[BS91] S.A. Belikov and S.N. Samborskii. Canard-cycles of fast–slow fields with a one-dimensional slow

component. Math. Notes, 49(3):339–346, 1991.

[BS96] M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer, 1996.

[BS97] F.A. Bornemann and C. Schutte. Homogenization of Hamiltonian systems with a strong constraining

potential. Physica D, 102(1):57–77, 1997.

[BS98] F.A. Bornemann and C. Schutte. A mathematical investigation of the Car–Parrinello method. Numer.

Math., 78(3):359–376, 1998.

[BS99a] W.-J. Beyn and M. Stiefenhofer. A direct approach to homoclinic orbits in the fast dynamics of

singularly perturbed systems. J. Dyn. Diff. Equat., 11(4):671–709, 1999.

[BS99b] H. Boudjellaba and T. Sari. Stability loss delay in harvesting competing populations. J. Differential

Equat., 152(2):394–408, 1999.

[BS01] M. Brøns and J. Sturis. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical

system. Phys. Rev. E, 64:026209, 2001.

[BS02] M. Brin and G. Stuck. Introduction to Dynamical Systems. CUP, 2002.

[BS03] S. Bornholdt and H.G. Schuster, editor. Handbook of Graphs and Networks. Wiley, 2003.

[BS04a] R. Bertram and A. Sherman. A calcium-based phantom bursting model for pancreatic islets. Bull.

Math. Biol., 66(5):1313–1344, 2004.

[BS04b] R. Bertram and A. Sherman. Filtering of calcium transients by the endoplasmic reticulum in pan-

creatic β-cells. Biophys. J., 87(6):3775–3785, 2004.

[BS04c] V.N. Biktashev and R. Suckley. Non-Tikhonov asymptotic properties of cardiac excitability. Phys.

Rev. Lett., 93(16):169103, 2004.

[BS09a] R. Barrio and S. Serrano. Bounds for the chaotic region in the Lorenz model. Physica D, 16(1):

1615–1624, 2009.

[BS09b] H. Boudjellaba and T. Sari. Dynamic transcritical bifurcations in a class of slow–fast predator–prey

models. J. Diff. Eq., 246:2205–2225, 2009.

[BS10] M.V. Berry and P. Shukla. High-order classical adiabatic reaction forces: slow manifold for a spin

model. J. Phys. A: Math. Theor., 43(4):045102, 2010.

Page 13: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 717

[BS11a] R. Barrio and A. Shilnikov. Parameter-sweeping techniques for temporal dynamics of neuronal sys-

tems: case study of Hindmarsh–Rose model. J. Math. Neurosci., 1(1):1–22, 2011.

[BS11b] S. Bianchini and L. Spinolo. Invariant manifolds for a singular ordinary differential equation. J.

Differential Equat., 250(4):1788–1827, 2011.

[BSG10] N. Brannstrom, E. De Simone, and V. Gelfreich. Geometric shadowing in slow–fast Hamiltonian

systems. Nonlinearity, 23:1169, 2010.

[BSO01] T.V. Bronnikova, W.M. Schaffer, and L.F. Olsen. Nonlinear dynamics of the peroxidase-oxidase

reaction. I. Bistability and bursting oscillations at low enzyme concentrations. J. Phys. Chem. B,

105:310–321, 2001.

[BSP+07] R. Bertram, L.S. Satin, M.G. Pedersen, D.S. Luciani, and A. Sherman. Interaction of glycolysis and

mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys. J., 92(5):1544–1555,

2007.

[BSSH08] D. Bakes, L. Schreiberova, I. Schreiber, and M.J.B. Hauser. Mixed-mode oscillations in a homoge-

neous ph-oscillatory chemical reaction system. Chaos, 18, 2008.

[BSSV98] C. Bonet, D. Sauzin, T. Seara, and M. Valencia. Adiabatic invariant of the harmonic oscillator,

complex matching and resurgence. SIAM J. Math. Anal., 29(6):1335–1360, 1998.

[BST08] W.-J. Beyn, S. Selle, and V. Thummler. Freezing multipulses and multifronts. SIAM J. Appl. Dyn.

Syst., 7(2):577–608, 2008.

[BSV81] R. Benzi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance. J. Phys. A, 14(11):

453–457, 1981.

[BSZ+04] R. Bertram, L. Satin, M. Zhang, P. Smolen, and A. Sherman. Calcium and glycolysis mediate mul-

tiple bursting modes in pancreatic islets. Biophys. J., 87(5):3074–3087, 2004.

[BT97a] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.

[BT97b] L. Brugnano and D. Trigiante. A new mesh selection strategy for ODEs. Appl. Numer. Math., 24:1–21,

1997.

[BT10] H. Broer and F. Takens. Dynamical Systems and Chaos. Springer, 2010.

[BU01] N. Berglund and T. Uzer. The averaged dynamics of the hydrogen atom in crossed electric and

magnetic fields as a perturbed Kepler problem. Found. Phys., 31(2):283–326, 2001.

[BU11] M.V. Berry and R. Uzdin. Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon.

J. Phys. A: Math. Theor., 44:435303, 2011.

[BUB10] C.S. Bretherton, J. Uchida, and P.N. Blossey. Slow manifolds and multiple equilibria in

stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2(14):1–20, 2010.

[Bud01] C.J. Budd. Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrodinger

equation. SIAM J. Appl. Math., 62(3):801–830, 2001.

[Bur70] R.R. Burnside. A note on Lighthill’s method of strained coordinates. SIAM J. Appl. Math., 18(2):

318–321, 1970.

[But64] J.C. Butcher. Implicit Runge–Kutta processes. Math. Comput., 18(85):50–64, 1964.

[But75] J.C. Butcher. A stability property of implicit Runge–Kutta methods. BIT Numer. Math., 15(4):

358–361, 1975.

[But76] J.C. Butcher. On the implementation of implicit Runge–Kutta methods. BIT Numer. Math., 16(3):

237–240, 1976.

[But98] R.J. Butera. Multirhythmic bursting. Chaos, 8(1):274–284, 1998.

[But07] V.F. Butuzov. Singularly perturbed two-dimensional parabolic problem in the case of intersecting

roots of the reduced equation. Comp. Math. Math. Phys., 47(4):620–628, 2007.

[BV92] A.V. Babin and M.I. Vishik. Attractors of Evolution Equations. North-Holland, 1992.

[BW11] M. Beck and C.E. Wayne. Using global invariant manifolds to understand metastability in the Burg-

ers equation with small viscosity. SIAM Rev., 53(1):129–153, 2011.

[BW12] A. Bovier and S.-D. Wang. Multi-time scales in adaptive dynamics: microscopic interpretation of a

trait substitution tree model. arXiv:1207.4690v1, pages 1–23, 2012.

[BW13] A. Bovier and S.-D. Wang. Trait substitution trees on two time scales analysis. arXiv:1304.4640v1,

pages 1–28, 2013.

[BX95] P.W. Bates and J.P. Xun. Metastable patterns for the Cahn–Hilliard equation: Part II. Layer dy-

namics and slow invariant manifold. J. Differential Equat., 117(1):165–216, 1995.

[BX98] P.W. Bates and J.P. Xun. Metastable patterns for the Cahn–Hilliard equation, part I. J. Differential

Equat., 111(2):421–457, 1998.

[BY02] G. Badowski and G.G. Yin. Stability of hybrid dynamic systems containing singularly perturbed

random processes. IEEE Trans. Aut. Contr., 47(12):2021–2032, 2002.

[BYB10] M. Benbachir, K. Yadi, and R. Bebbouchi. Slow and fast systems with Hamiltonian reduced problems.

Electr. J. Diff. Eq., 2010(6):1–19, 2010.

[BYS10] E.M. Bollt, C. Yao, and I.B. Schwartz. Dimensional implications of dynamical data on manifolds to

empirical KL analysis. Physica D, 239(23):2039–2049, 2010.

[CA84] H.-C. Chang and M. Aluko. Multi-scale analysis of exotic dynamics in surface catalyzed reactions I:

justification and preliminary model discriminations. Chem. Engineer. Sci., 39(1):37–50, 1984.

[CAA09] N. Corson and M.A. Aziz-Alaoui. Asymptotic dynamics of the slow–fast Hindmarsh–Rose neuronal

system. Dyn. Contin. Discrete Impuls. Syst. Ser. B, 16(4):535–549, 2009.

[CAK78] J.H. Chow, J.J. Allemong, and P.V. Kokotovic. Singular perturbation analysis of systems with sus-

tained high frequency oscillations. Automatica, 14(3):271–279, 1978.

[Cal88] A.J. Calise. Singular perturbation analysis of the atmospheric orbital plane change problem. J.

Astronaut. Sci., 36:35–43, 1988.

[CAL90] B. Christiansen, P. Alstrøm, and M.T. Levinsen. Routes to chaos and complete phase locking in

modulated relaxation oscillators. Phys. Rev. A, 42(4):1891–1900, 1990.

[Cal93] J.-L. Callot. Champs lents-rapides complexes a une dimension lente. Ann. Sci. Ecole Norm. Sup.,

26(2):149–173, 1993.

[Cam77] S.L. Campbell. Linear systems of differential equations with singular coefficients. SIAM J. Math. Anal.,

8(6):1057–1066, 1977.

Page 14: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

718 Bibliography

[Cam78] S.L. Campbell. Singular perturbation of autonomous linear systems, II. J. Differential Equat.,

29(3):362–373, 1978.

[Cam80a] S.L. Campbell. Singular linear systems of differential equations with delays. Applic. Anal., 11(2):

129–136, 1980.

[Cam80b] S.L. Campbell. Singular Systems of Differential Equations I. Pitman, 1980.

[Car52] M.L. Cartwright. Van der Pol’s equation for relaxation oscillations. In Contributions to the Theory of

Nonlinear Oscillations II, pages 3–18. Princeton University Press, 1952.

[Car54] G.F. Carrier. Boundary layer problems in applied mathematics. Comm. Pure Appl. Math., 7:11–17,

1954.

[Car70] G.F. Carrier. Singular perturbation theory and geophysics. SIAM Rev., 12(2):175–193, 1970.

[Car77] G.A. Carpenter. A geometric approach to singular perturbation problems with applications to nerve

impulse equations. J. Differential Equat., 23:335–367, 1977.

[Car79] G.A. Carpenter. Bursting phenomena in excitable membranes. SIAM J. Appl. Math., 36(2):334–372,

1979.

[Car81] J. Carr. Applications of Centre Manifold Theory. Springer, 1981.

[Car96] J. Cardy. Scaling and Renormalization in Statistical Physics. CUP, 1996.

[Car08] R. Carles. Semi-classical Analysis for Nonlinear Schrodinger Equations. World Scientific, 2008.

[Cas85] J.R. Cash. Adaptive Runge–Kutta methods for nonlinear two-point boundary value problems with

mild boundary layers. Comp. Maths. with Appls., 11(6):605–619, 1985.

[Cas88] J.R. Cash. On the numerical integration of nonlinear two-point boundary value problems using iter-

ated deferred corrections. Part 2: The development and analysis of highly stable deferred correction

formulae. SIAM J. Numer. Anal., 25(4):862–882, 1988.

[Cas03] J.R. Cash. Efficient numerical methods for the solution of stiff initial-value problems and differential

algebraic equations. Proc. R. Soc. Lond. A, 459:797–815, 2003.

[CB02] A. Carpio and L.L. Bonilla. Pulse propagation in discrete systems of coupled excitable cells. SIAM

J. Appl. Math., 63(2):619–635, 2002.

[CB05] S. Coombes and P.C. Bresloff, editors. Bursting: The genesis of rhythm in the nervous system. World

Scientific, 2005.

[CB06] S.R. Carpenter and W.A. Brock. Rising variance: a leading indicator of ecological transition. Ecology

Letters, 9:311–318, 2006.

[CBCB93] C.C. Canavier, D.A. Baxter, J.W. Clark, and J.H. Byrne. Nonlinear dynamics in a model neuron

provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsy-

naptic activity. J. Neurophysiol., 69(6):2252–2257, 1993.

[CBT+11] M. Chertkov, S. Backhaus, K. Turzisyn, V. Chernyak, and V. Lebedev. Voltage collapse and ODE

approach to power flows: analysis of a feeder line with static disorder in consumption/production.

arXiv:1106.5003v1, pages 1–8, 2011.

[CC69] K.W. Chang and W.A. Coppel. Singular perturbations of initial value problems over a finite interval.

Arch. Rat. Mech. Anal., 32(4):268–280, 1969.

[CC96] O. Costin and R. Costin. Rigorous WKB for finite-order linear recurrence relations with smooth

coefficients. SIAM J. Math. Anal., 27(1):110–134, 1996.

[CC03] H. Cai and R. Chadwick. Radial structure of traveling waves in the inner ear. SIAM J. Appl. Math.,

63(4):1105–1120, 2003.

[CC12] C.-N. Chen and Y.S. Choi. Standing pulse solutions to FitzHugh–Nagumo equations. Arch. Rational

Mech. Anal., 206: 741–777, 2012.

[C.C13] C.Cotter. Data assimilation on the exponentially accurate slow manifold. Phil. Trans. R. Soc. A,

317:(20120300), 2013.

[CCB90] C.C. Canavier, J.W. Clark, and J.H. Byrne. Routes to chaos in a model of a bursting neuron. Biophys.

J., 57(6):1245–1251, 1990.

[CCB91] C.C. Canavier, J.W. Clark, and J.H. Byrne. Simulation of the bursting activity of neuron R15

in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J. Neurophysiol.,

66(6):2107–2124, 1991.

[CCB+01] J.S. Clark, S.R. Carpenter, M. Barber, S. Collins, A. Dobson, J.A. Foley, D.M. Lodge, M. Pascual,

R. Pielke Jr., W. Pizer, C. Pringle, W.V. Reid, K. A. Rose, O. Sala, W.H. Schlesinger, D.H. Wall,

and D. Wear. Ecological forecasts: an emerging imperative. Science, 293:657–660, 2001.

[CCLCP13] A.N. Carvalho, J.W. Cholewa, G. Lozada-Cruz, and M.R.T. Primo. Reduction of infinite dimensional

systems to finite dimensions: compact convergence approach. SIAM J. Math. Anal., 45(2):600–638,

2013.

[CCM07] S. Capper, J. Cash, and F. Mazzia. On the development of effective algorithms for the numeri-

cal solution of singularly perturbed two-point boundary value problems. Int. J. Comput. Sci. Math.,

1(1):42–57, 2007.

[CCP+11] S.R. Carpenter, J.J. Cole, M.L. Pace, R. Batt, W.A. Brock, T. Cline, J. Coloso, J.R. Hodgson,

J.F. Kitchell, D.A. Seekell, L. Smith, and B. Weidel. Early warning signs of regime shifts: a whole-

ecosystem experiment. Science, 332:1079–1082, 2011.

[CCR79] B. Caroli, C. Caroli, and B. Roulet. Diffusion in a bistable potential: a systematic WKB treatment.

J. Stat. Phys., 21(4):415–437, 1979.

[CCS05] G.S. Cymbalyuk, R.L. Calabrese, and A.L. Shilnikov. How a neuron model can demonstrate co-

existence of tonic spiking and bursting. Neurocomput., 65:869–875, 2005.

[CCS07] P. Channell, G. Cymbalyuk, and A. Shilnikov. Origin of bursting through homoclinic spike adding

in a neuron model. Phys. Rev. Lett., 98(13):134101, 2007.

[CD91] M. Canalis-Durand. Formal expansion of van der Pol equation canard solutions are Gevrey. In

E. Benoıt, editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 29–39.

Springer, 1991.

[CD93] M. Canalis-Durand. Solution formelle Gevrey d’une equation singulierement perturbee: le cas mul-

tidimensionel. Annales de l’institut Fourier, 43(2):469–483, 1993.

[CD94] M. Canalis-Durand. Solution formelle Gevrey d’une equation differentielle singulirement perturbee.

Asymptotic Anal., 8:185–216, 1994.

Page 15: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 719

[CD96] P.D. Christofides and P. Daoutidis. Compensation of measurable disturbances for two-time-scale

nonlinear systems. Automatica, 32(11):1553–1573, 1996.

[CD09] N. Chernov and D. Dolgopyat. Brownian Brownian motion, volume 927 of Mem. Amer. Math. Soc. AMS,

2009.

[CDD+03] S. Conti, A. DeSimone, G. Dolzmann, S. Muller, and F. Otto. Multiscale modeling of materials -

the role of analysis. In Trends in Nonlinear Analysis, pages 375–408. Springer, 2003.

[CDF90] S.-N. Chow, B. Deng, and B. Fiedler. Homoclinic bifurcation at resonant eigenvalues. J. Dyn. Diff.

Eq., 2(2):177–244, 1990.

[CDG+98] J.C. Celet, D. Dangoisse, P. Glorieux, G. Lythe, and T. Erneux. Slowly passing through resonance

strongly depends on noise. Phys. Rev. Lett., 81(5):975–978, 1998.

[CDI09] M. Condon, A. Deano, and A. Iserles. On highly oscillatory problems arising in electronic engineer-

ing. ESIAM: Math. Model. Numer. Anal., 43(4):785–804, 2009.

[CDI10a] M. Condon, A. Deano, and A. Iserles. On second-order differential equations with highly oscillatory

forcing terms. Proc. R. Soc. A, 466:1809–1828, 2010.

[CDI10b] M. Condon, A. Deano, and A. Iserles. On systems of differential equations with extrinsic oscillation.

Discr. Cont. Dyn. Syst. A, 28(4):1345–1367, 2010.

[CDKS98] K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen. Evolution of random networks. Phys. Rev.

Lett., 81(11):2380–2383, 1998.

[CDMFS07] M. Canalis-Durand, J. Mozo-Fernandez, and R. Schafke. Monomial summability and doubly singular

differential equations. J. Differential Equat., 233:485–511, 2007.

[CDP13] B. Coll, F. Dumortier, and R. Prohens. Configurations of limit cycles in Lienard equations. J. Dif-

ferential Equat., 255(11):4169–4184, 2013.

[CDRSS00] M. Canalis-Durand, J.P. Ramis, R. Schaffke, and Y. Sibuya. Gevrey solutions of singularly perturbed

differential equations. J. Reine Angew. Math., 518:95–129, 2000.

[CDT90] S.-N. Chow, B. Deng, and D. Terman. The bifurcation of homoclinic and periodic orbits from two

heteroclinic orbits. SIAM J. Math. Anal., 21(1):179–204, 1990.

[CE71] C. Conley and R. Easton. Isolated invariant sets and isolating blocks. Trans. AMS, 158:35–61, 1971.

[CE01] R. Curtu and B. Ermentrout. Oscillations in a refractory neural net. J. Math. Biol., 43(1):81–100,

2001.

[CE10] M.H. Cortez and S.P. Ellner. Understanding rapid evolution in predator–prey interactions using the

theory of fast–slow systems. Am. Nat., 176(5):109–127, 2010.

[CEAM13] M. Ciszak, S. Euzzor, T. Arecchi, and R. Meucci. Experimental study of firing death in a network

of chaotic FitzHugh–Nagumo neurons. Phys. Rev. E, 87:022919, 2013.

[Cer09] S. Cerrai. A Khasminskii type averaging principle for stochastic reaction–diffusion equations. Ann.

Appl. Prob., 19(3):899–948, 2009.

[Cer11] S. Cerrai. Averaging principle for systems of reaction–diffusion equations with polynomial nonlin-

earities perturbed by multiplicative noise. SIAM J. Math. Anal., 43(6):2482–2518, 2011.

[Ces94] P. Cessi. A simple box model of stochastically forced thermohaline circulation. J. Phys. Oceanogr.,

24:1911–1920, 1994.

[CES05] S. Chen, W. E, and C.W. Shu. The heterogeneous multiscale method based on the discontinuous

Galerkin method for hyperbolic and parabolic problems. Multiscale Model. Simul., 3(4):871–894, 2005.

[CET86] J.R. Cary, D.F. Escande, and J.L. Tennyson. Adiabatic-invariant change due to separatrix crossing.

Phys. Rev. A, 34(5):4256–4275, 1986.

[CF81] M.F. Crowley and R.J. Field. Electrically coupled Belousov–Zhabotisnky oscillators: a potential

chaos generator. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics,

pages 147–153. Springer, 1981.

[CF94] H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory Relat. Fields,

100(3):365–393, 1994.

[CF06a] S. Cerrai and M. Freidlin. On the Smoluchowski–Kramers approximation for a system with an infinite

number of degrees of freedom. Probab. Theory Rel. Fields, 135(3):363–394, 2006.

[CF06b] S. Cerrai and M. Freidlin. Smoluchowski–Kramers approximation for a general class of SPDEs. J.

Evol. Equat., 6(4):657–689, 2006.

[CF09] S. Cerrai and M. Freidlin. Averaging principle for a class of stochastic reaction–diffusion equations.

Probab. Theory Rel. Fields, 144(1):137–177, 2009.

[CFG89] P. Constantin, C. Foias, and J.D. Gibbon. Finite dimensional attractor for the laser equations.

Nonlinearity, 2:241–269, 1989.

[CFL78] D.S. Cohen, A. Fokas, and P.A. Lagerstrom. Proof of some asymptotic results for a model equation

for low Reynolds number flow. SIAM J. Appl. Math., 35(1):187–207, 1978.

[CFL95] T.R. Chay, Y.S. Fan, and Y.S. Lee. Bursting, spiking, chaos, fractals, and universality in biological

rhythms. Int. J. Bif. Chaos, 5(3):595–635, 1995.

[CFM12] P. Chleboun, A. Faggionato, and F. Martinelli. Time scale separation and dynamic heterogeneity in

the low temperature east model. arXiv:1212.2399v1, pages 1–40, 2012.

[CFNS09] P. Channell, I. Fuwape, A.B. Neiman, and A. Shilnikov. Variability of bursting patterns in a neuron

model in the presence of noise. J. Comp. Neurosci., 27(3):527–542, 2009.

[CFNT89] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam. Integral Manifolds and Inertial Manifolds for

Dissipative Partial Differential Equations. Springer, 1989.

[CG92] M. Corless and L. Glielmo. On the exponential stability of singularly perturbed systems. SIAM J.

Contr. Optim., 30(6):1338–1360, 1992.

[CG95a] S.L. Campbell and C.W. Gear. The index of general nonlinear DAEs. Numer. Math., 72:173–196, 1995.

[CG95b] S.L. Campbell and E. Griepentrog. Solvability of general differential algebraic equations. SIAM J.

Sci. Comput., 16(2):257–270, 1995.

[CG00] C. Coumarbatch and Z. Gajic. Exact decomposition of the algebraic Riccati equation of deterministic

multimodeling optimal control problems. IEEE Trams. Aut. Contr., 45(4):790–794, 2000.

[CGAP95] J.H. Chow, R. Galarza, P. Accari, and W.W. Prince. Inertial and slow coherency aggregation algo-

rithms for power system dynamic model reduction. IEEE Trans. Power Syst., 10(2):680–685, 1995.

Page 16: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

720 Bibliography

[CGMC02] G.S. Cymbalyuk, Q. Gaudry, M. Masino, and R.L. Calabrese. Bursting in leech heart interneurons:

cell-autonomous and network-based mechanisms. J. Neurosci., 22(24):10580–10592, 2002.

[CGO94] L.Y. Chen, N. Goldenfeld, and Y. Oono. Renormalization group theory for global asymptotic anal-

ysis. Phys. Rev. Lett., 73(10): 1311–1315, 1994.

[CGO96] L.Y. Chen, N. Goldenfeld, and Y. Oono. Renormalization group and singular perturbations: multiple

scales, boundary layers, and reductive perturbation theory. Phys. Rev. E, 54(1):376–394, 1996.

[CGOP94] L.Y. Chen, N. Goldenfeld, Y. Oono, and G. Paquette. Selection, stability and renormalization.

Physica A, 204(1):111–133, 1994.

[CGOV84] M. Cassandro, A. Galves, E. Olivieri, and M.E. Vares. Metastable behavior of stochastic dynamics:

a pathwise approach. J. Stat. Phys., 35(5):603–634, 1984.

[CGP02] M. Costa, A.L. Goldberger, and C.K. Peng. Multiscale entropy analysis of complex physiologic time

series. Phys. Rev. Lett., 89(6):068102, 2002.

[CGSR78] R.J. Clasen, D. Garfinkel, N.Z. Shapiro, and G.C. Roman. A method for solving certain stiff differ-

ential equations. SIAM J. Appl. Math., 34(4):732–742, 1978.

[CH52] C.F. Curtiss and J. Hirschfelder. Integration of stiff equations. Proc. Natl. Acad. Sci. USA, 38(3):

235–243, 1952.

[CH76] C. Comstock and G.C. Hsiao. Singular perturbations for difference equations. Rocky Moun. J. Math.,

6(4):561, 1976.

[CH84] K.W. Chang and F.A. Howes. Nonlinear Singular Perturbation Phenomena: Theory and Applications.

Springer, 1984.

[CH93] M.C. Cross and P.C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3):

851–1112, 1993.

[CH06] C. De Coster and P. Habets. Two–Point Boundary Value Problems: Lower and Upper Solutions. Elsevier,

2006.

[CH08] C. Chicone and M.T. Heitzman. The field theory two-body problem in acoustics. Gen. Relativ. Gravit.,

40:1087–1107, 2008.

[CH13] C. Chicone and M.T. Heitzman. Phase-locked loops, demodulation, and averaging approximation

time-scale extensions. SIAM J. Appl. Dyn. Syst., 12(2):674–721, 2013.

[Cha69] K.W. Chang. Two problems in singular perturbations of differential equations. J. Austral. Math. Soc.,

10:33–50, 1969.

[Cha76] K.W. Chang. Singular perturbations of a boundary problem for a vector second order differential

equation. SIAM J. Appl. Math., 30(1):42–54, 1976.

[Cha85] T.R. Chay. Chaos in a three-variable model of an excitable cell. Physica D, 16(2):233–242, 1985.

[Cha87] F. Chaplais. Averaging and deterministic optimal control. SIAM J. Control Optim., 25(3):767–780,

1987.

[Cha90a] T.R. Chay. Bursting excitable cell models by a slow Ca2+ current. J. Theor. Biol., 142(3):305–315,

1990.

[Cha90b] T.R. Chay. Electrical bursting and intracellular Ca2+ oscillations in excitable cell models. Biol.

Cybernet., 63(1):15–23, 1990.

[Cha96] T.R. Chay. Electrical bursting and luminal calcium oscillation in excitable cell models. Biol. Cybernet.,

75(5):419–431, 1996.

[Che49] T.M. Cherry. Uniform asymptotic expansions. J. London Math. Soc., 1(2):121–130, 1949.

[Che50] T.M. Cherry. Uniform asymptotic formulae for functions with transition points. Trans. Amer. Math.

Soc., 68(2):224–257, 1950.

[Che82] N.N. Chentsova. An investigation of a certain model system of quasi-stochastic relaxation oscilla-

tions. Russ. Math. Surv., 37(5):164, 1982.

[Che92] X. Chen. Generation and propagation of interfaces for reaction–diffusion equations. J. Differential

Equat., 96(1):116–141, 1992.

[Che94] K. Chen. Error equidistribution and mesh adaptation. SIAM J. Sci. Comput., 15(4):798–818, 1994.

[Che04] H. Cheng. The renormalized two-scale method. Stud. Appl. Math., 113(4):381–387, 2004.

[Che11] A. Chen. Modeling a synthetic biological chaotic system: relaxation oscillators coupled by quorum

sensing. Nonlinear Dyn., 63:711–718, 2011.

[Chi03] C. Chicone. Inertial and slow manifolds for delay differential equations. J. Differential Equat., 190:364–

406, 2003.

[Chi04] C. Chicone. Inertial flows, slow flows, and combinatorial identities for delay equations. J. Dyn. Diff.

Eq., 16(3):805–831, 2004.

[Chi08] H. Chiba. C1 approximation of vector fields based on the renormalization group method. SIAM J.

Appl. Dyn. Sys., 7(3):895–932, 2008.

[Chi09] H. Chiba. Extension and unification of singular perturbation methods for ODEs based on the renor-

malization group method. SIAM J. Appl. Dyn. Sys., 8(3):1066–1115, 2009.

[Chi10] C. Chicone. Ordinary Differential Equations with Applications. Texts in Applied Mathematics. Springer,

2nd edition, 2010.

[Chi12] E. Chiavazzo. Approximation of slow and fast dynamics in multiscale dynamical systems by the

linearized relaxation redistribution method. J. Comp. Phys., 231(4):1751–1765, 2012.

[Chi13] H. Chiba. Reduction of weakly nonlinear parabolic partial differential equations. J. Math. Phys.,

54:101501, 2013.

[CHKL03] J. Cisternas, P. Holmes, I.G. Kevrekidis, and X. Li. CO oxidation on thin Pt crystals: temperature

slaving and the derivation of lumped models. J. Chem. Phys., 118:3312, 2003.

[CHL03] D. Cohen, E. Hairer, and C. Lubich. Modulated Fourier expansions of highly oscillatory differential

equations. Found. Comput. Math., 3(4):327–345, 2003.

[CHL09] F. Castella, J.-P. Hoffbeck, and Y. Lagadeuc. A reduced model for spatially structured predator–prey

systems with fast spatial migrations and slow demographic evolutions. Asymptot. Anal., 61(3):125–175,

2009.

[CHM77] D.S. Cohen, F.C. Hoppensteadt, and R.M. Miura. Slowly modulated oscillations in nonlinear diffu-

sion processes. SIAM J. Appl. Math., 33(2):217–229, 1977.

Page 17: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 721

[Cho77] J.H. Chow. Preservation of controllability in linear time-invariant perturbed systems. Int. J. Contr.,

25(5):697–704, 1977.

[Cho78] J.H. Chow. Asymptotic stability of a class of non-linear singularly perturbed systems. J. Frank. Inst.,

305(5):275–281, 1978.

[Cho79] J.H. Chow. A class of singularly perturbed, nonlinear, fixed-endpoint control problems. J. Optim.

Theor. Appl., 29(2):231–251, 1979.

[Cho82] J.H. Chow, editor. Time-Scale Modeling of Dynamic Networks with Applications to Power Systems, volume 46

of Lect. Notes Contr. Infor. Sci. Springer, 1982.

[Cho91] J.H. Chow. Aggregation properties of linearized two-time-scale power networks. IEEE Trans. Circ.

Syst., 38(7):720–730, 1991.

[Cho03] S.-N. Chow. Lattice dynamical systems. In J.W. Macki and P. Zecca, editors, Dynamical Systems,

pages 1–102. Springer, 2003.

[Chr00] P.D. Christofides. Robust output feedback control of nonlinear singularly perturbed systems. Auto-

matica, 36(1):45–52, 2000.

[Chu92] C.K. Chui. An Introduction to Wavelets. Academic Press, 1992.

[CISA+13] Z. Cupic, A. Ivanovic-Sasic, S. Anic, B. Stankovic, J. Maksimovic, J. Kolar-Anic, and G. Schmitz.

Tourbillion in the phase space of the Bray-Liebhafsky nonlinear oscillatory reaction and related

multiple-time-scale model. MATCH Commun. Math. Comput. Chem., 69:805–830, 2013.

[CJK98] J.M. Cline, M. Joyce, and K. Kainulainen. Supersymmetric electroweak baryogenesis in the WKB

approximation. Phys. Lett. B, 417(1):79–86, 1998.

[CJR76] S.L. Campbell, C.D. Meyer Jr, and N.J. Rose. Applications of the Drazin inverse to linear systems

of differential equations with singular constant coefficients. SIAM J. Appl. Math., 31(3):411–425, 1976.

[CK76] J.H. Chow and P.V. Kokotovic. A decomposition of near-optimum regulators for systems with slow

and fast modes. IEEE Trans. Aut. Contr., 21(5):701–705, 1976.

[CK78a] J.H. Chow and P.V. Kokotovic. Near-optimal feedback stabilization of a class of nonlinear singularly

perturbed systems. SIAM J. Contr. Optim., 16(5):756–770, 1978.

[CK78b] J.H. Chow and P.V. Kokotovic. Two-time-scale feedback design of a class of nonlinear systems. IEEE

Trans. Aut. Contr., 23(3):438–443, 1978.

[CK83a] T.R. Chay and J. Keizer. Minimal model for membrane oscillations in the pancreatic beta-cell.

Biophys. J., 42(2):181–189, 1983.

[CK83b] R.C.Y. Chin and R.A. Krasny. A hybrid asymptotic-finite element method for stiff two-point bound-

ary value problems. SIAM J. Sci. Statist. Comput., 4(2):229–243, 1983.

[CK85] J.H. Chow and P.V. Kokotovic. Time scale modeling of sparse dynamic networks. IEEE Trans. Aut.

Contr., 30(8):714–722, 1985.

[CK88] T.R. Chay and H.S. Kang. Role of single-channel stochastic noise on bursting clusters of pancreatic

beta-cells. Biophys. J., 54(3):427–435, 1988.

[CK94] A.R. Champneys and Yu.A. Kuznetsov. Numerical detection and continuation of codimension-two

homoclinic bifurcations. Int. J. Bif. Chaos, 4(4):785–822, 1994.

[CK98] M. Christ and A. Kiselev. Absolutely continuous spectrum for one-dimensional Schrodinger operators

with slowly decaying potentials: some optimal results. J. Amer. Math. Soc., 11(4):771–797, 1998.

[CK99] D. Cao and T. Kupper. On the existence of multipeaked solutions to a semilinear Neumann problem.

Duke Math. J., 97(2):261–300, 1999.

[CK11] M. Christ and A. Kiselev. WKB and spectral analysis of one-dimensional Schrodinger operators with

slowly varying potentials. Comm. Math. Phys., 218(2):245–262, 2011.

[CKK+07] A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd. When Shil’nikov meets Hopf

in excitable systems. SIAM J. Appl. Dyn. Syst., 6(4):663–693, 2007.

[CKK+09] A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J.D.M. Rademacher. Unfolding a tan-

gent equilibrium-to-periodic heteroclinic cycle. SIAM J. Appl. Dyn. Sys., 8(3): 1261–1304, 2009.

[CKMR01] C. Chicone, S.M. Kopeikin, B. Mashhoon, and D.G. Retzloff. Delay equations and radiation damping.

Phys. Lett. A, 285:17–26, 2001.

[CKN13] K. Cho, J. Kamimoto, and T. Nose. Asymptotic analysis of oscillatory integrals via the Newton

polyhedra of the phase and the amplitude. J. Math. Soc. Japan, 65(2):521–562, 2013.

[CKS94] W.W. Chow, S.W. Koch, and M. Sargent. Semiconductor Laser Physics. Springer, 1994.

[CKS96] A.R. Champneys, Yu.A. Kuznetsov, and B. Sandstede. A numerical toolbox for homoclinic bifurca-

tion analysis. Int. J. Bif. Chaos, 6(5):867–887, 1996.

[CL45] M.L. Cartwright and J.E. Littlewood. On non-linear differential equations of second order. I. The

equation y − k(1 − y2)y + y = bλk cos(λt + a), k large. J. London Math. Soc., 20:180–189, 1945.

[CL47] M.L. Cartwright and J.E. Littlewood. On non-linear differential equations of second order. II. The

equation y − kf(y, y) + g(y, k) = p(t), k > 0, f(y) ≥ 1. Ann. Math., 48(2):472–494, 1947.

[CL52] E.A. Coddington and N. Levinson. A boundary value problem for a nonlinear differential equation

with a small parameter. Proc. Amer. Math. Soc., 3(1):73–81, 1952.

[CL55] E.A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill, 1955.

[CL91] S.L. Campbell and B. Leimkuhler. Differentiation of constraints in differential-algebraic equations.

J. Struct. Mech., 19:19–39, 1991.

[CL95] S.N. Chow and H. Leiva. Existence and roughness of the exponential dichotomy for skew-product

semiflow in Banach spaces. J. Differential Equat., 120(2):429–477, 1995.

[CL00] C. Chicone and W. Liu. On the continuation of an invariant torus in a family with rapid oscillations.

SIAM J. Math. Anal., 31(2):386–415, 2000.

[CL03] E.J. Collins and D.S. Leslie. Convergent multiple-timescales reinforcement learning algorithms in

normal form games. Ann. Appl. Probab., 13(4):1231–1251, 2003.

[CL10] G.A. Cassatella Contra and D. Levi. Discrete multiscale analysis: a biatomic lattice system. J.

Nonlinear Math. Phys., 17:357–377, 2010.

[CL11] C. Chipot and T. Lelievre. Enhanced sampling of multidimensional free-energy landscapes using

adaptive biasing forces. SIAM J. Appl. Math., 71(5):1673–1695, 2011.

[CLW94] S.-N. Chow, C. Li, and D. Wang. Normal Forms and Bifurcation of Planar Vector Fields. CUP, 1994.

[CM70] V.H. Chu and C.M. Mei. On slowly-varying Stokes waves. J. Fluid Mech., 41(4):873–887, 1970.

Page 18: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

722 Bibliography

[CM95] S.L. Campbell and E. Moore. Constraint preserving integrators for general nonlinear higher index

DAEs. Numer. Math., 69(4):383–399, 1995.

[CM02] S.M. Cox and P.C. Matthews. Exponential time differencing for stiff systems. J. Comput. Phys.,

176(2):430–455, 2002.

[CM05a] J.R. Cash and F. Mazzia. A new mesh selection algorithm, based on conditioning, for two-point

boundary value codes. J. Comp. Appl. Math., 184:362–381, 2005.

[CM05b] K. Christensen and N.R. Moloney. Complexity and Criticality. Imperial College Press, 2005.

[CM07] J. Cousteix and J. Mauss. Asymptotic Analysis and Boundary Layers. Springer, 2007.

[CMA90] M. Ciofini, R. Meucci, and F.T. Arecchi. Transient statistics in a CO2 laser with a slowly swept

pump. Phys. Rev. A, 42:482–486, 1990.

[CMJ09] N. Costanzino, V. Manukian, and C.K.R.T. Jones. Solitary waves of the regularized short pulse and

Ostrovsky equations. SIAM J. Math. Anal., 41(5):2088–2106, 2009.

[CML02] D. Cai, D.W. McLaughlin, and K.T.R. Mc Laughlin. The nonlinear Schrodinger equation as both a

PDE and a dynamical system. In B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 599–675.

Elsevier, 2002.

[CMP77] S.N. Chow and J. Mallet-Paret. Integral averaging and bifurcation. J. Differential Equat., 26(1):

112–159, 1977.

[CMR13] G.W.A. Constable, A.J. McKane, and T. Rogers. Stochastic dynamics on slow manifolds. J. Phys. A,

46:295002, 2013.

[CMS05] R. Carles, N.J. Mauser, and H.P. Stimming. (Semi)classical limit of the Hartree equation with har-

monic potential. SIAM J. Appl. Math., 66(1):29–56, 2005.

[CMSS10] P. Chartier, A. Murua, and J.M. Sanz-Serna. Higher-order averaging, formal series and numerical

integration I: B-series. Found. Comput. Math., 10(6):695–727, 2010.

[CMSS12] P. Chartier, A. Murua, and J.M. Sanz-Serna. Higher-order averaging, formal series and numerical

integration II: the quasi-periodic case. Found. Comput. Math., 12(4):471–508, 2012.

[CMST06] J.R. Cash, F. Mazzia, N. Sumarti, and D. Trigiante. The role of conditioning in mesh selection

algorithms for first order systems of linear two point boundary value problems. J. Comp. Appl. Math.,

185:212–224, 2006.

[CMW95] J.R. Cash, G. Moore, and R.W. Wright. An automatic continuation strategy for the solution of

singularly perturbed linear two-point boundary value problems. J. Comp. Phys., 122:266–279, 1995.

[CNO06] S. Conti, B. Niethammer, and F. Otto. Coarsening rates in off-critical mixtures. SIAM J. Math. Anal.,

37(6):1732–1741, 2006.

[CNV07] M. Courbage, V.I. Nekorkin, and L.V. Vdovin. Chaotic oscillations in a map-based model of neural

activity. Chaos, 17:043109, 2007.

[CO74] J. Chen and R.E. O’Malley. On the asymptotic solution of a two-parameter boundary value problem

of chemical reactor theory. SIAM J. Appl. Math., 26(4):717–729, 1974.

[CO99] J. Cronin and R.E. O’Malley, editors. Analyzing Multiscale Phenomena Using Singular Perturbation Methods,

volume 56 of Proc. Symp. Appl. Math. AMS, 1999.

[CO00] S. Coombes and A.H. Osbaldestin. Period-adding bifurcations and chaos in a periodically stimulated

excitable neural relaxation oscillator. Phys. Rev. E, 62(3):4057–4066, 2000.

[Com68] C. Comstock. On Lighthill’s method of strained coordinates. SIAM J. Appl. Math., 16(3):596–602,

1968.

[Com71a] C. Comstock. Singular perturbations of elliptic equations. I. SIAM J. Appl. Math., 20(3):491–502, 1971.

[Com71b] C. Comstock. Singular perturbations of elliptic equations. II. In Analytic Theory of Differential Equations,

pages 200–206. Springer, 1971.

[Com72] C. Comstock. The Poincare–Lighthill perturbation technique and its generalizations. SIAM Rev.,

14(3):433–446, 1972.

[Con78] C. Conley. Isolated Invariant Sets and the Morse Index. Amer. Math. Soc., 1978.

[Con80] C. Conley. A qualitative singular perturbation theorem. In Z. Nitecki and C. Robinson, editors,

Global Theory of Dynamical Systems, pages 65–89. Springer, 1980.

[Con89] P. Constantin. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer,

1989.

[Con90] J. B. Conway. A Course in Functional Analysis. Springer, 1990.

[Con04] F. Cong. The approximate decomposition of exponential order of slow–fast motions in multifrequency

systems. J. Differential Equat., 196(2):466–480, 2004.

[Coo01] S. Coombes. Phase locking in networks of synaptically coupled McKean relaxation oscillators. Physica

D, 160(3):173–188, 2001.

[Coo05] S. Coombes. Waves, bumps, and patterns in neural field theories. Biol. Cybern., 93:91–108, 2005.

[Cop78] W.A. Coppel. Dichotomies in Stability Theory. Springer, 1978.

[COR12] F. Casas, J.A. Oteo, and J. Ros. Unitary transformations depending on a small parameter. Proc. R.

Soc. A, 468:685–700, 2012.

[Cos09] O. Costin. Asymptotics and Borel Summability. Chapman-Hall, 2009.

[CP83] S.L. Campbell and L.R. Petzhold. Canonical forms and solvable singular systems of differential

equations. SIAM J. Algebraic Discr. Meth., 4(4):517–521, 1983.

[CP89] J. Carr and R.L. Pego. Metastable patterns in solutions of ut = ε2uxx − f(u). Comm. Pure Appl.

Math., 42(5):523–576, 1989.

[CP90] J. Carr and R.L. Pego. Invariant manifolds for metastable patterns in ut = ε2uxx − f(u). Proc. R.

Soc. Edinburgh A, 116(1):133–160, 1990.

[CPS90] A.J. Calise, J.V.R. Prasad, and B. Siciliano. Design of optimal output feedback compensators in

two-time scale systems. IEEE Trans. Auto. Contr., 35(4):488–492, 1990.

[CR79] S.L. Campbell and N.J. Rose. Singular perturbation of autonomous linear systems. SIAM J. Math.

Anal., 10(3):542–551, 1979.

[CR85] T.R. Chay and J. Rinzel. Bursting, beating, and chaos in an excitable membrane model. Biophys. J.,

47(3):357–366, 1985.

[CR88] T. Chakraborty and R.H. Rand. The transition from phase locking to drift in a system of two weakly

coupled van der Pol oscillators. Int. J. Non-Linear Mech., 23(5):369–376, 1988.

Page 19: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 723

[CR03] S. Cerrai and M. Rockner. Large deviations for invariant measures of general stochastic reaction–

diffusion systems. Comptes Rendus Acad. Sci. Paris S. I Math., 337:597–602, 2003.

[CR04] S. Cerrai and M. Rockner. Large deviations for stochastic reaction–diffusion systems with multi-

plicative noise and non-Lipschitz reaction term. Annals of Probability, 32:1–40, 2004.

[CR05] S. Cerrai and M. Rockner. Large deviations for invariant measures of stochastic reaction–diffusion

systems with multiplicative noise and non-Lipschitz reaction term. Annales de l’Institut Henri Poincare

(B), 41:69–105, 2005.

[CR11] R. Curtu and J. Rubin. Interaction of canard and singular Hopf mechanisms in a neural model. SIAM

J. Appl. Dyn. Syst., 10:1443–1479, 2011.

[Cre07] A.-S. Crepin. Using fast and slow processes to manage resources with thresholds. Environ. Resource

Econ., 36(2):191–213, 2007.

[CRK05] R. Clewley, H.G. Rotstein, and N. Kopell. A computational tool for the reduction of nonlinear ODE

systems possessing mutltiple scales. Multiscale Model. Simul., 4(3):732–759, 2005.

[CRO86] W.L. Chien, H. Rising, and J.M. Ottino. Laminar mixing and chaotic mixing in several cavity flows.

J. Fluid Mech., 170(1): 355–377, 1986.

[Cro87] J. Cronin, editor. Mathematical Aspects of Hodgkin–Huxley Neural Theory. CUP, 1987.

[CS76] C. Conley and Joel Smoller. Remarks on traveling wave solutions of non-linear diffusion equations.

in: Structural Stability, the Theory of Catastrophes, and Applications in the Sciences (LNM 525), pages 77–89,

1976.

[CS86] C. Conley and Joel Smoller. Bifurcation and stability of stationary solutions of the FitzHugh–

Nagumo equations. J. Differential Equat., 63(3):389–405, 1986.

[CS05] G.S. Cymbalyuk and A.L. Shilnikov. Coexistence of tonic spiking oscillations in a leech neuron

model. J. Comput. Neurosci., 18(3):255–263, 2005.

[CS11] M.S. Calder and D. Siegel. Properties of the Lindemann mechanism in phase space. Electron. J.

Differential Equat., 2011(8):1–31, 2011.

[CS12] M.J. Capinski and C. Simo. Computer assisted proof for normally hyperbolic invariant manifolds.

Nonlinearity, 25:1997–2026, 2012.

[CS13] E.M. Constantinescu and A. Sandu. Extrapolated multirate methods for differential equations with

multiple time scales. J. Sci. Comput., 56:28–44, 2013.

[CSE09] S.A. Campbell, E. Stone, and T. Erneux. Delay induced canards in a model of high speed machining.

Dynamical Systems, 24(3):373–392, 2009.

[CSHD12] E. Cotilla-Sanchez, P. Hines, and C.M. Danforth. Predicting critical transitions from time series

synchrophasor data. IEEE Trans. Smart Grid, 3(4):1832–1840, 2012.

[CSRR08] R. Curtu, A. Shpiro, N. Rubin, and J. Rinzel. Mechanisms for frequency control in neuronal com-

petition models. SIAM J. Appl. Dyn. Syst., 7(2):609–649, 2008.

[CSS10] M.P. Calvo and J.M. Sanz-Serna. Heterogeneous multiscale methods for mechanical systems with

vibrations. SIAM J. Sci. Comput., 32:2029–2046, 2010.

[CTS12] R. Chachra, M.K. Transtrum, and J.P. Sethna. Structural susceptibility and separation of time scales

in the van der Pol oscillator. Phys. Rev. E, 86:026712, 2012.

[Cur10] R. Curtu. Singular Hopf bifurcation and mixed-mode oscillations in a two-cell inhibitory neural

network. Physica D, 239:504–514, 2010.

[CV09] F. Clement and A. Vidal. Foliation-based parameter tuning in a model of the GnRH pulse and surge

generator. SIAM J. Appl. Dyn. Syst., 8(4):1591–1631, 2009.

[CWPS90] J.H. Chow, J.R. Winkelman, M.A. Pai, and P.W. Sauer. Singular perturbation analysis of large-scale

power systems. Int. J. Elec. Power Ener. Syst., 12(2):117–126, 1990.

[CWS83a] M. Coderch, A.S. Willsky, and S.S. Sastry. Hierarchical aggregation of linear systems with multiple

time scales. IEEE Trans. Aut. Contr., 28(11):1017–1030, 1983.

[CWS83b] M. Coderch, A.S. Willsky, and S.S. Sastry. Hierarchical aggregation of singularly perturbed finite

state Markov processes. Stochastics, 8(4):259–289, 1983.

[CWS10] A.F: Cheviakov, M.J. Ward, and R. Straube. An asymptotic analysis of the mean first passage time

for narrow escape problems: Part II: The sphere. Multiscale Model. Simul., 8(3):836–870, 2010.

[DA67] R.T. Davis and K.T. Alfriend. Solutions to van der Pol’s equation using a perturbation method. Int.

J. Non-Linear Mech., 2(2):153–162, 1967.

[Daf10] C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2010.

[Dah63] G. Dahlquist. A special stability problem for linear multistep methods. BIT, 3:27–43, 1963.

[Dan13] M.J.H. Dantas. Quenching in a class of singularly perturbed mechanical systems. Int. J. Non-Linear

Mech., 50:48–57, 2013.

[dARAR99] F.M. de Aguiar, S. Rosenblatt, A. Azevedo, and S.M. Rezende. Observation of mixed-mode oscilla-

tions in spin-wave experiments. J. Appl. Phys., 85(8):5086–5087, 1999.

[Dau92] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[Day83] M.V. Day. On the exponential exit law in the small parameter exit problem. Stochastics, 8(4):297–323,

1983.

[Day84] M.V. Day. On the asymptotic relation between equilibrium density and exit measure in the exit

problem. Stochastics, 12(3):303–330, 1984.

[Day87] M.V. Day. Recent progress on the small parameter exit problem. Stochastics, 20(2):121–150, 1987.

[Day89] M.V. Day. Boundary local time and small parameter exit problems with characteristic boundaries.

SIAM J. Math. Anal., 20(1):222–248, 1989.

[Day90] M.V. Day. Large deviations results for the exit problem with characteristic boundary. J. Math. Anal.

Appl., 147(1):134–153, 1990.

[Day92] M.V. Day. Conditional exits for small noise diffusions with characteristic boundary. Ann. Prob.,

20(3):1385–1419, 1992.

[Day94] M.V. Day. Cycling and skewing of exit measures for planar systems. Stochastics, 48(3):227–247, 1994.

[Day95] M.V. Day. On the exit law from saddle points. Stoch. Proc. Appl., 60(2):287–311, 1995.

[dBBCK08] M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk. Piecewise-smooth Dynamical Systems,

volume 163 of Applied Mathematical Sciences. Springer, 2008.

Page 20: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

724 Bibliography

[DBFP03] C. Doss-Bachelet, J.-P. Francoise, and C. Piquet. Bursting oscillations in two coupled FitzHugh–

Nagumo systems. ComPlexUs, 2:101–111, 2003.

[DBKK12] M. Desroches, J. Burke, T.J. Kaper, and M.A. Kramer. Canards of mixed type in a neural burster.

Phys. Rev. E, 85:021920, 2012.

[DBL13] M. Dobson, C. Le Bris, and F. Legoll. Symplectic schemes for highly oscillatory Hamiltonian systems:

the homogenization approach beyond the constant frequency case. IMA J. Numer. Anal., 33:30–56,

2013.

[dBM87] C. Van den Broeck and P. Mandel. Delayed bifurcations in the presence of noise. Phys. Lett. A, 122:

36–38, 1987.

[DBR+13] M. Dam, M. Brøns, J.J. Rasmussen, V. Naulin, and G. Xu. Bifurcation analysis and dimension

reduction of a predator–prey model for the LH transition. Physics of Plasmas, 20:102302, 2013.

[DCD+07] E.J. Doedel, A. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth,

B. Sandstede, X. Wang, and C. Zhang. Auto 2007p: Continuation and bifurcation software for

ordinary differential equations (with homcont). http:// cmvl.cs.concordia.ca/ auto , 2007.

[DD91] F. Diener and M. Diener. Maximal delay. In E. Benoıt, editor, Dynamic Bifurcations, volume 1493 of

Lecture Notes in Mathematics, pages 71–86. Springer, 1991.

[DD95] F. Diener and M. Diener. Nonstandard Analysis in Practice. Springer, 1995.

[DD03] T. Donchev and A.L. Dontchev. Singular perturbations in infinite-dimensional control systems. SIAM

J. Contr. Optim., 42(5):1795–1812, 2003.

[DD07] A. Du and J. Duan. Invariant manifold reduction for stochastic dynamical systems. Dyn. Syst. Appl.,

16:681–696, 2007.

[DDS96] A. Dontchev, T. Donchev, and I. Slavov. A Tikhonov-type theorem for singularly perturbed differ-

ential inclusions. Nonl. Anal., Theory, Meth. & Appl., 26(9):1547–1554, 1996.

[DDvGV03] G. Derks, A. Doelman, S.A. van Gils, and T. Visser. Travelling waves in a singularly perturbed

sine-Gordon equation. Physica D, 180:40–70, 2003.

[DEF74] A. Devinatz, R. Ellis, and A. Friedman. The asymptotic behavior of the first real eigenvalue of

second order elliptic operators with a small parameter in the highest derivatives. II. Ind. Univ. Math.

J., 23(11):991–1011, 1974.

[DEK00] A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray-Scott

Model I: asymptotic construction and stability. SIAM J. Appl. Math., 61(3):1080–1102, 2000.

[DEK06] A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray–

Scott Model II: geometric theory, bifurcations, and splitting dynamics. SIAM J. Appl. Math., 61(6):

2036–2062, 2006.

[Del83] F. Delebecque. A reduction process for perturbed Markov chains. SIAM J. Appl. Math., 43(2):325–350,

1983.

[Dem10] H. Demiray. Multiple time scale formalism and its application to long water waves. Appl. Math. Model.,

34(5):1187–1193, 2010.

[Den90] B. Deng. Homoclinic bifurcations with nonhyperbolic equilibria. SIAM J. Math. Anal., 21(3):693–720,

1990.

[Den91] B. Deng. The existence of infinitely many traveling front and back waves in the FitzHugh–Nagumo

equations. SIAM J. Appl. Math., 22(6):1631–1650, 1991.

[Den93a] B. Deng. Homoclinic twisting bifurcations and cusp horseshoe maps. J. Dyn. Diff. Eq., 5(3):417–467,

1993.

[Den93b] B. Deng. On Silnikov’s homoclinic saddle-focus theorem. J. Differential Equat., 102:305–329, 1993.

[Den94] B. Deng. Constructing homoclinic orbits and chaotic attractors. Int. J. Bif. Chaos, 4(4):823–841, 1994.

[Den95a] B. Deng. Constructing Lorenz type attractors through singular perturbations. Int. J. Bif. Chaos,

5(6):1633–1642, 1995.

[Den95b] B. Deng. Sil’nikov-hopf bifurcations. J. Differential Equat., 119:1–23, 1995.

[Den99] B. Deng. Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells. J.

Math. Biol., 38(1):21–78, 1999.

[Den01] B. Deng. Food chain chaos due to junction-fold point. Chaos, 11(3):514–525, 2001.

[Den04] B. Deng. Food chain chaos with canard explosion. Chaos, 14(4): 1083–1092, 2004.

[Dep69] A. Deprit. Canonical transformations depending on a small parameter. Celes. Mech., 1(1):12–30, 1969.

[DEV04] H.S. Dumas, J.A. Ellison, and M. Vogt. First-order averaging principles for maps with applications

to accelerator beam dynamics. SIAM J. Appl. Dyn. Syst., 3(4):409–432, 2004.

[DFAR13] C. DuBois, J. Farnham, E. Aaron, and A. Radunskaya. A multiple time-scale computational model

of a tumor and its micro environment. Math. Biosci. Eng., 10:121–150, 2013.

[DFD+10] R. Donangelo, H. Fort, V. Dakos, M. Scheffer, and E.H. Van Nes. Early warnings for catas-

trophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. Bif. Chaos,

20(2):315–321, 2010.

[DFGR06] F. Dercole, R. Ferriere, A. Gragnani, and S. Rinaldi. Coevolution of slow–fast populations: evolu-

tionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics. Proc. R. Soc. B,

273:983–990, 2006.

[DFGRL02] E. Doedel, E. Freire, E. Gamero, and A. Rodriguez-Luis. An analytical and numerical study of a

modified van der Pol oscillator. J. Sound Vibration, 256(4):755–771, 2002.

[DFH+13] M. Desroches, E. Freire, S.J. Hogan, E. Ponce, and P. Thota. Canards in piecewise-linear systems:

explosions and super-explosions. Proc. R. Soc. A, 469:20120603, 2013.

[DG79] A.L. Dontchev and T.R. Giocev. Convex singularly perturbed optimal control problem with fixed

final state, controllability and convergence. Optimization, 10(3):345–355, 1979.

[DG90] M.B. Dadfar and J. Geer. Resonances and power series solutions of the forced van der Pol oscillator.

SIAM J. Appl. Math., 50(5):1496–1506, 1990.

[DG93a] D. Dawson and A. Greven. Hierarchical models of interacting diffusions: multiple time scale phenom-

ena, phase transition and pattern of cluster-formation. Probab. Theory Related Fields, 96(4):435–473,

1993.

[DG93b] D. Dawson and A. Greven. Multiple time scale analysis of interacting diffusions. Probab. Theory Related

Fields, 95(4):467–508, 1993.

Page 21: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 725

[DG10] J.M. Drake and B.D. Griffen. Early warning signals of extinction in deteriorating environments.

Nature, 467:456–459, 2010.

[DGA84] M.B. Dadfar, J. Geer, and C.M. Andersen. Perturbation analysis of the limit cycle of the free van

der Pol equation. SIAM J. Appl. Math., 44(5):881–895, 1984.

[DGK98] A. Doelman, R.A. Gardner, and T.J. Kaper. Stability analysis of singular patterns in the 1D Gray-

Scott model: a matched asymptotics approach. Physica D, 122(1):1–36, 1998.

[DGK01] A. Doelman, R.A. Gardner, and T.J. Kaper. Large stable pulse solutions in reaction–diffusion equa-

tions. Indiana Univ. Math. J., 50(1):443–507, 2001.

[DGK02] A. Doelman, R.A. Gardner, and T.J. Kaper. A Stability Index Analysis of 1-D Patterns of the Gray-Scott

Model, volume 737 of Mem. Amer. Math. Soc. AMS, 2002.

[DGK03] A. Dhooge, W. Govaerts, and Yu.A. Kuznetsov. MATCONT: A MATLAB package for numerical

bifurcation analysis of ODEs. ACM Trans. Math. Softw., 29:141–164, 2003.

[DGK+12] M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, and M. Wechselberger. Mixed-

mode oscillations with multiple time scales. SIAM Rev., 54(2):211–288, 2012.

[DGL94] H.S. Dumas, F. Golse, and P. Lochak. Multiphase averaging for generalized flows on manifolds.

Ergodic Theor. Dyn. Syst., 14(1):53–67, 1994.

[DGR00] A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for ordinary differential

equations. BIT Numer. Math., 40(2):241–266, 2000.

[DGR13] A. Delshams, M. Gidea, and P. Roldan. Transition map and shadowing lemma for normally hyper-

bolic invariant manifolds. Discrete Contin. Dyn. Syst., 33(3):1089–1112, 2013.

[DH82] V. Dragan and A. Halanay. Suboptimal stabilization of linear systems with several time scales. Int.

J. Contr., 36:109–126, 1982.

[DH83] E. Doedel and R.F. Heinemann. Numerical computation of periodic solution branches and oscilla-

tory dynamics of the stirred tank reactor with A → B → C reactions. Chemical Engineering Science,

38(9):1493–1499, 1983.

[DH96] M. Dellnitz and A. Hohmann. The computation of unstable manifolds using subdivision and contin-

uation. In H.W. Broer, S.A. Van Gils, I. Hoveijn, and F. Takens, editors, Nonlinear Dynamical Systems

and Chaos PNLDE 19, pages 449–459. Birkhauser, 1996.

[DH97] M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds

and global attractors. Numer. Math., 75:293–317, 1997.

[DH99] F. Dumortier and C. Herssens. Polynomial Lienard equations near infinity. J. Differential Equat.,

153(1):1–29, 1999.

[DH00a] D.C. Diminnie and R. Haberman. Slow passage through a saddle-center bifurcation. J. Nonlinear Sci.,

10:197–221, 2000.

[DH00b] A. Doelman and G. Hek. Homoclinic saddle-node bifurcations in singularly perturbed systems. J.

Dyn. Diff. Eq., 12(1):169–215, 2000.

[DH02a] B. Deng and G. Hines. Food chain chaos due to Shilnikov orbit. Chaos, 12(3):533–538, 2002.

[DH02b] D.C. Diminnie and R. Haberman. Slow passage through homoclinic orbits for the unfolding of a

saddle-center bifurcation and the change in the adiabatic invariant. Physica D, 162:34–52, 2002.

[dH04] F. den Hollander. Metastability under stochastic dynamics. Stoch. Proc. Appl., 114:1–26, 2004.

[dH08] F. den Hollander. Large Deviations. Amer. Math. Soc., 2008.

[DH11] A. Delshams and G. Huguet. A geometric mechanism of diffusion: rigorous verification in a priori

unstable Hamiltonian systems. J. Differential Equat., 250(5):2601–2623, 2011.

[DHH+08] L. DeVille, A. Harkin, M. Holzer, K. Josic, and T.J. Kaper. Analysis of a renormalization group

method and normal form theory for perturbed ordinary differential equations. Physica D, 237:

1029–1052, 2008.

[DHV04] A. Doelman, G. Hek, and N. Valkhoff. Stabilization by slow diffusion in a real Ginzburg–Landau

system. J. Nonlinear Sci., 14(3):237–278, 2004.

[DHV07] A. Doelman, G. Hek, and N. Valkhoff. Algebraically decaying pulses in a Ginzburg–Landau system

with a neutrally stable mode. Nonlinearity, 20:357–389, 2007.

[Die84] M. Diener. The canard unchained or how fast/slow dynamical systems bifurcate. The Mathematical

Intelligencer, 6:38–48, 1984.

[Die94] M. Diener. Regularizing microscopes and rivers. SIAM J. Math. Anal., 25:148–173, 1994.

[DIK04] S. Doi, J. Inoue, and S. Kumagai. Chaotic spiking in the Hodgkin–Huxley nerve model with slow

inactivation in the sodium current. J. Integr. Neurosci., 3(2):207–225, 2004.

[DIN04] A. Doelman, D. Iron, and Y. Nishiura. Destabilization of fronts in a class of bistable systems. SIAM

J. Math. Anal., 35(6):1420–1450, 2004.

[DIZ97] P.A. Deift, A.R. Its, and X. Zhou. A Riemann-Hilbert approach to asymptotic problems arising in

the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann.

of Math., 146(1):149–235, 1997.

[DJ10] P.D. Ditlevsen and S.J. Johnsen. Tipping points: early warning and wishful thinking. Geophys. Res.

Lett., 37:19703, 2010.

[DJ11a] M. Desroches and M. Jeffrey. Canards and curvature: nonsmooth approximation by pinching. Non-

linearity, 24:1655, 2011.

[DJ11b] M. Desroches and M. Jeffrey. Canards and curvature: the smallness of ε in slow–fast dynamics. Proc.

R. Soc. A, 467:2404–2421, 2011.

[DJD04] M. Dhamala, V.K. Jirsa, and M. Ding. Transitions to synchrony in coupled bursting neurons. Phys.

Rev. Lett., 92:028101, 2004.

[DK81] D.W. Decker and H.B. Keller. Path following near bifurcation. Comm. Pure Appl. Math., 34(2):149–175,

1981.

[DK84] M.G. Dmitriev and A.M. Klishevic. Iterative solution of optimal control problems with fast and slow

motions. Syst. Contr. Lett., 4(4):223–226, 1984.

[DK99] J.L.A. Dubbeldam and B. Krauskopf. Self-pulsations of lasers with saturable absorber: dynamics

and bifurcations. Optics Communications, 159:325–338, 1999.

[DK03] A. Doelman and T.J. Kaper. Semistrong pulse interactions in a class of coupled reaction–diffusion

equations. SIAM J. Appl. Dyn. Syst., 2(1):53–96, 2003.

Page 22: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

726 Bibliography

[DK05] S. Doi and S. Kumagai. Generation of very slow neuronal rhythms and chaos near the Hopf bifurca-

tion in single neuron models. J. Comput. Neurosci., 19(3):325–356, 2005.

[DK06] M.G. Dmitriev and G.A. Kurina. Singular perturbations in control problems. Autom. Remote Contr.,

67:1–43, 2006.

[DK13] D. Dolgopyat and L. Koralov. Averaging of incompressible flows on two-dimensional surfaces. J.

Amer. Math. Soc., 26(2):427–449, 2013.

[DKK91a] E. Doedel, H.B. Keller, and J.-P. Kernevez. Numerical analysis and control of bifurcation problems.

I. Bifurcation in finite dimensions. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1(3):493–520, 1991.

[DKK91b] E. Doedel, H.B. Keller, and J.-P. Kernevez. Numerical analysis and control of bifurcation problems.

II. Bifurcation in infinite dimensions. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1(4):745–772, 1991.

[DKK13] M. Desroches, T.J. Kaper, and M. Krupa. Mixed-mode bursting oscillations: dynamics created by

a slow passage through spike-adding canard explosion in a square-wave burster. Chaos, 23:046106,

2013.

[DKL99] J.L.A. Dubbeldam, B. Krauskopf, and D. Lenstra. Excitability and coherence resonance in lasers

with saturable absorber. Phys. Rev. E, 3(60):6580–6588, 1999.

[DKM02] A. Doelman, A.F. Koenderink, and L.R.M. Maas. Quasi-periodically forced nonlinear Helmholtz

oscillators. Physica D, 164(1):1–27, 2002.

[DKO08a] M. Desroches, B. Krauskopf, and H.M. Osinga. The geometry of slow manifolds near a folded node.

SIAM J. Appl. Dyn. Syst., 7(4):1131–1162, 2008.

[DKO08b] M. Desroches, B. Krauskopf, and H.M. Osinga. Mixed-mode oscillations and slow manifolds in the

self-coupled FitzHugh–Nagumo system. Chaos, 18:015107, 2008.

[DKO09] M. Desroches, B. Krauskopf, and H.M. Osinga. The geometry of mixed-mode oscillations in the

Olsen model for the perioxidase-oxidase reaction. DCDS-S, 2(4):807–827, 2009.

[DKO10] M. Desroches, B. Krauskopf, and H.M. Osinga. Numerical continuation of canard orbits in slow–fast

dynamical systems. Nonlinearity, 23(3):739–765, 2010.

[DKP07] A. Doelman, T.J. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semistrong pulse

dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.

[DKR+11] V. Dakos, S. Kefi, M. Rietkerk, E.H. van Nes, and M. Scheffer. Slowing down in spatially patterned

systems at the brink of collapse. Am. Nat., 177(6):153–166, 2011.

[DKR13] M. Desroches, M. Krupa, and S. Rodrigues. Inflection, canards and excitability threshold in neuronal

models. J. Math. Biol., 67(4):989–1017, 2013.

[DKvdP01] A. Doelman, T.J. Kaper, and H. van der Ploeg. Spatially periodic and aperiodic multi-pulse patterns

in the one-dimensional Gierer–Meinhardt equation. Meth. Appl. Anal., 8(3):387–414, 2001.

[DKZ97] A. Doelman, T.J. Kaper, and P.A. Zegeling. Pattern formation in the one-dimensional Gray–Scott

model. Nonlinearity, 10(2):523–563, 1997.

[DL96] U. Dieckmann and R. Law. The dynamical theory of coevolution: a derivation from stochastic eco-

logical processes. J. Math. Biol., 34:579–612, 1996.

[DL11] D. Dolgopyat and C. Liverani. Energy transfer in fast–slow Hamiltonian systems. Comm. Math. Phys.,

308:201–225, 2011.

[DL13] L. DeVille and E. Lerman. Dynamics on networks I. Modular continuous-time systems. J. Euro. Math.

Soc., pages 1–59, 2013. to appear.

[DLLM02] B. Doiron, C.R. Laing, A. Longtin, and L. Maler. Ghostbursting: a novel neuronal burst mechanism.

J. Comput. Neurosci., 12:5–25, 2002.

[DLO10a] M. Dobson, M. Luskin, and C. Ortner. Sharp stability estimates for the force-based quasicontinuum

approximation of homogeneous tensile deformation. Multiscale Model. Simul., 8(3):782–802, 2010.

[DLO10b] M. Dobson, M. Luskin, and C. Ortner. Stability, instability, and error of the force-based quasicon-

tinuum approximation. Arch. Rat. Mech. Anal., 197:179–202, 2010.

[DLS00] A. Delshams, R. De La Llave, and T.M. Seara. A geometric approach to the existence of orbits with

unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T2.

Comm. Math. Phys., 209(2):353–392, 2000.

[DLS03] J. Duan, K. Lu, and B. Schmalfuss. Invariant manifolds for stochastic partial differential equations.

Ann. Prob., 31(4):2109–2135, 2003.

[DLS04] J. Duan, K. Lu, and B. Schmalfuss. Smooth stable and unstable manifolds for stochastic evolutionary

equations. J. Dyn. Diff. Eq., 16(4):949–972, 2004.

[DLS08] A. Delshams, R. De La Llave, and T.M. Seara. Geometric properties of the scattering map of a

normally hyperbolic invariant manifold. Adv. Math., 217(3):1096–1153, 2008.

[DLZ97] F. Dumortier, C. Li, and Z. Zhang. Unfolding of a quadratic integrable system with two centers and

two unbounded heteroclinic loops. J. Differential Equat., 139(1):146–193, 1997.

[DM08] J. Durham and J. Moehlis. Feedback control of canards. Chaos, 18:015110, 2008.

[DM10] S.Yu. Dobrokhotov and D.S. Minenkov. On various averaging methods for a nonlinear oscillator

with slow time-dependent potential and a nonconservative perturbation. Reg. & Chaotic Dynamics,

15(2):285–299, 2010.

[Dmi78] M.G. Dmitriev. On a class of singularly. perturbed problems of optimal control. J. Appl. Math. Mech.,

42(2):238–242, 1978.

[DMS+00] C.T. Dickson, J. Magistretti, M.H. Shalisnky, E. Fransen, M.E. Hasselmo, and A. Alonso. Properties

and role of Ih in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J.

Neurophysiol., 83:2562–2579, 2000.

[DMS03] C.R. Doering, C. Mueller, and P. Smereka. Interacting particles, the stochastic Fisher–Kolmogorov–

Petrovsky–Piscounov equation, and duality. Physica A, 325:243–259, 2003.

[DMS+06] C.T. Dickson, J. Magistretti, M.H. Shalisnky, B. Hamam, and A. Alonso. Oscillatory activity in

entorhinal neurons and circuits: mechanisms and function. Ann. N.Y. Acad. Sci., 911:127–150, 2006.

[DMS86a] M.M. Dygas, B.J. Matkowsky, and Z. Schuss. A singular perturbation approach to non-Markovian

escape rate problems. SIAM J. Appl. Math., 46(2):265–298, 1986.

[DMS86b] M.M. Dygas, B.J. Matkowsky, and Z. Schuss. A singular perturbation approach to non-Markovian

escape rate problems with state dependent friction. J. Chem. Phys., 84:3731, 1986.

Page 23: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 727

[DMV98] R. Denk, R. Mennicken, and L. Volevich. The newton polygon and elliptic problems with parameter.

Math. Nachr., 192(1):125–157, 1998.

[DNCB95] B. D’Andrea-Novel, G. Campion, and G. Bastin. Control of wheeled mobile robots not satisfying

ideal velocity constraints: a singular perturbation approach. Int. J. Robust Nonl. Contr., 5(4):243–267,

1995.

[DNR11] J.R. Dunmyre, C.A. Del Negro, and J.E. Rubin. Interactions of persistent sodium and calcium-

activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of

respiratory neurons. J. Comp. Neurosci., 31(2):305–328, 2011.

[DNS05] J. Denef, J. Nicaise, and P. Sargos. Oscillating integrals and Newton polyhedra. J. Anal. Math.,

95:147–172, 2005.

[Doc92] J.D. Dockery. Existence of standing pulse solutions for an excitable activator-inhibitory system. J.

Dyn. Diff. Eq., 4(2):231–257, 1992.

[Doe93] A. Doelman. Traveling waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci., 3(1):

225–266, 1993.

[Doe96] A. Doelman. Breaking the hidden symmetry in the Ginzburg–Landau equation. Physica D, 97(4):

398–428, 1996.

[Doe97] E.J. Doedel. Auto 97: Continuation and bifurcation software for ordinary differential equations.

http://indy.cs.concordia.ca/auto, 1997.

[Doe00] E.J. Doedel. Auto 2000: Continuation and bifurcation software for ordinary differential equations

(with homcont). http://cmvl.cs.concordia.ca/auto, 2000.

[Doe07] E.J. Doedel. Lecture notes on numerical analysis of nonlinear equations. http://cmvl.cs.concordia.ca/

publications/notes.ps.gz, 2007.

[Don83] A.L. Dontchev. Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, volume 52

of Lect. Notes Contr. Inf. Sci. Springer, 1983.

[Don92] A.L. Dontchev. Time-scale decomposition of the reachable set of constrained linear systems. Math.

Contr. Sign. Syst., 5(3):327–340, 1992.

[DOP79] H. Degn, L.F. Olsen, and J.W. Perram. Bistability, oscillation, and chaos in an enzyme reaction.

Annals of the New York Academy of Sciences, 316(1):623–637, 1979.

[Dor47] A.A. Dorodnitsyn. Asymptotic solutions of van der Pol’s equation. Prikl. Matem. i Mekhan., 11(3):

313–328, 1947.

[DP96] J.D. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation. Probab.

Theory Rel. Fields, 104(4):467–482, 1996.

[DPK07a] F. Dumortier, N. Popovic, and T.J. Kaper. The asymptotic critical wave speed in a family of scalar

reaction–diffusion equations. J. Math. Anal. Appl., 326(2):1007–1023, 2007.

[DPK07b] F. Dumortier, N. Popovic, and T.J. Kaper. The critical wave speed for the Fisher–Kolmogorov–

Petrowskii–Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.

[DPK10] F. Dumortier, N. Popovic, and T.J. Kaper. A geometric approach to bistable front propagation in

scalar reaction–diffusion equations with cut-off. Physica D, 239(20):1984–1999, 2010.

[dPMP05] M. del Pino, M. Musso, and A. Pistoia. Supercritical boundary bubbling in a semilinear Neumann

problem. Ann. Inst. H. Poincare Anal. Non Lineaire, 22(1):45–82, 2005.

[DPS73] F.W. Dorr, S.V. Parter, and L.F. Shampine. Applications of the maximum principle to singular

perturbation problems. SIAM Rev., 15(1):43–88, 1973.

[DPS07] J. Duan, C. Potzsche, and S. Siegmund. Slow integral manifolds for Lagrangian fluid dynamics in

unsteady geophysical flows. Physica D, 233(1):73–82, 2007.

[DQKP94] N. Derbel, A. Quali, M.B.A. Kamoun, and M. Poloujadoff. Two step three time scale reduction of

doubly fed machine models. IEEE Trans. Energy Conv., 9(1):77–84, 1994.

[DR96a] P. Duchene and P. Rouchon. Kinetic scheme reduction via geometric singular perturbation tech-

niques. Chem. Engineer. Sci., 51(20):4661–4672, 1996.

[DR96b] F. Dumortier and R. Roussarie. Canard Cycles and Center Manifolds, volume 121 of Memoirs Amer. Math.

Soc. AMS, 1996.

[DR07] F. Dumortier and R. Roussarie. Bifurcation of relaxation oscillations in dimension two. Discr. Cont.

Dyn. Syst., 19(4):631–674, 2007.

[DR08] F. Dercole and S. Rinaldi. Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Ap-

plications. Princeton University Press, 2008.

[DR10] J.R. Dunmyre and J.E. Rubin. Optimal intrinsic dynamics for bursting in a three-cell network. SIAM

J. Appl. Dyn. Syst., 9(1):154–187, 2010.

[Dri68] R.D. Driver. On Ryabov’s asymptotic characterization of the solutions of quasi-linear differential

equations with small delays. SIAM Rev., 10(3):329–341, 1968.

[Dri76] R.D. Driver. Linear differential systems with small delays. J. Diff. Eq., 21:148–166, 1976.

[DRL12] A. Destexhe and M. Rudolph-Lilith. Neuronal Noise. Springer, 2012.

[DRR94] F. Dumortier, R. Roussarie, and C. Rousseau. Hilbert’s 16th problem for quadratic vector fields. J.

Differential Equat., 110(1):86–133, 1994.

[DRS97] F. Dumortier, R. Roussarie, and J. Sotomayor. Bifurcations of cuspidal loops. Nonlinearity,

10(6):1369–1408, 1997.

[DRS07] E.N. Dancer, X. Ren, and S. Shusen. On multiple radial solutions of a singularly perturbed nonlinear

elliptic system. SIAM J. Math. Anal., 38(6):2005–2041, 2007.

[DRSE04] J. Drover, J. Rubin, J. Su, and B. Ermentrout. Analysis of a canard mechanism by which excitatory

synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math., 65(1):69–92,

2004.

[DRW89] M.M. Dodson, B.P. Rynne, and J.A.G. Wickers. Averaging in multifrequency systems. Nonlinearity,

2(1):137, 1989.

[DS49] B.R. Dudley and H.W. Swift. Frictional relaxation oscillations. Philosophical Magazine, 40:849–861,

1949.

[DS88] A.L. Dontchev and J.I. Slavov. Lipschitz properties of the attainable set of singularly perturbed

linear systems. Syst. Contr. Lett., 11(5):385–391, 1988.

[DS89a] J.D. Deuschel and D.W. Stroock. Large Deviations. Academic Press, 1989.

Page 24: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

728 Bibliography

[DS89b] I. Dvorak and J. Siska. Analysis of metabolic systems with complex slow and fast dynamics. Bull.

Math. Biol., 51(2):255–274, 1989.

[DS90] A.L. Dontchev and J.I. Slavov. Upper semicontinuity of solutions of singularly perturbed differential

inclusions. In System Modelling and Optimization, volume 143 of Lect. Notes Contr. Inf. Sci., pages 273–280.

Springer, 1990.

[DS95a] T. Donchev and I. Slavov. Singularly perturbed functional-differential inclusions. Set-Valued Analysis,

3:113–128, 1995.

[DS95b] F. Dumortier and B. Smits. Transition time analysis in singularly perturbed boundary value prob-

lems. Trans. Amer. Math. Soc., 347(10):4129–4145, 1995.

[dS99a] P.R. da Silva. Canard cycles and homoclinic bifurcation in a 3-parameter family of vector fields on

the plane. Publ. Mat., 43:163–189, 1999.

[DS99b] M.J. Davis and R.T. Skodje. Geometric investigation of low-dimensional manifolds in systems

approaching equilibrium. J. Chem. Phys., 111:859–874, 1999.

[DS99c] T. Donchev and I. Slavov. Averaging method for one-sided Lipschitz differential inclusions with

generalized solutions. SIAM J. Contr. Optim., 37(5):1600–1613, 1999.

[DS06] E.N. Dancer and S. Shusen. Interior peak solutions for an elliptic system of FitzHugh–Nagumo type.

J Differential Equat., 229(2):654–679, 2006.

[DS09a] I. Dag and A. Sahin. Numerical solution of singularly perturbed problems. Int. J. Nonlin. Sci., 8(1):

32–39, 2009.

[DS09b] F. Dkhil and A. Stevens. Traveling wave speeds in rapidly oscillating media. Discr. Cont. Dyn. Syst.

A, 26(1):89–108, 2009.

[DSS08] R. Denk, J. Saal, and J. Seiler. Inhomogeneous symbols, the Newton polygon, and maximal Lp-

regularity. Russ. J. Math. Phys., 15(2):171–191, 2008.

[DSSS03] A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. Propagation of hexagonal patterns near

onset. Euro. J. Appl. Math., 14(1):85–110, 2003.

[DSSS09] A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wavetrains.

Memoirs of the AMS, 199(934):1–105, 2009.

[DSvN+08] V. Dakos, M. Scheffer, E.H. van Nes, V. Brovkin, V. Petoukhov, and H. Held. Slowing down as an

early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA, 105(38):14308–14312, 2008.

[DSW12] P. Dupuis, K. Spiliopoulos, and H. Wang. Importance sampling for multiscale diffusions. Multiscale

Model. Simul., 10(1):1–27, 2012.

[DTBL85] M.J. Dauphine-Tanguy, P. Borne, and M. Lebrun. Order reduction of multi-time scale systems using

bond graphs, the reciprocal system and the singular perturbation method. J. Frank. Inst., 319:157–171,

1985.

[Dum77] F. Dumortier. Singularities of vector fields on the plane. J. Differential Equat., 23(1):53–106, 1977.

[Dum78] F. Dumortier. Singularities of Vector Fields. IMPA, Rio de Janeiro, Brazil, 1978.

[Dum93] F. Dumortier. Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent

bifurcations, singular perturbations. In D. Schlomiuk, editor, Bifurcations and Periodic Orbits of Vector

Fields, pages 19–73. Kluwer, Dortrecht, The Netherlands, 1993.

[Dum11] F. Dumortier. Slow divergence integral and balanced canard solutions. Qual. Theory Dyn. Syst.,

10(1):65–85, 2011.

[Dum13] F. Dumortier. Canard explosion and position curves. In Recent Trends in Dynamical Systems, volume 35

of Proceed. Math. Stat., pages 51–78. Springer, 2013.

[Dur85] J. Durbin. The first-passage density of a continuous Gaussian process to a general boundary. J. Appl.

Prob., 22:99–122, 1985.

[Dur92] J. Durbin. The first-passage density of the Brownian motion process to a curved boundary. J. Appl.

Prob., 29:291–304, 1992. with an appendix by D. Williams.

[Dur94] R. Durrett. The Essentials of Probability. Duxbury, 1994.

[Dur10a] R. Durrett. Probability: Theory and Examples - 4th edition. CUP, 2010.

[Dur10b] R. Durrett. Random Graph Dynamics. CUP, 2010.

[DV75a] M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations

for large time, I. Comm. Pure Appl. Math., 28(1):1–47, 1975.

[DV75b] M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations

for large time, II. Comm. Pure Appl. Math., 28(2):279–301, 1975.

[DV76] M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations

for large time, III. Comm. Pure Appl. Math., 29(4):389–461, 1976.

[DV83a] M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations

for large time, IV. Comm. Pure Appl. Math., 36(2):183–212, 1983.

[DV83b] A.L. Dontchev and V. Veliov. Singular perturbation in Mayer’s problem for linear systems. SIAM J.

Control Optim., 21(4):566–581, 1983.

[DV84] K. Dekker and J.G. Verwer. Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. North-

Holland, 1984.

[DV89] M.D. Donsker and S.R.S. Varadhan. Large deviations from a hydrodynamic scaling limit. Comm. Pure

Appl. Math., 42(3):243–270, 1989.

[DvdP02] A. Doelman and H. van der Ploeg. Homoclinic stripe patterns. SIAM J. Appl. Dyn. Syst., 1(1):65–104,

2002.

[DVE06] L. DeVille and E. Vanden-Eijnden. A nontrivial scaling limit for multiscale Markov chains. J. Stat.

Phys., 126(1):75–94, 2006.

[DVEM05] L. DeVille, E. Vanden-Eijnden, and C.B. Muratov. Two distinct mechanisms of coherence in ran-

domly perturbed dynamical systems. Phys. Rev. E, 72(3):031105, 2005.

[DvHK09] A. Doelman, P. van Heijster, and T.J. Kaper. Pulse dynamics in a three-component system: existence

analysis. J. Dyn. Diff. Eq., 21:73–115, 2009.

[DvHK13] A. Doelman, P. van Heijster, and T.J. Kaper. An explicit theory for pulses in two component,

singularly perturbed, reaction–diffusion equations. J. Dyn. Diff. Eq., pages 1–42, 2013. accepted, to

appear.

Page 25: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 729

[DvND+09] V. Dakos, E.H. van Nes, R. Donangelo, H. Fort, and M. Scheffer. Spatial correlation as leading

indicator of catastrophic shifts. Theor. Ecol., 3(3):163–174, 2009.

[DW10] H.-H. Dai and F.-F. Wang. Asymptotic bifurcation solutions for compressions of a clamped nonlin-

early elastic rectangle: transition region and barrelling to a corner-like profile. SIAM J. Appl. Math.,

70(7):2673–2692, 2010.

[dW11] A.S. de Wijn. Internal degrees of freedom and transport of benzene on graphite. Phys. Rev. E,

84:011610, 2011.

[DWC+98] M.J. Donovan, P. Wenner, N. Chub, J. Tabak, and J. Rinzel. Mechanisms of spontaneous activity in

the developing spinal cord and their relevance to locomotion. Ann. New York Acad. Sci., 860(1):130–141,

1998.

[dWF09] A.S. de Wijn and A. Fasolino. Relating chaos to deterministic diffusion of a molecule adsorbed on a

surface. J. Phys.: Condens. Matter, 21:264002, 2009.

[dWK07] A.S. de Wijn and H. Kantz. Vertical chaos and horizontal diffusion in the bouncing-ball billiard.

Phys. Rev. E, 75:046214, 2007.

[Dys62] F.J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Physics,

3(6):1191, 1962.

[DZ98] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, volume 38 of Applications of

Mathematics. Springer-Verlag, 1998.

[E91] W. E. A class of homogenization problems in the calculus of variations. Comm. Pure Appl. Math.,

44(7):733–759, 1991.

[E92] W. E. Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45(3):

301–326, 1992.

[E03] W. E. Analysis of the heterogeneous multiscale method for ordinary differential equations. Comm.

Math. Sci., 1(3):423–426, 2003.

[E06] W. E. Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math.,

52(4):959–972, 2006.

[E11] W. E. Principles of Multiscale Modeling. CUP, 2011.

[EA86] H. Eyad and L. Andre. On the stability of multiple time-scale systems. Int. J. Contr., 44:211–218,

1986.

[EA91] J. Elezgaray and A. Arneodo. Modeling reaction–diffusion pattern formation in the Couette flow

reactor. J. Chem. Phys., 95:323–350, 1991.

[ECB97] T. Erneux, T.W. Carr, and V. Booth. Near-threshold bursting is delayed by a slow passage near a

limit point. SIAM J. Appl. Math., 57(5):1406–1420, 1997.

[Eck72] W. Eckhaus. Boundary layers in linear elliptic singular perturbation problem. SIAM Rev., 14(2):

225–270, 1972.

[Eck73] W. Eckhaus. Matched Asymptotic Expansions and Singular Perturbations. North-Holland, 1973.

[Eck77] W. Eckhaus. Matching principles and composite expansions. In Singular Perturbations and Boundary

Layer Theory, volume 594 of Lect. Notes Math., pages 146–177. Springer, 1977.

[Eck79] W. Eckhaus. Asymptotic Analysis of Singular Perturbations. Elsevier, 1979.

[Eck83] W. Eckhaus. Relaxation oscillations including a standard chase on French ducks. Lecture Notes in

Mathematics, 985:449–494, 1983.

[Eck92] W. Eckhaus. Singular perturbations of homoclinic orbits in R4. SIAM J. Math. Anal., 23(5):1269–1290,

1992.

[Eck94] W. Eckhaus. Fundamental concepts of matching. SIAM Rev., 36(3):431–439, 1994.

[EdJ66] W. Eckhaus and E.M. de Jager. Asymptotic solutions of singular perturbation problems for linear

differential equations of elliptic type. Arch. Rat. Mech. Anal., 23(1):26–86, 1966.

[EdJ82] W. Eckhaus and E.M. de Jager. Theory and Applications of Singular Perturbations. Springer, 1982.

[Edw00] D.A. Edwards. An alternative example of the method of multiple scales. SIAM Rev., 42(2):317–332,

2000.

[EE86] M. Eiswirth and G. Ertl. Kinetic oscillations in the catalytic CO oxidation on a Pt(110) surface.

Surf. Sci., 177(1):90–100, 1986.

[EE93] B. Engquist and W. E. Large time behavior and homogenization of solutions of two-dimensional

conservation laws. Comm. Pure Appl. Math., 46(1):1–26, 1993.

[EE03a] W. E and B. Engquist. The heterogeneous multiscale methods. Comm. Math.Sci., 1(1):87–132, 2003.

[EE03b] W. E and B. Engquist. Multiscale modeling and computation. Notices of the AMS, 50(9):1063–1070,

2003.

[EE05] W. E and B. Engquist. The heterogeneous multi-scale method for homogenization problems. In

Multiscale Methods in Science and Engineering, volume 44 of Lecture Notes Comput. Sci. Eng., pages 89–110.

Springer, 2005.

[EEH03] W. E, B. Engquist, and Z. Huang. Heterogeneous multiscale method: a general methodology for

multiscale modeling. Phys. Rev. B, 67(9):092101, 2003.

[EEL+07] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods: a

review. Comm. Comp. Phys., 2(3):367–450, 2007.

[EF77] J.W. Evans and J.A. Feroe. Local stability of the nerve impulse. Math. Biosci., 37(1):23–50, 1977.

[EF90] A. Eizenberg and M. Freidlin. On the Dirichlet problem for a class of second order PDE systems

with small parameter. Stoch. Stoch. Rep., 33(3):111–148, 1990.

[EF93] A. Eizenberg and M. Freidlin. Large deviations for Markov processes corresponding to PDE systems.

Ann. Probab., 21(2): 1015–1044, 1993.

[EFF82] J.W. Evans, N. Fenichel, and J.A. Feroe. Double impulse solutions in nerve axon equations. SIAM J.

Appl. Math., 42(2): 219–234, 1982.

[EFHI09] B. Engquist, A. Fokas, E. Hairer, and A. Iserles. Highly Oscillatory Problems. CUP, 2009.

[EFK00] S.-I. Ei, K. Fujii, and T. Kunihiro. Renormalization-group method for reduction of evolution equa-

tions; invariant manifolds and envelopes. Ann. Phys., 280(2):236–298, 2000.

[EGF07] M. Enculescu, A. Gholami, and M. Falcke. Dynamic regimes and bifurcations in a model of actin-

based motility. Phys. Rev. E, 78(3):031915, 2007.

Page 26: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

730 Bibliography

[EGPS99] T. Erneux, P. Gavrielides, P. Peterson, and M.P. Sharma. Dynamics of passively Q-switched

microchip lasers. IEEE J. Quant. Electr., 35:1247–1256, 1999.

[EH09] Y.R. Efendiev and T.Y. Hou. Multiscale Finite Element Methods. Theory and Applications. Springer, 2009.

[Ehl68] B.L. Ehle. High order A-stable methods for the numerical solution of systems of DE’s. BIT Numer.

Math., 8(4):276–278, 1968.

[Ehl73] B.L. Ehle. A-stable methods and Pade approximations to the exponential. SIAM J. Math. Anal.,

4(4):671–680, 1973.

[EHL75] W.H. Enright, T.E. Hull, and B. Lindberg. Comparing numerical methods for stiff systems of ODEs.

BIT Numer. Math., 15(1):10–48, 1975.

[Ein05] A. Einstein. Uber die von der molekular-kinetischen Theorie der Warme geforderte Bewegung von

in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Phys., pages 549–560, 1905.

[EJ10] E. Endres and H.K. Jenssen. Singularly perturbed ODEs and profiles for stationary symmetric Euler

and Navier–Stokes shocks. Discr. Cont. Dyn. Sys., 27(1):133–169, 2010.

[EJL03] K. Eriksson, C. Johnson, and A. Logg. Explicit time-stepping for stiff ODEs. SIAM J. Sci. Comput.,

25(4):1142–1157, 2003.

[EJM08] E. Endres, H.K. Jenssen, and M. Milliams. Symmetric Euler and Navier–Stokes shocks in stationary

barotropic flow on a bounded domain. J. Differential Equat., 245(10):3025–3067, 2008.

[EJM10] E. Endres, H.K. Jenssen, and M. Milliams. Singularly perturbed ODEs and profiles for stationary

symmetric Euler and Navier–Stokes shocks. Dynamical Systems, 27(1):133–169, 2010.

[EK80] Y. Estrin and L. Kubin. Criterion for thermomechanical instability of low temperature plastic

deformation. Scripta Metallurgica, 14:1359–1364, 1980.

[EK86a] G.B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow

oscillation. SIAM J. Appl. Math., 46(2):233–253, 1986.

[EK86b] G.B. Ermentrout and N. Kopell. Symmetry and phaselocking in chains of weakly coupled oscillators.

Comm. Pure Appl. Math., 39(5):623–660, 1986.

[EK90] R. Estrada and R.P. Kanwal. A distributional theory for asymptotic expansions. Proc. R. Soc. London

A, 428(1875):399–430, 1990.

[EK91] G.B. Ermentrout and N. Kopell. Multiple pulse interactions and averaging in systems of coupled

neural oscillators. J. Math. Biol., 29:195–217, 1991.

[EK95] R. Estrada and R.P. Kanwal. A distributional approach to the boundary layer theory. J. Math. Anal.

Appl., 192(3):796–812, 1995.

[EK02] R. Estrada and R.P. Kanwal. Asymptotics Analysis: A Distributional Approach. Birkauser, 2002.

[EKAE06] R. Erban, I.G. Kevrekisdis, D. Adalsteinsson, and T.C. Elston. Gene regulatory networks: a coarse-

grained, equation-free approach to multiscale computation. J. Chem. Phys., 124(8): 084106, 2006.

[EKE90] M. Eiswirth, K. Krischer, and G. Ertl. Nonlinear dynamics in the CO-oxidation on Pt single crystal

surfaces. Appl. Phys. A, 51:79–90, 1990.

[EKL07] H. Erzgraber, B. Krauskopf, and D. Lenstra. Bifurcation analysis of a semiconductor laser with

filtered optical feedback. SIAM J. Appl. Dyn. Syst., 6(1):1–28, 2007.

[EKO07] J.P. England, B. Krauskopf, and H.M. Osinga. Computing two-dimensional global invariant mani-

folds in slow–fast systems. Int. J. Bif. Chaos, 17(3):805–822, 2007.

[EKR87] J.P. Eckmann, S.O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhys.

Lett., 4(9):973–977, 1987.

[EL97] C. Engstler and C. Lubich. Multirate extrapolation methods for differential equations with different

time scales. Computing, 58(2):173–185, 1997.

[EL07] B. Eisenberg and W. Liu. Poisson–Nernst–Planck systems for ion channels with permanent charges.

SIAM J. Math. Anal., 38(6):1932–1966, 2007.

[Eld12] J. Eldering. Persistence of noncompact normally hyperbolic invariant manifolds in bounded geome-

try. Comptes Rendus Mathematique, 350(11):617–620, 2012.

[Eld13] J. Eldering. Normally Hyperbolic Invariant Manifolds: The Noncompact Case. Atlantis Press, 2013.

[ELRL99] A. Erisir, D. Lau, B. Rudy, and C.S. Leonard. Function of specific K+ channels in sustained high-

frequency firing of fast-spiking interneurons. J. Neurophysiol., 82:2476–2489, 1999.

[ELVE04] W. E, X. Li, and E. Vanden-Eijnden. Some recent progress in multiscale modeling. In Multiscale

Modelling and Simulation, pages 3–21. Springer, 2004.

[ELVE05a] W. E, D. Liu, and E. Vanden-Eijnden. Analysis of multiscale methods for stochastic differential

equations. Comm. Pure App. Math., 58:1544–1585, 2005.

[ELVE05b] W. E, D. Liu, and E. Vanden-Eijnden. Nested stochastic simulation algorithm for chemical kinetic

systems with disparate rates. J. Chem. Phys., 123:194107, 2005.

[ELVE07] W. E, D. Liu, and E. Vanden-Eijnden. Nested stochastic simulation algorithm for chemical kinetic

systems with multiple time scales. J. Comp. Phys., 221(1):158–180, 2007.

[ELY06] W. E, J. Lu, and J.Z. Yang. Uniform accuracy of the quasicontinuum method. Phys. Rev. B.,

74(21):214115, 2006.

[EM83] T. Erneux and P. Mandel. Temporal aspects of absorptive optical bistability. Phys. Rev. A, 28(2):

896–909, 1983.

[EM86] T. Erneux and P. Mandel. Imperfect bifurcation with a slowly-varying control parameter. SIAM J.

Appl. Math., 46(1):1–15, 1986.

[EM91] T. Erneux and P. Mandel. Slow passage through the laser first threshold: influence of the initial

conditions. Optics Commun., 85(1):43–46, 1991.

[EM92] S.-I. Ei and M. Mimura. Relaxation oscillations in combustion models of thermal self-ignition. J.

Dyn. Diff. Eq., 4(1):191–229, 1992.

[EM93] G.B. Ermentrout and J.B. McLeod. Existence and uniqueness of travelling waves for a neural net-

work. Proc. R. Soc. Edinburgh A, 123(3):461–478, 1993.

[EM07] W. E and P. Ming. Cauchy-Born rule and the stability of crystalline solids: static problems. Arch.

Rat. Mech. Anal., 183(2):241–297, 2007.

[EM08] I. Erchova and D.J. McGonigle. Rhythms of the brain: an examination of mixed mode oscillation

approaches to the analysis of neurophysiological data. Chaos, 18:015115, 2008.

Page 27: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 731

[EMZ05] W. E, P. Ming and P. Zhang. Analysis of the heterogeneous multiscale method for elliptic homoge-

nization problems. J. Amer. Math. Soc., 18(1):121–156, 2005.

[EN93] T. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction–diffusion systems. Physica

D, 67(1):237–244, 1993.

[EN00] K.-J. Engel and R. Nagel. Semigroups for Linear Evolution Equations. Springer, 2000.

[Enr74] W.H. Enright. Second derivative multistep methods for stiff ordinary differential equations. SIAM J.

Numer. Anal., 11(2):321–331, 1974.

[EP02] C.H. Edwards and D.E. Penney. Calculus. Prentice Hall, 2002.

[EPG00] T. Erneux, P. Peterson, and A. Gavrielides. The pulse shape of a passively Q-switched microchip

laser. Eur. Phys. J. D, 10(3):423–431, 2000.

[ER03] A. El-Rabih. Canards solutions of difference equations with small step size. J. Difference Equ. Appl.,

9(10):911–931, 2003.

[Erd56] A. Erdelyi. Asymptotic Expansions. Dover, 1956.

[ERHG91] T. Erneux, E.L. Reiss, L.J. Holden, and M. Georgiou. Slow passage through bifurcations and limit

points. Asymptotic theory and applications. In E. Benoıt, editor, Dynamic Bifurcations, volume 1493

of Lecture Notes in Mathematics, pages 14–28. Springer, 1991.

[Erm94] G.B. Ermentrout. Reduction of conductance-based models with slow synapses to neural nets. Neural

Comput., 6(4):679–695, 1994.

[Erm96] G.B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural Comput.,

8(5):979–1001, 1996.

[Erm98] G.B. Ermentrout. Linearization of FI curves by adaptation. Neural Comput., 10(7):1721–1729, 1998.

[Ern88] T. Erneux. Q-switching bifurcation in a laser with a saturable absorber. J. Opt. Soc. Amer. B Opt.

Phys., 5:1063–1069, 1988.

[ERVE02] W. E., W. Ren, and E. Vanden-Eijnden. String method for the study of rare events. Phys. Rev. B,

66(5):052301, 2002.

[ERVE05] W. E., W. Ren, and E. Vanden-Eijnden. Finite temperature string method for the study of rare

events. J. Phys. Chem. B, 109(14):6688–6693, 2005.

[ERVE09] W. E., W. Ren, and E. Vanden-Eijnden. A general strategy for designing seamless multiscale meth-

ods. J. Comput. Phys., 228(15):5437–5433, 2009.

[ES96] I.R. Epstein and K. Showalter. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J.

Phys. Chem., 100:13132–13147, 1996.

[ESD90] J.A. Ellison, A.W. Saenz, and H.S. Dumas. Improved N-th order averaging theory for periodic

systems. J. Differential Equations, 84(2):383–403, 1990.

[ESY11] L. Erdos, B. Schlein, and H.T. Yau. Universality of random matrices and local relaxation flow. Invent.

Math., 185(1):75–119, 2011.

[ET05] B. Engquist and Y.-H. Tsai. Heterogeneous multiscale methods for stiff ordinary differential equa-

tions. Math. Comput., 74(252):1707–1742, 2005.

[ET10] G.B. Ermentrout and D.H. Terman. Mathematical Foundations of Neuroscience. Springer, 2010.

[EV05] C. Elmer and E.S. Van Vleck. Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math.,

65(4):1153–1174, 2005.

[Eva72] J. Evans. Nerve axon equations III: stability of nerve impulses. Indiana U. Math. J., 22:577–594, 1972.

[Eva02] L.C. Evans. Partial Differential Equations. AMS, 2002.

[EVE04] W. E and E. Vanden-Eijnden. Metastability, conformation dynamics, and transition pathways in

complex systems. In Multiscale Modelling and Simulation, pages 35–68. Springer, 2004.

[EVE06] W. E and E. Vanden-Eijnden. Towards a theory of transition paths. J. Stat. Phys., 123(3):503–523,

2006.

[EVE10] W. E and E. Vanden-Eijnden. Transition-path theory and path-finding algorithms for the study of

rare events. Phys. Chem., 61:391–420, 2010.

[EVM07] T. Erneux, E.A. Viktorov, and P. Mandel. Time scales and relaxation dynamics in quantum-dot

lasers. Phys. Rev. A, 76(2):023819, 2007.

[EvS00] U. Ebert and W. van Saarloos. Front propagation into unstable states: universal algebraic conver-

gence towards uniformly translating pulled fronts. Physica D, 146:1–99, 2000.

[EW05] G. Everest and T. Ward. An Introduction to Number Theory. Springer, 2005.

[EW09] B. Ermentrout and M. Wechselberger. Canards, clusters and synchronization in a weakly coupled

interneuron model. SIAM J. Appl. Dyn. Syst., 8(1):253–278, 2009.

[EY91] W. E and H. Yang. Numerical study of oscillatory solutions of the gas-dynamic equations. Stud. Appl.

Math., 85:29–52, 1991.

[Eyr35] H. Eyring. The activated complex in chemical reactions. J. Chem. Phys., 3:107–115, 1935.

[FAB84] V.R. Fed’kina, F.I. Ataullakhanov, and T.V. Bronnikova. Computer simulations of sustained oscil-

lations in the peroxidase-oxidase reaction. Biophysical Chemistry, 19:259–264, 1984.

[FAB88] V.R. Fed’kina, F.I. Ataullakhanov, and T.V. Bronnikova. Stimulated regimens in the peroxidase-

oxidase reaction. Theor. Exp. Chem., 24(2):172–178, 1988.

[Fat28] P. Fatou. Sur le mouvement d’un systeme soumis a des forces a courte periode. Bull. Soc. Math.,

56:98–139, 1928.

[FBT+06] F. Frohlich, M. Bazhenov, I. Timofeev, M. Steriade, and T.J. Sejnowski. Slow state transitions of

sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J. Neurosci.,

26(23):6153–6162, 2006.

[FC94] H. Fan and T.R. Chay. Generation of periodic and chaotic bursting in an excitable cell model. Biol.

Cybernet., 71(5):417–431, 1994.

[FD11] H. Fu and J. Duan. An averaging principle for two time-scale stochastic partial differential equations.

Stoch. Dyn., 11:353–367, 2011.

[FDS12] A. Franci, G. Drion, and R. Sepulchre. An organizing center in a planar model of neuronal excitabil-

ity. SIAM J. Appl. Dyn. Syst., 11(4):1698–1722, 2012.

[FDS13] A. Franci, G. Drion, and R. Sepulchre. Modeling neuronal bursting: singularity theory meets neu-

rophysiology. arXiv:1305.7364, pages 1–28, 2013.

[Fe85] R.J. Field and M. Burger (eds.). Oscillations and traveling waves in chemical systems. Wiley, 1985.

Page 28: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

732 Bibliography

[Fec91] M. Feckan. Discretization in the method of averaging. Proc. Amer. Math. Soc., 113(4):1105–1113, 1991.

[Fec00] M. Feckan. Bifurcation of multi-bump homoclinics in systems with normal and slow variables. Elec-

tron. J. Differential Equations, 41:1–17, 2000.

[Fej01] J. Fejoz. Averaging the planar three-body problem in the neighborhood of double inner collisions.

J. Differential Equat., 175(1):175–182, 2001.

[Fen71] N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J.,

21:193–225, 1971.

[Fen74] N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J., 23:1109–1137, 1974.

[Fen77] N. Fenichel. Asymptotic stability with rate conditions II. Indiana Univ. Math. J., 26:81–93, 1977.

[Fen79] N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Differential

Equat., 31:53–98, 1979.

[Fen83a] N. Fenichel. Oscillatory bifurcations in singular perturbation theory, I. Slow oscillations. SIAM J.

Math. Anal., 14(5): 861–867, 1983.

[Fen83b] N. Fenichel. Oscillatory bifurcations in singular perturbation theory, II. Fast oscillations. SIAM J.

Math. Anal., 14(5):868–874, 1983.

[Fen85] N. Fenichel. Global uniqueness in geometric singular perturbation theory. SIAM J. Math. Anal.,

16(1):1–6, 1985.

[Fer78] J.A. Feroe. Temporal stability of solitary impulse solutions of a nerve equation. Biophys. J., 21(2):

103–110, 1978.

[Fer81] J.A. Feroe. Traveling waves of infinitely many pulses in nerve equations. Math. Biosci., 55(3):189–203,

1981.

[Fer82] J.A. Feroe. Existence and stability of multiple impulse solutions of a nerve equation. SIAM J. Appl.

Math., 42(2):235–246, 1982.

[FFH97] A.J. Fossard, J. Foisneau, and T.H. Huynh. Approximate closed-loop optimization of nonlinear sys-

tems by singular perturbation technique. In Nonlinear Systems, pages 189–246. Springer, 1997.

[FG76] M.I. Freedman and B. Granhoff. Formal asymptotic solution of a singularly perturbed nonlinear

optimal control problem. J. Optim. Theor. Appl., 19(2):301–325, 1976.

[FG11a] J.G. Freire and J.A.C. Gallas. Stern-Brocot trees in cascades of mixed-mode oscillations and canards

in the extended Bonhoeffer-van der Pol and the FitzHugh–Nagumo models of excitable systems. Phys.

Lett. A, 375:1097–1103, 2011.

[FG11b] J.G. Freire and J.A.C. Gallas. Stern–Brocot trees in the periodicity of mixed-mode oscillations. Phys.

Chem. Chem. Phys., 13:12191–12198, 2011.

[FG13] J.E. Frank and G.A. Gottwald. Stochastic homogenization for an energy conserving multi-scale toy

model of the atmosphere. Physica D, 254:46–56, 2013.

[FGH01] J.A. Filar, V. Gaitsgory, and A.B. Haurie. Control of singularly perturbed hybrid stochastic systems.

IEEE Trans. Aut. Contr., 46(2):179–190, 2001.

[FH89] G. Fusco and J.K. Hale. Slow-motion manifolds, dormant instability, and singular perturbations. J.

Dyn. Diff. Eq., 1:75–94, 1989.

[FH03] A.C. Fowler and P.D. Howell. Intermittency in the transition to turbulence. SIAM J. Appl. Math.,

63(4):1184–1207, 2003.

[FH06] D. Flockerzi and W. Heineken. Comment on: Chaos 9, 108–123 (1999). Identification of low order

manifolds: validating the algorithm of Maas and Pope. Chaos, 16(4):048101, 2006.

[FHM+04] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, and G.I. Shishkin. Singularly perturbed

convection-diffusion problems with boundary and weak interior layers. J. Comput. Appl. Math.,

166:133–151, 2004.

[FHR09] A. Fasano, M.A. Herrero, and M.R. Rodrigo. Slow and fast invasion waves in a model of acid-

mediated tumour growth. Math. Biosci., 220:45–56, 2009.

[FHS96] P.A. Farrell, P.W. Hemker, and G.I. Shishkin. Discrete approximations for singularly perturbed

boundary value problems with parabolic layers. I. J. Comput. Math., 14:71–97, 1996.

[Fif73] P.C. Fife. Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech.

Anal., 52(3):205–232, 1973.

[Fif74] P.C. Fife. Transition layers in singular perturbation problems. J. Differential Equat., 15:77–105, 1974.

[Fif76] P.C. Fife. Boundary and interior transition layer phenomenon for pairs of second-order differential

equations. J. Math. Anal. Appl., 54:497–521, 1976.

[Fif88] P.C. Fife. Dynamics of internal layers and diffusive interfaces. SIAM, 1988.

[Fil06] D.S. Filippychev. Applying the dual operator formalism to derive the zeroth-order boundary function

of the plasma-sheath equation. Comput. Math. Model., 17(4):341–353, 2006.

[Fin83] W.F. Finden. An asymptotic approximation for singular perturbations. SIAM J. Appl. Math.,

43(1):107–119, 1983.

[Fis37] R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:353–369, 1937.

[Fis74] M.E. Fisher. The renormalization group in the theory of critical behavior. Rev. Mod. Phys., 46(4):

597–616, 1974.

[Fis06] M.E. Fisher. Hyperbolic sets that are not locally maximal. Ergodic Theory Dyn. Syst., 26(5):1491–1510,

2006.

[Fit55] R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Bio-

physics, 17:257–269, 1955.

[Fit60] R. FitzHugh. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol.,

43:867–896, 1960.

[Fit61] R. FitzHugh. Impulses and physiological states in models of nerve membranes. Biophys. J., 1:445–466,

1961.

[FJ82] J.E. Flaherty and R.E. O’Malley Jr. Singularly perturbed boundary value problems for nonlinear

systems, including a challenging problem for a nonlinear beam. In Theory and Applications of Singular

Perturbations, volume 942 of Lecture Notes in Mathematics, pages 170–191. Springer, 1982.

[FJ91] T.F. Fairgrieve and A.D. Jepson. O.K. Floquet multipliers. SIAM J. Numer. Anal., 28(5):1446–1462,

1991.

Page 29: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 733

[FJ92] W.H. Fleming and M.R. James. Asymptotic series and exit time probabilities. Ann. Probab.,

20(3):1369–1384, 1992.

[FJK+88] C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, and E.S. Titi. On the computation of inertial man-

ifolds. Phys. Lett. A, 131(7):433–436, 1988.

[FK76] M.I. Freedman and J.L. Kaplan. Singular perturbations of two-point boundary value problems arising

in optimal control. SIAM J. Contr. Optim., 14(2):189–215, 1976.

[FK82] S. Fraser and R. Kapral. Analysis of flow hysteresis by a one-dimensional map. Phys. Rev. A,

25(6):3223–3233, 1982.

[FK85] C.L. Frenzen and J. Kevorkian. A review of the multiple scale and reductive perturbation methods

for deriving uncoupled nonlinear evolution equations. Wave Motion, 7:25–42, 1985.

[FK90] O.P. Filatov and M.M. Khapaev. Averaging of differential inclusions with “fast” and “slow” vari-

ables. Math. Notes, 47(6):596–601, 1990.

[FK93] P. Frankel and T. Kiemel. Relative phase behavior of two slowly coupled oscillators. SIAM J. Appl.

Math., 53(5):1436–1446, 1993.

[FK96] A.C. Fowler and G. Kember. The Lorenz-Krishnamurthy slow manifold. J. Atmospheric Sci.,

53(10):1433–1437, 1996.

[FK02] D.B. Forger and R.E. Kronauer. Reconciling mathematical models of biological clocks by averaging

on approximate manifolds. SIAM J. Appl. Math., 62(4):1281–1296, 2002.

[FK03a] K. Fujimoto and K. Kaneko. Bifurcation cascade as chaotic itinerancy with multiple time scales.

Chaos, 13(3):1041–1056, 2003.

[FK03b] K. Fujimoto and K. Kaneko. How fast elements can affect slow dynamics. Physica D, 180:1–16, 2003.

[FL12] H. Fan and X.-B. Lin. Standing waves for phase transitions in a spherically symmetric nozzle. SIAM

J. Math. Anal., 44(1):405–436, 2012.

[FLD13] H. Fu, X. Liu, and J. Duan. Slow manifolds for multi-time-scale stochastic evolutionary systems.

Comm. Math. Sci., 11(1):141–162, 2013.

[Fle71] W.H. Fleming. Stochastic control for small noise intensities. SIAM J. Control, 9(3):473–517, 1971.

[Fle77] W.H. Fleming. Exit probabilities and optimal stochastic control. Appl. Math. Optim., 4(1):329–346,

1977.

[Flo87] A. Floer. A refinement of the Conley index and an application to the stability of hyperbolic invariant

sets. Ergod. Th. Dynam. Syst., 7:93–103, 1987.

[Flo90] A. Floer. A topological persistence theorem for normally hyperbolic manifolds via the Conley index.

Trans. Amer. Math. Soc., 321(2):647–657, 1990.

[Flo91] G. Flores. Stability analysis for the slow traveling pulse of the FitzHugh–Nagumo system. SIAM J.

Math. Anal., 22(2):392–399, 1991.

[FM77] P. Fife and J.B. McLeod. The approach of solutions nonlinear diffusion equations to travelling front

solutions. Arch. Rational Mech. Anal., 65:335–361, 1977.

[FM80] J.E. Flaherty and W. Mathon. Collocation with polynomial and tension splines for singularly-

perturbed boundary value problems. SIAM J. Sci. Stat. Comput., 1(2):260–289, 1980.

[FM92] I. Fonseca and S. Muller. Quasiconvex integrands and lower semicontinuity in L1. Bull. Belg. Math.

Soc, 23:1081–1098, 1992.

[FM02] A.C. Fowler and M.C. Mackey. Relaxation oscillations in a class of delay differential equations. SIAM

J. Appl. Math., 63(1):299–323, 2002.

[FM05] A. Fruchard and E. Matzinger. Matching and singularities of canard values. Contemp. Math., 373:

317–336, 2005.

[FM13] M. Federson and J.G. Mesquita. Non-periodic averaging principles for measure functional differential

equations and functional dynamic equations on time scales involving impulses. J. Differential Equat.,

255(10):3098–3126, 2013.

[FMOS96] P.A. Farrell, J.J. Miller, E. O’Riordan, and G.I. Shishkin. A uniformly convergent finite difference

scheme for a singularly perturbed semilinear equation. SIAM J. Numer. Anal., 33(3):1135–1149, 1996.

[FMVE05] C. Franzke, A.J. Majda, and E. Vanden-Eijnden. Low-order stochastic mode reduction for a realistic

barotropic model climate. J. Atmos. Sci., 62:1722–1745, 2005.

[FN74] R.J. Field and R.M. Noyes. Oscillations in chemical systems IV. Limit cycle behavior in a model of

a real chemical reaction. J. Chem. Phys., 60:1877–1884, 1974.

[FO77] J.E. Flaherty and R.E. O’Malley. The numerical solution of boundary value problems for stiff dif-

ferential equations. Math. Comput., 31:66–93, 1977.

[FO84] J.E. Flaherty and R.E. O’Malley. Numerical methods for stiff systems of two-point boundary value

problems. SIAM J. Sci. Stat. Comput., 5(4):865–886, 1984.

[Fol99] G. Folland. Real Analysis - Modern Techniques and Their Applications. Wiley, 1999.

[For08] T. Forget. Asymptotic study of planar canard solutions. Bull. Belg. Math. Soc., 15(5):809–824, 2008.

[Fow05] A.C. Fowler. Asymptotic methods for delay equations. J. Engrg. Math., 53(3):271–290, 2005.

[Fox97] R.F. Fox. Stochastic versions of the Hodgkin–Huxley equations. Biophys. J., 72:2068–2074, 1997.

[FP05] J.-P. Francoise and C. Piquet. Hysteresis dynamics, bursting oscillations and evolution to chaotic

regimes. Acta Biotheoretica, 53(4):381–392, 2005.

[FPR08] B.D. Fulcher, A.J.K. Phillips, and P.A. Robinson. Modeling the impact of impulsive stimuli on

sleep-wake dynamics. Phys. Rev. E, 78(5):051920, 2008.

[FPV08] J.-P. Francoise, C. Piquet, and A. Vidal. Enhanced delay to bifurcation. Bull. Belg. Math. Soc.,

15(5):825–831, 2008.

[FR98] O. De Feo and S. Rinaldi. Singular homoclinic bifurcations in tritrophic food chains. Math. Biosci.,

148:7–20, 1998.

[FR11] S. Franz and H.-G. Roos. The capriciousness of numerical methods for singular perturbations. SIAM

Rev., 53(1):157–173, 2011.

[Fra69] L.E. Fraenkel. On the method of matched asymptotic expansions. Parts I-III. Proc. Cambridge Phil

Soc., 65:209–284, 1969.

[Fra82] B.A. Francis. Convergence in the boundary layer for singularly perturbed equations. Automatica,

18(1):57–62, 1982.

Page 30: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

734 Bibliography

[Fra88a] R.D. Franzosa. The continuation theory for Morse decompositions and connection matrices. Trans.

Amer. Math. Soc., 310(2):781–803, 1988.

[Fra88b] S.J. Fraser. The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys.,

88:4732–4738, 1988.

[Fra98] S.J. Fraser. Double perturbation series in the differential equations of enzyme kinetics. J. Chem.

Phys., 109(2):411–423, 1998.

[Fra11] T. Frankel. The Geometry of Physics. CUP, 2011.

[Fra12] J.-P. Francoise. Poincare–Andronov–Hopf bifurcation and the local Hilbert’s 16th problem. Qualit.

Theor. Dyn. Syst., 11(1): 61–77, 2012.

[Fre72] D.D. Freund. A note on Kaplun limits and double asymptotics. Proc. Amer. Math. Soc., 35(2):464–470,

1972.

[Fre73] M.I. Freidlin. The action functional for a class of stochastic processes. Theory Probab. Appl., 17(3):

511–515, 1973.

[Fre78] M.I. Freidlin. The averaging principle and theorems on large deviations. Russ. Math. Surv., 33(5):

117–176, 1978.

[Fre85] M.I. Freidlin. Limit theorems for large deviations and reaction–diffusion equations. Ann. Probab.,

13(3):639–675, 1985.

[Fre86] M.I. Freidlin. Geometric optics approach to reaction–diffusion equations. SIAM J. Appl. Math.,

46(2):222–232, 1986.

[Fre91] M.I. Freidlin. Coupled reaction–diffusion equations. Ann. Probab., 19(1):29–57, 1991.

[Fre96] M.I. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Springer, 1996.

[Fre00a] M.I. Freidlin. Diffusion processes on graphs: stochastic differential equations, large deviation prin-

ciple. Probab. Theory Rel. Fields, 116(2):181–220, 2000.

[Fre00b] M.I. Freidlin. Quasi-deterministic approximation, metastability and stochastic resonance. Physica D,

137(3):333–352, 2000.

[Fre01] M.I. Freidlin. On stable oscillations and equilibriums induced by small noise. J. Stat. Phys.,

103(1):283–300, 2001.

[Fre04] M.I. Freidlin. Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys., 117(3):

617–634, 2004.

[Fre06] E. Frenod. Application of the averaging method to the gyrokinetic plasma. Asymp. Anal., 46:1–28,

2006.

[Fri92] A. Friedman. Partial Differential Equations of Parabolic Type. Dover, 1992.

[Fri01] E. Fridman. A descriptor system approach to nonlinear singularly perturbed optimal control prob-

lem. Automatica, 37(4):543–549, 2001.

[Fri02a] E. Fridman. Effects of small delays on stability of singularly perturbed systems. Automatica,

38(5):897–902, 2002.

[Fri02b] E. Fridman. Singularly perturbed analysis of chattering in relay control systems. IEEE Trans. Aut.

Contr., 47(12):2079–2084, 2002.

[Fri02c] E. Fridman. Slow periodic motions with internal sliding modes in variable structure systems. Internat.

J. Control, 75(7):524–537, 2002.

[Fri02d] E. Fridman. Stability of singularly perturbed differential–difference systems: a LMI approach. Dyn.

Cont. Discr. Impul. Syst. B, 9:201–212, 2002.

[Fri06a] E. Fridman. Robust sampled-data H∞ control of linear singularly perturbed systems. IEEE Transa-

tions on Automatic Control, 51(3):470–475, 2006.

[Fri06b] A. Friedman. Stochastic Differential Equations and Applications. Dover, 2006.

[Fru88] A. Fruchard. Canards discrets. Compt. Rend. Acad. Sci. Math., 307(1):41–46, 1988.

[Fru91] A. Fruchard. Existence of bifurcation delay: the discrete case. In E. Benoıt, editor, Dynamic Bifurca-

tions, volume 1493 of Lecture Notes in Mathematics, pages 87–106. Springer, 1991.

[Fru92] A. Fruchard. Canards et rateaux. Ann. Inst. Fourier, 42(4):825–855, 1992.

[FS80] N. Farber and J. Shinar. Approximate solution of singularly perturbed nonlinear pursuit-evasion

games. J. Optim. Theor. Appl., 32:39–73, 1980.

[FS95] H. Freistuhler and P. Szmolyan. Existence and bifurcation of viscous profiles for all intermediate

magnetohydrodynamic shock waves. SIAM J. Math. Anal., 26(1):112–128, 1995.

[FS99a] M.I. Freidlin and R.B. Sowers. A comparison of homogenization and large deviations, with applica-

tions to wavefront propagation. Stoch. Proc. Appl., 82(1):23–52, 1999.

[FS99b] A. Fruchard and R. Schafke. Exceptional complex solutions of the forced van der Pol equation.

Funkcial. Ekvac., 42(2):201–223, 1999.

[FS02a] H. Freistuhler and P. Szmolyan. Spectral stability of small shock waves. Arch. Rational Mech. Anal.,

164:287–309, 2002.

[FS02b] Y.B. Fu and P.M. Sanjarani. WKB method with repeated roots and its application to the buckling

analysis of an everted cylindrical tube. SIAM J. Appl. Math., 62(6):1856–1871, 2002.

[FS03a] B. Fiedler and A. Scheel. Spatio-temporal dynamics of reaction–diffusion patterns. In M. Kirkilionis,

S. Kromker, R. Rannacher, and F. Tomi, editors, Trends in Nonlinear Analysis, pages 21–150. Springer,

2003.

[FS03b] A. Fruchard and R. Schafke. Bifurcation delay and difference equations. Nonlinearity, 16:2199–2220,

2003.

[FS03c] A. Fruchard and R. Schafke. Overstability and resonance. Ann. Inst. Fourier, 53(1):227–264, 2003.

[FS04] A. Fruchard and R. Schafke. Classification of resonant equations. J. Differential Equat., 207(2):360–391,

2004.

[FS05] A. Fruchard and R. Schafke. On singularities of solutions to singular perturbation problems. J. Phys.:

Conf. Series, 22:56–66, 2005.

[FS09] A. Fruchard and R. Schafke. A survey of some results on overstability and bifurcation delay. Discr.

Cont. Dyn. Sys. - Series S, 2(4):941–965, 2009.

[FS10a] H. Freistuhler and P. Szmolyan. Spectral stability of small-amplitude viscous shock waves in several

space dimensions. Arch. Rational Mech. Anal., 195(2):353–373, 2010.

Page 31: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 735

[FS10b] A. Fruchard and R. Schafke. Composite asymptotic expansions and turning points of singularly

perturbed ordinary differential equations. Comptes Rendus Math., 348(23):1273–1277, 2010.

[FS10c] A. Fruchard and R. Schafke. Developpements asymptotiques combines et points tournants

d’equations differentielles singulierement perturbees. arXiv:1003.4110v1, pages 1–71, 2010.

[FS13] A. Fruchard and R. Schafke. Composite Asymptotic Expansions, volume 2066 of Lect. Notes Math. Springer,

2013.

[FSML04] Z. Feng, D.L. Smith, F. Ellise McKenzie, and S.A. Levin. Coupling ecology and evolution: malaria

and the S-gene across time scales. Math. Biosci., 189(1):1–19, 2004.

[FST88] C. Foias, G.R. Sell, and R. Temam. Inertial manifolds for nonlinear evolutionary equations. J. Dif-

ferential Equat., 73(2):309–353, 1988.

[FST89] C. Foias, G.R. Sell, and E.S. Titi. Exponential tracking and approximation of inertial manifolds for

dissipative nonlinear equations. J. Dyn. Diff. Eq., 1(2):199–244, 1989.

[FT91] C. Foias and E.S. Titi. Determining nodes, finite difference schemes and inertial manifolds. Nonlin-

earity, 4(1):135, 1991.

[Ful97] W. Fulton. Algebraic Topology. Springer, 1997.

[Fur85] S.D. Furrow. Chemical oscillators based on iodate ion and hydrogen peroxide. In R.J. Field

and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 171–192. Wiley-

Interscience, 1985.

[FV03] B. Fiedler and M.I. Vishik. Quantitative homogenization of global attractors for reaction–diffusion

systems with rapidly oscillating terms. Asymp.Anal., 34(2):159–185, 2003.

[FW92] M.I. Freidlin and A.D. Wentzell. Reaction-diffusion equations with randomly perturbed boundary

conditions. Ann. Probab., 20(2):963–986, 1992.

[FW93] M.I. Freidlin and A.D. Wentzell. Diffusion processes on graphs and the averaging principle. Ann.

Probab., 21(4):2215–2245, 1993.

[FW98a] M.I. Freidlin and M. Weber. Random perturbations of nonlinear oscillators. Ann. Probab., 26(3):

925–967, 1998.

[FW98b] M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems. Springer, 1998.

[FW99] M.I. Freidlin and M. Weber. A remark on random perturbations of the nonlinear pendulum. Ann.

Appl. Probab., 9(3):611–628, 1999.

[FW04] M.I. Freidlin and A.D. Wentzell. Random perturbations of dynamical systems and diffusion processes

with conservation laws. Probab. Theory Rel. Fields, 128(3):441–466, 2004.

[FW06] M.I. Freidlin and A.D. Wentzell. Long-time behavior of weakly coupled oscillators. J. Stat. Phys.,

123(6):1311–1337, 2006.

[FYZ04] Z. Feng, Y. Yi, and H. Zhu. Fast and slow dynamics of malaria and the S-gene frequency. J. Dyn.

Diff. Eq., 16(4):869–896, 2004.

[GACV06] M. Giona, A. Adrover, F. Creta, and M. Valorani. Slow manifold structure in explosive kinetics. 2.

Extension to higher dimensional systems. J. Phys. Chem. A, 110(50):13463–13474, 2006.

[Gai86] V. Gaitsgory. Use of the averaging method in control problems. Differential Equat., 22:1290–1299, 1986.

[Gai92] V. Gaitsgory. Suboptimization of singularly perturbed control systems. SIAM J. Contr. Optim.,

30(5):1228–1249, 1992.

[Gai04] V. Gaitsgory. On a representation of the limit occupational measures set of a control system with

applications to singularly perturbed control systems. SIAM J. Contr. Optim., 43(1):325–340, 2004.

[Gaj86] Z. Gajic. Numerical fixed-point solution for near-optimum regulators of linear quadratic gaussian

control problems for singularly perturbed systems. Int. J. Contr., 43(2):373–387, 1986.

[Gaj88] Z. Gajic. The existence of a unique and bounded solution of the algebraic Riccati equation of mul-

timodel estimation and control problems. Syst. Contr. Lett., 10(3):185–190, 1988.

[Gal93] J.A. Gallas. Structure of the parameter space of the Henon map. Phys. Rev. Lett., 70(18):2714–2717,

1993.

[Gam95] L. Gammaitoni. Stochastic resonance and the dithering effect in threshold physical systems. Phys.

Rev. E, 52(5):4691, 1995.

[Gam01] T.W. Gamelin. Complex Analysis. Springer, 2001.

[GANT98] B. Garcia-Archilla, J. Novo, and E.S. Titi. Postprocessing the Galerkin method: a novel approach

to approximate inertial manifolds. SIAM J. Numer. Anal., 35(3):941–972, 1998.

[Gar59] C.S. Gardner. Adiabatic invariants of periodic classical systems. Phys. Rev., 2(115):791–794, 1959.

[Gar84] R. Gardner. Existence of travelling wave solutions of predator–prey systems via the connection index.

SIAM J. Appl. Math., 44(1):56–79, 1984.

[Gar93] R.A. Gardner. An invariant-manifold analysis of electrophoretic traveling waves. J. Dyn. Diff. Eq.,

5(4):599–606, 1993.

[Gar09] C. Gardiner. Stochastic Methods. Springer, Berlin Heidelberg, Germany, 4th edition, 2009.

[Gau97] Walter Gautschi. Numerical Analysis. Birkhauser Boston, 1997.

[GB08] T. Gross and B. Blasius. Adaptive coevolutionary networks: a review. Journal of the Royal Society –

Interface, 5:259–271, 2008.

[GB10] O.V. Gendelman and T. Bar. Bifurcations of self-excitation regimes in a van der Pol oscillator with

a nonlinear energy sink. Physica D, 239:220–229, 2010.

[GBC98] I.T. Georgiou, A.K. Bajaj, and M. Corless. Slow and fast invariant manifolds, and normal modes

in a two degree-of-freedom structural dynamical system with multiple equilibrium states. Int. J.

Non-Linear Mech., 33(2):275–300, 1998.

[GC02] S.A. Gourley and M.A.J. Chaplain. Travelling fronts in a food-limited population model with time

delay. Proc. Roy. Soc. Edinburgh Sect. A, 132:75–89, 2002.

[GC04] B. Guo and H. Chen. Homoclinic orbit in a six-dimensional model of a perturbed higher-order

nonlinear Schrodinger equation. Comm. Nonl. Sci. Numer. Simul., 9(4):431–441, 2004.

[GDH04] Z.P. Gerdtzen, P. Daoutidis, and W.S. Hu. Non-linear reduction for kinetic models of metabolic

reaction networks. Metabolic Engineering, 6(2):140–154, 2004.

[GdWNS09] C. Germay, N. Van de Wouw, H. Nijmeijer, and R. Sepulchre. Nonlinear drillstring dynamics analysis.

SIAM J. Appl. Dyn. Syst., 8(2):527–553, 2009.

Page 32: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

736 Bibliography

[GE98] B.S. Gutkin and G.B. Ermentrout. Dynamics of membrane excitability determine interspike interval

variability: a link between spike generation mechanisms and cortical spike train statistics. Neural

Comput., 10(5):1047–1065, 1998.

[GE06] J. Guckenheimer and S. Ellner. Dynamic Models in Biology. Princeton University Press, 2006.

[Ged10] T. Gedeon. Oscillations in monotone systems with a negative feedback. SIAM J. Appl. Dyn. Syst.,

9(1):84–112, 2010.

[Gel89] I.M. Gel’fand. Lectures on Linear Algebra. Dover, 1989.

[Gem79] S. Geman. Some averaging and stability results for random differential equations. SIAM J. Appl. Math.,

36(1):86–105, 1979.

[Geo99] I. Georgiou. On the global geometric structure of the dynamics of the elastic pendulum. Nonlinear

Dyn., 18(1):51–68, 1999.

[Geo05] I. Georgiou. Advanced proper orthogonal decomposition tools: using reduced order models to iden-

tify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear

rods. Nonlinear Dyn., 41(1):69–110, 2005.

[GER78] E.D. Gilles, G. Eigenberger, and W. Ruppel. Relaxation oscillations in chemical reactors. AIChE J.,

24(5):912–920, 1978.

[Ger12] M. Gerdts. Optimal control of ODEs and DAEs. de Gruyter, 2012.

[GF77] W. Geiseler and H.H. Follner. Three steady state situation in an open chemical reaction system. I.

Bipophys. Chem., 6(1):107–115, 1977.

[GF91] L. Gyorgi and R.J. Field. Simple models of deterministic chaos in the Belousov–Zhabotinsky reac-

tion. J. Phys. Chem., 95:6594–6602, 1991.

[GFZ11] I. Gholami, A. Fiege, and A. Zippelius. Slow dynamics and precursors of the glass transition in

granular fluids. Phys. Rev. E, 84:031305, 2011.

[GG74] M. Golubitsky and V. Guillemin. Stable Mappings and their Singularities. Springer, 1974.

[GG88] T. Grodt and Z. Gajic. The recursive reduced-order numerical solution of the singularly perturbed

matrix differential Riccati equation. IEEE Trans. Aut. Contr., 33(8):751–754, 1988.

[GG97] V. Gaitsgory and G. Grammel. On the construction of asymptotically optimal controls for singularly

perturbed systems. Syst. Contr. Lett., 30(2):139–147, 1997.

[GGHL81] P. Gray, J.F. Griffiths, S.M. Hasko, and P.-G. Lignola. Oscillatory ignitions and cool flames accom-

panying the non-isothermal oxidation of acetaldehyde in a well stirred, flow reactor. Proc. R. Soc.

Lond., 374(1758):313–339, 1981.

[GGHW93] J. Guckenheimer, S. Gueron, and R. Harris-Warrick. Mapping the dynamics of a bursting neuron.

Phil. Trans. Roy. Soc. B, 341:345–359, 1993.

[GGJ07] A. Ghazaryan, P. Gordon, and C.K.R.T. Jones. Traveling waves in porous media combustion: unique-

ness of waves for small thermal diffusivity. J. Dyn. Diff. Eq., 19(4):951–966, 2007.

[GGK+07] M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow, and H. Oka. Topological horseshoes

of traveling waves for a fast–slow predator–prey system. J. Dyn. Diff. Eq., 19(3):623–654, 2007.

[GGKS99] I. Goldfarb, V. Gol’dshtein, G. Kuzmenko, and S. Sazhin. Thermal radiation effect on thermal

explosion in gas containing fuel droplets. Combust. Theor. Model., 3(4):769–787, 1999.

[GGM00] G. Gallavotti, G. Gentile, and V. Mastropietro. Hamilton-Jacobi equation, heteroclinic chains and

Arnol’d diffusion in three time scale systems. Nonlinearity, 13(2):323, 2000.

[GGM04] I. Goldfarb, V. Gol’dshtein, and U. Maas. Comparative analysis of two asymptotic approaches based

on integral manifolds. IMA J. Appl. Math., 69(4):353–374, 2004.

[GGZ02] I. Goldfarb, V. Gol’dshtein, and A. Zinoviev. Delayed thermal explosion in porous media: method

of invariant manifolds. IMA J. Appl. Math., 67(3):263–280, 2002.

[GH79] P.P.N. De Groen and P.W. Hemker. Error bounds for exponen- tially fitted Galerkin methods applied

to stiff two-point boundary value problems. In P.W. Hemker and J.J.H. Miller, editors, Numerical

Analysis of Singular Perturbation Problems, pages 217–249. Academic Press, 1979.

[GH83] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.

Springer, New York, NY, 1983.

[GH84] B. Greenspan and P. Holmes. Repeated resonance and homoclinic bifurcation in a periodically forced

family of oscillators. SIAM J. Math. Anal., 15(1):69–97, 1984.

[GH88] H. Gingold and P.F. Hsieh. Asymptotic solutions of a Hamiltonian system in intervals with several

turning points. SIAM J. Math. Anal., 19(5):1142–1150, 1988.

[GH99] J. Grasman and O.A. Van Herwaarden. Asymptotic Methods for the Fokker–Planck Equation and the Exit

Problem in Applications. Springer, 1999.

[GH00] I. Goychuk and P. Hanggi. Stochastic resonance in ion channels characterized by information theory.

Phys. Rev. E, 61(4):4272, 2000.

[GH04a] R.M. Ghigliazza and P. Holmes. A minimal model of a central pattern generator and motoneurons

for insect locomotion. SIAM J. Appl. Dyn. Syst., 3(4):671–700, 2004.

[GH04b] R.M. Ghigliazza and P. Holmes. Minimal models of bursting neurons: how multiple currents, con-

ductances, and timescales affect bifurcation diagrams. SIAM J. Appl. Dyn. Syst., 3(4):636–670, 2004.

[GH05] J. Guckenheimer and R. Haiduc. Canards at folded nodes. Mosc. Math. J., 5(1):91–103, 2005.

[GH06] K.M. Grimsrud and R. Huffaker. Solving multidimensional bioeconomic problems with singular-

perturbation reduction methods: Application to managing pest resistance to pesticidal crops. J.

Environ. Econ. Manag., 51(3):336–353, 2006.

[GH13] M. Grace and M.-T. Hutt. Predictability of spatio-temporal patterns in a lattice of coupled

FitzHugh–Nagumo oscillators. J. R. Soc. Interface, 10:20121016, 2013.

[Gha09a] A. Ghazaryan. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J.,

58:181–212, 2009.

[Gha09b] A. Ghazaryan. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst. A,

24:809–826, 2009.

[Gha10] A. Ghazaryan. On the existence of high Lewis number combustion fronts. Math. Comput. Simul.,

82(6):1133–1141, 2010.

[Ghi12] M. Ghisi. Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations with

weak dissipation. Adv. Differential Equat., 17(1):1–36, 2012.

Page 33: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 737

[GHJM98] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70:

223–287, 1998.

[GHL13] A. Ghazaryan, J. Humphreys, and J. Lytle. Spectral behavior of combustion fronts with high exother-

micity. SIAM J. Appl. Math., 73(1):422–437, 2013.

[GHK08] E.A. Gaffney, J.K. Heath and M.Z. Kwiatkowska. A mass action model of a Fibroblast Growth Factor

signaling pathway and its simplification. Bull. Math. Biol., 70(8):2229–2263, 2008.

[GHR+07] D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney,

D. Rachinskii, and G. Huyet. Excitability and self-pulsations near homoclinic bifurcations in semi-

conductor lasers. Phys. Rev. Lett., 98:153903, 2007.

[GHS76] K.R. Graziani, J.L. Hudson, and R.A. Schmitz. The Belousov–Zhabotinskii reaction in a continuous

flow reactor. The Chemical Engineering Journal, 12(1):9–21, 1976.

[GHW00] J. Guckenheimer, K. Hoffman, and W. Weckesser. Numerical computation of canards. Internat. J.

Bifur. Chaos Appl. Sci. Engrg., 10(12):2669–2687, 2000.

[GHW03] J. Guckenheimer, K. Hoffman, and W. Weckesser. The forced van der Pol equation I: the slow flow

and its bifurcations. SIAM J. Appl. Dyn. Syst., 2(1):1–35, 2003.

[GHW05] J. Guckenheimer, K. Hoffman, and W. Weckesser. Bifurcations of relaxation oscillations near folded

saddles. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(11):3411–3421, 2005.

[GHWPW97] J. Guckenheimer, R. Harris-Warrick, J. Peck, and A.R. Willms. Bifurcation, bursting, and spike

frequency adaptation. J. Comp. Neuosci., 4:257–277, 1997.

[GI91] V. Gautheron and E. Isambert. Finitely differentiable ducks and finite expansions. In E. Benoıt,

editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 40–56. Springer, 1991.

[GI96] A. Gorodetski and Yu.S. Ilyashenko. Minimal and strange attractors. Int. J. Bifur. Chaos, 6:1177–1183,

1996.

[GI01] J. Guckenheimer and Yu. Ilyashenko. The duck and the devil: canards on the staircase. Mosc. Math.

J., 1(1):27–47, 2001.

[Gil75] D.E. Gilsinn. The method of averaging and domains of stability for integral manifolds. SIAM J. Appl.

Math., 29(4):628–660, 1975.

[Gil82] D.E. Gilsinn. A high order generalized method of averaging. SIAM J. Appl. Math., 42(1):113–134, 1982.

[Gil83] A.D. MacGillivray. On the leading term of the outer asymptotic expansion of van der Pol’s equation.

SIAM J. Appl. Math., 43(6):1221–1239, 1983.

[Gil90] A.D. MacGillivray. Justification of matching with the transition expansion of van der Pol’s equation.

SIAM J. Math. Anal., 21(1):221–240, 1990.

[Gil93] R. Gilmore. Catastrophe Theory for Scientists and Engineers. Dover, 1993.

[Gil97] A.D. MacGillivray. A method for incorporating transcendentally small terms into the method of

matched asymptotic expansions. Studies in Appl. Math., 99:285–310, 1997.

[Gin85] H. Gingold. An asymptotic decomposition method applied to multi-turning point problems. SIAM J.

Math. Anal., 16(1):7–27, 1985.

[Gin09] J.-M. Ginoux. Differential Geometry Applied to Dynamical Systems. World Scientific, 2009.

[GJ79] J. Grasman and M.J.W. Jansen. Mutually synchronized relaxation oscillators as prototypes of oscil-

lating systems in biology. J. Math. Biol., 7(2):171–197, 1979.

[GJ90] R. Gardner and C.K.R.T. Jones. Traveling waves of a perturbed diffusion equation arising in a phase

field model. Ind. Univ. Math. J., 39(4):1197–1222, 1990.

[GJ91] R. Gardner and C.K.R.T. Jones. Stability of travelling wave solutions of diffusive predator–prey

systems. Trans. Amer. Math. Soc., 327(2):465–524, 1991.

[GJ08] V. Guttal and C. Jayaprakash. Changing skewness: an early warning signal of regime shifts in

ecosystems. Ecology Letters, 11:450–460, 2008.

[GJ09] V. Guttal and C. Jayaprakash. Spatial variance and spatial skewness: leading indicators of regime

shifts in spatial ecological systems. Theor. Ecol., 2:3–12, 2009.

[GJK01] M. Golubitsky, K. Josic, and T.J. Kaper. An unfolding theory approach to bursting in fast–slow

systems. In H.W. Broer, B. Krauskopf, and G. Vegter, editors, Global Analysis of Dynamical Systems:

Festschrift dedicated to Floris Takens on the occasion of his 60th birthday, pages 277–308. Institute of Physics

Publ., 2001.

[GJM12] J. Guckenheimer, T. Johnson, and P. Meerkamp. Rigorous enclosures of a slow manifold. SIAM J.

Appl. Dyn. Syst., 11(3):831–863, 2012.

[GK81] A. Goldbeter and D.E. Koshland. An amplified sensitivity arising from covalent modification in

biological systems. Proc. Natl. Acad. Sci USA, 78:6840–6844, 1981.

[GK86] Z. Gajic and H. Khalil. Multimodel strategies under random disturbances and imperfect partial

observations. Automatica, 22(1):121–125, 1986.

[GK91] E.V. Grigor’eva and S.A. Kashchenko. Relaxation oscillations in a system of equations describing

the operation of a solid-state laser with a nonlinear element of delaying action. Differential Equations,

27(5):506–512, 1991.

[GK97] M. Garbey and H.G. Kaper. Heterogeneous domain decomposition for singularly perturbed elliptic

boundary value problems. SIAM J. Numer. Anal., 34(4):1513–1544, 1997.

[GK98] P.P.N. De Groen and G.E. Karadzhov. Exponentially slow travelling waves on a finite interval for

Burgers’-type equation. Electron. J. Differential Equat., 1980(30):1–38, 1998.

[GK01] P.P.N. De Groen and G.E. Karadzhov. Slow travelling waves on a finite interval for Burgers’-type

equations. J. Comput. Appl. Math., 132:155–189, 2001.

[GK02] W. Gerstner and W. Kistler. Spiking Neuron Models. Cambridge University Press, 2002.

[GK03] C.W. Gear and I.G. Kevrekidis. Projective methods for stiff differential equations: problems with

gaps in their eigenvalue spectrum. SIAM J. Sci. Comput., 24(4):1091–1106, 2003.

[GK04] D. Givon and R. Kupferman. White noise limits for discrete dynamical systems driven by fast de-

terministic dynamics. Physica A, 335(3):385–412, 2004.

[GK09a] J. Guckenheimer and C. Kuehn. Computing slow manifolds of saddle-type. SIAM J. Appl. Dyn. Syst.,

8(3):854–879, 2009.

[GK09b] J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular

limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.

Page 34: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

738 Bibliography

[GK10a] D.Y. Gao and V.A. Krysko. Introduction to Asymptotic Methods. CRC Press, 2010.

[GK10b] J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations

in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.

[GKK06] D. Givon, I.G. Kevrekidis, and R. Kupferman. Strong convergence of projective integration schemes

for singularly perturbed stochastic differential systems. Comm. Math. Sci., 4(4):707–729, 2006.

[GKKZ05] C.W. Gear, T.J. Kaper, I.G. Kevrikidis, and A. Zagaris. Projecting to a slow manifold: singularly

perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst., 4(3):711–732, 2005.

[GKM89] P. Grassbeger, H. Kantz, and U. Moenig. On the symbolic dynamics of the Henon map. J. Phys. A,

22(24):5217–5230, 1989.

[GKM+99] T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J.F. Reineck. The Conley index for fast–slow

systems I. One-dimensional slow variable. J. Dyn. Diff. Eq., 11(3):427–470, 1999.

[GKMO02] T. Gedeon, H. Kokubu, K. Mischaikow, and H. Oka. Chaotic solutions in slowly varying perturba-

tions of Hamiltonian systems with applications to shallow water sloshing. J. Dyn. Diff. Eq., 14(1):63–

84, 2002.

[GKMO06] T. Gedeon, H. Kokubu, K. Mischaikow, and H. Oka. The Conley index for fast–slow systems II.

Multidimensional slow variable. J. Differential Equat., 225:242–307, 2006.

[GKMW07] T. Gotz, A. Klar, N. Marheineke, and R. Wegener. A stochastic model and associated Fokker–

Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl.

Math., 67(6):1704–1717, 2007.

[GKR08] S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Blue sky catastrophe in relaxation systems with one

fast and two slow variables. Differential Equat., 44(2):161–175, 2008.

[GKR11a] S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Relaxation self-oscillations in neuron systems: I.

Differential Equat., 47(7):927–941, 2011.

[GKR11b] S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Relaxation self-oscillations in neuron systems: II.

Differential Equat., 47(12): 1697–1713, 2011.

[GKR12] S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Relaxation self-oscillations in neuron systems: III.

Differential Equat., 48(2):159–175, 2012.

[GKR13] S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. On a method for mathematical modeling of chemical

synapses. Differential Equat., 49(10):1193–1210, 2013.

[GKS04] D. Givon, R. Kupferman, and A.M. Stuart. Extracting macroscopic dynamics: model problems and

algorithms. Nonlinearity, 17:55–127, 2004.

[GKT97] M. Grossglauser, S. Keshav, and D.N. Tse. RCBR: a simple and efficient service for multiple time-

scale traffic. IEEE/ACM Trans. Netw., 5(6):741–755, 1997.

[GKT02] C.W. Gear, I.G. Kevrekidis, and C. Theodoropoulos. Coarse-integration/bifurcation analysis via

microscopic simulators: micro-Galerkin methods. Comput. Chem. Eng., 26(7):941–963, 2002.

[GKZ04] A.N. Gorban, I.V. Karlin, and A.Yu. Zinovyev. Constructive methods of invariant manifolds for

kinetic problems. Physics Reports, 396:197–403, 2004.

[GL93] J. Guckenheimer and I.S. Labouriau. Bifurcations of the Hodgkin and Huxley equations; a new twist.

Bull. Math. Biol., 55:937–952, 1993.

[GL99] V. Gaitsgory and A. Leizarowitz. Limit occupational measures set for a control system and averaging

of singularly perturbed control systems. J. Math. Anal. Appl., 233(2):461–475, 1999.

[GL01] Z. Gajic and M.-T. Lim. Optimal Control of Singularly Perturbed Linear Systems and Applications. Marcel

Dekker, 2001.

[GL02] V. Gelfreich and L. Lerman. Almost invariant elliptic manifold in a singularly perturbed Hamiltonian

system. Nonlinearity, 15(2):447–457, 2002.

[GL03] V. Gelfreich and L. Lerman. Long-periodic orbits and invariant tori in a singularly perturbed Hamil-

tonian system. Physica D, 176(3):125–146, 2003.

[GL05] A. Guillin and R. Liptser. MDP for integral functionals of fast and slow processes with averaging.

Stochastic Process. Appl., 115(7):1187–1207, 2005.

[GL07] J. Guckenheimer and D. LaMar. Periodic orbit continuation in multiple time scale systems. In Under-

standing Complex Systems: Numerical continuation methods for dynamical systems, pages 253–267. Springer,

2007.

[GL11] J.-M. Ginoux and J. Llibre. The flow curvature method applied to canard explosion. J. Phys. A: Math.

Theor., 44:465203, 2011.

[GL12] J.-M. Ginoux and C. Letellier. Van der Pol and the history of relaxation oscillations: toward the

emergence of a concept. Chaos, 22:023120, 2012.

[Gla77] R.T. Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger

equations. J. Math. Phys., 18:1794–1797, 1977.

[GLC13] J.-M. Ginoux, J. Llibre, and L.O. Chua. Canards from Chua’s circuit. Int. J. Bif. Chaos, 23:1330010,

2013.

[Gle94] P. Glendinning. Stability, Instability and Chaos. CUP, 1994.

[Gli98] V.Y. Glizer. Asymptotic solution of a singularly perturbed set of functional-differential equations

of Riccati type encountered in the optimal control theory. Nonl. Diff. Eq. Appl., 5(4):491–515, 1998.

[Gli00a] V.Y. Glizer. Asymptotic solution of a boundary-value problem for linear singularly-perturbed func-

tional differential equations arising in optimal control theory. J. Optim. Theor. Appl., 106(2):309–335,

2000.

[Gli00b] V.Y. Glizer. Asymptotic solution of zero-sum linear-quadratic differential game with cheap control

for minimizer. Nonl. Diff. Eq. Appl., 7(2):213–258, 2000.

[Gli01a] V.Y. Glizer. Controllability of singularly perturbed linear time-dependent systems with small state

delay. Dynamics and Control, 11(3):261–281, 2001.

[Gli01b] V.Y. Glizer. Euclidean space controllability of singularly perturbed linear systems with state delay.

Syst. Contr. Lett., 43(3):181–191, 2001.

[Gli03a] V.Y. Glizer. Asymptotic analysis and solution of a finite-horizon H∞ control problem for singularly-

perturbed linear systems with small state delay. J. Optim. Theor. Appl., 117(2):295–325, 2003.

Page 35: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 739

[Gli03b] V.Y. Glizer. Blockwise estimate of the fundamental matrix of linear singularly perturbed differential

systems with small delay and its application to uniform asymptotic solution. J. Math. Anal. Appl.,

278(2):409–433, 2003.

[Gli03c] V.Y. Glizer. Controllability of nonstandard singularly perturbed systems with small state delay.

IEEE Trans. Aut. Contr., 48(7):1280–1285, 2003.

[Gli04] V.Y. Glizer. On stabilization of nonstandard singularly perturbed systems with small delays in state

and control. IEEE Trans. Aut. Contr., 49(6):1012–1016, 2004.

[Gli07] V.Y. Glizer. Infinite horizon quadratic control of linear singularly perturbed systems with small state

delays: an asymptotic solution of Riccati-type equations. IMA J. Math. Contr. Inform., 24(4):435–459,

2007.

[Gli08] V.Y. Glizer. Novel controllability conditions for a class of singularly-perturbed systems with small

state delays. J. Optim. Theor. Appl., 137:135–156, 2008.

[GLK03] C.W. Gear, J. Li, and I.G. Kevrekidis. The gap-tooth method in particle simulations. Phys. Lett. A,

316(3):190–195, 2003.

[GLMM00] A. Gasull, J. Llibre, V. Maosa, and F. Maosas. The focus-centre problem for a type of degenerate

system. Nonlinearity, 13(3):699–729, 2000.

[GLMS01] I. Gasser, C.D. Levermore, P.A. Markowich, and C. Schmeiser. The initial time layer problem and

the quasineutral limit in the semiconductor drift-diffusion model. Eur. J. Appl. Math., 12(4):497–512,

2001.

[GM72] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetic, 12:30–39, 1972.

[GM77] J. Grasman and B.J. Matkowsky. A variational approach to singularly perturbed boundary value

problems for ordinary and partial differential equations with turning points. SIAM J. Appl. Math.,

32(3):588–597, 1977.

[GM06] T. Gedeon, , and K. Mischaikow. Singular boundary value problems via the Conley index. Topol.

Methods Nonlinear Anal., 28(2):263–283, 2006.

[GM07] J.M. Gonzalez-Miranda. Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int.

J. Bif. Chaos, 17(9):3071–3083, 2007.

[GM08] B. Gershgorin and A. Majda. A nonlinear test model for filtering slow–fast systems. Commun. Math.

Sci., 6(3):611–649, 2008.

[GM10] B. Gershgorin and A. Majda. Filtering a nonlinear slow–fast system with strong fast forcing. Commun.

Math. Sci., 8(1):67–92, 2010.

[GM12a] J.M. Gonzalez-Miranda. Nonlinear dynamics of the membrane potential of a bursting pacemaker

cell. Chaos, 22:013123, 2012.

[GM12b] J. Guckenheimer and P. Meerkamp. Bifurcation analysis of singular Hopf bifurcation in R3. SIAM J.

Appl. Dyn. Syst., 11(4):1325–1359, 2012.

[GM13] G. Gottwald and I. Melbourne. Homogenization for deterministic maps and multiplicative noise.

Proc. R. Soc. A, 469:20130201, 2013.

[GMCH12] L. Giomi, L. Mahadevan, B. Chakraborty, and M.F. Hagan. Banding, excitability and chaos in active

nematic suspensions. Nonlinearity, 25(8):2245–2269, 2012.

[GMG07] G. Gigante, M. Mattia, and P.D. Giudice. Diverse population-bursting modes of adapting spiking

neurons. Phys. Rev. Lett., 98(14):148101, 2007.

[GMGW98] T. Guhr, A. Muller-Groeling, and H.A. Weidenmuller. Random-matrix theories in quantum physics:

common concepts. Phys. Rep., 299(4):189–425, 1998.

[GMMSS89] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Santucci. Stochastic resonance in

bistable systems. Phys. Rev. Lett., 62(4):349–352, 1989.

[GMS95] L. Gammaitoni, F. Marchesoni, and S. Santucci. Stochastic resonance as a bona fide resonance. Phys.

Rev. Lett., 74(7):1052–1055, 1995.

[GMSS+89] L. Gammaitoni, E. Menichella-Saetta, S. Santucci, F. Marchesoni, and C. Presilla. Periodically time-

modulated bistable systems: stochastic resonance. Phys. Rev. A, 40(4):2114, 1989.

[GN83] P. Gaspard and G. Nicolis. What can we learn from homoclinic orbits in chaotic dynamics? J. Stat.

Phys., 31(3):499–518, 1983.

[GN01] V. Gaitsgory and M.-T. Nguyen. Averaging of three time scale singularly perturbed control systems.

Syst. Contr. Lett., 42(5): 395–403, 2001.

[GN02] V. Gaitsgory and M.-T. Nguyen. Multiscale singularly perturbed control systems: limit occupational

measures sets and averaging. SIAM J. Contr. Optim., 41(3):954–974, 2002.

[GNJ89] Z.-M. Gu, N.N. Nefedov, and R.E. O’Malley Jr. On singular singularly perturbed initial value prob-

lems. SIAM J. Appl. Math., 49(1):1–25, 1989.

[GNV84] J. Grasman, H. Nijmeijer, and E.J.M. Veling. Singular perturbations and a mapping on an interval

for the forced van der Pol relaxation oscillator. Physica D, 13(1):195–210, 1984.

[GNW10] J.E. Gough, H.I. Nurdin, and S. Wildfeuer. Commutativity of the adiabatic elimination limit of fast

oscillatory components and the instantaneous feedback limit in quantum feedback networks. J. Math.

Phys., 51:123518, 2010.

[GO02] J. Guckenheimer and R.A. Oliva. Chaos in the Hodgkin–Huxley model. SIAM J. Appl. Dyn. Syst.,

1:105–114, 2002.

[GO10] E.V. Goncharova and A.I. Ovseevich. Asymptotic estimates for reachable sets of singularly perturbed

linear systems. Diff. Uravneniya, 46(12):1737–1748, 2010.

[GO11] A. Gloria and F. Otto. An optimal variance estimate in stochastic homogenization of discrete elliptic

equations. Ann. Probab., 39:779–856, 2011.

[GO12] J. Guckenheimer and H.M. Osinga. The singular limit of a Hopf bifurcation. Discr. Cont. Dyn. Syst.

A, 32:2805–2823, 2012.

[Gol91] A. Goldbeter. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase.

Proc. Natl. Acad. Sci USA, 88:9107–9111, 1991.

[Gol92] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. Westview Press, 1992.

[Gol97] A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. CUP, 1997.

[Gol98] R. Goldblatt. Lectures on the Hyperreals. Springer, 1998.

Page 36: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

740 Bibliography

[GOT07] G. Gottwald, M. Oliver, and N. Tecu. Long-time accuracy for approximate slow manifolds in a finite

dimensional model of balance. J. Nonlinear Sci., 17:283–307, 2007.

[Gou00] S.A. Gourley. Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delay.

Math. Comput. Model., 32(7):843–853, 2000.

[Gou13] D.A. Goussis. The role of slow system dynamics in predicting the degeneracy of slow invariant

manifolds: The case of vdP relaxation-oscillations. Physica D, 248:16–32, 2013.

[GOV87a] A. Galves, E. Olivieri, and M.E. Vares. Metastability for a class of dynamical systems subject to

small random perturbations. Ann. Prob., 15(4):1288–1305, 1987.

[Gov87b] W.F. Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia, PA, 1987.

[GP83] P. Grassbeger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9(1):

189–208, 1983.

[GP84] C.W. Gear and L.R. Petzhold. ODE methods for the solution of differential/algebraic systems. SIAM

J. Numer. Anal., 21(4):716–728, 1984.

[GP87] D.L. Gonzalez and O. Piro. Global bifurcations and phase portrait of an analytically solvable non-

linear oscillator: relaxation oscillations and saddle-node collisions. Phys. Rev. A, 36(9):4402–4410,

1987.

[GP06] R.E. Griffiths and M. Pernarowski. Return map characterizations for a model of bursting with two

slow variables. SIAM J. Appl. Math., 66(6):1917–1948, 2006.

[GPCS06] A. Garcia, E. Perez-Chavela, and A. Susin. A generalization of the Poincare compactification. Arch.

Rat. Mech. Anal., 179(2):285–302, 2006.

[GPEK00] A. Gavrielides, D. Pieroux, T. Erneux, and V. Kovanis. Hopf bifurcation subject to a large delay in

a laser system. SIAM J. Appl. Math., 61(3):966–982, 2000.

[GPP12] G. Giacomin, K. Pakdaman, and X. Pellegrin. Global attractor and asymptotic dynamics in the

Kuramoto model for coupled noisy phase oscillators. Nonlinearity, 25:1247–1273, 2012.

[GPPP12] G. Giacomin, K. Pakdaman, X. Pellegrin, and C. Poquet. Transitions in active rotator systems:

invariant hyperbolic manifold approach. SIAM J. Math. Anal., 44(6):4165–4194, 2012.

[GPS90] Z. Gajic, D. Petkovski, and X. Shen. Singularly perturbed and weakly coupled linear control systems: a recursive

approach. Springer, 1990.

[GR89] J. Grasman and J. Roerdink. Stochastic and chaotic relaxation oscillations. J. Stat. Phys., 54(3):

949–970, 1989.

[GR93] D. Golomb and J. Rinzel. Dynamics of globally coupled inhibitory neurons with heterogeneity. Phys.

Rev. E, 48(6):4810, 1993.

[GR94] D. Golomb and J. Rinzel. Clustering in globally coupled inhibitory neurons. Physica D, 72(3):259–282,

1994.

[GR03] S.A. Gourley and S. Ruan. Convergence and travelling fronts in functional differential equations

with nonlocal terms: a competition model. SIAM J. Math. Anal., 35(3):806–822, 2003.

[Gra80] J. Grasman. Relaxation oscillations of a van der Pol equation with large critical forcing term. Quart.

Appl. Math., 38:9–16, 1980.

[Gra84] J. Grasman. The mathematical modeling of entrained biological oscillators. Bull. Math. Biol.,

46(3):407–422, 1984.

[Gra87] J. Grasman. Asymptotic Methods for Relaxation Oscillations and Applications. Springer, 1987.

[Gra95] C.P. Grant. Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Anal., 26(1):21–34,

1995.

[Gra96] G. Grammel. Singularly perturbed differential inclusions: an averaging approach. Set-Valued Analysis,

4(4):361–374, 1996.

[Gra99] G. Grammel. Limits of nonlinear discrete-time control systems with fast subsystems. Syst. Contr.

Lett., 36(4):277–283, 1999.

[Gra04] G. Grammel. On nonlinear control systems with multiple time scales. J. Dyn. Contr. Sys., 10(1):11–28,

2004.

[GRC08] J.M. Ginoux, B. Rossetto, and L.O. Chua. Slow invariant manifolds as curvature of the flow of

dynamical systems. Int. J. Bif. Chaos, 18(11):3409–3430, 2008.

[Gre37] G. Green. On the motion of waves in a variable canal of small depth and width. Trans. Cambridge Phil.

Soc., 6:457–462, 1837.

[Gre69] W.M. Greenlee. Singular perturbation of eigenvalues. Arch. Rat. Mech. Anal., 34(2):143–164, 1969.

[Gre10] M. Greenblatt. Oscillatory integral decay, sublevel set growth, and the Newton polyhedron. Math.

Ann., 346:857–895, 2010.

[GRF91] L. Gyorgi, S. Rempe, and R.J. Field. A novel model for the simulation of chaos in low-flow-rate CSTR

experiments with the Belousov–Zhabotinskii reaction: a chemical mechanism for two-frequency

oscillations. J. Phys. Chem., 95:3159–3165, 1991.

[Gri91] P. Grindrod. Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations. Clarendon

Press, 1991.

[GRKT12] V. Gelfreich, V. Rom-Kedar, and D. Turaev. Fermi acceleration and adiabatic invariants for non-

autonomous billiards. Chaos, 22(3):033116, 2012.

[GRMP10] C. Grotta-Ragazzo, C. Pereira Malta, and K. Pakdaman. Metastable periodic patterns in singularly

perturbed delayed equations. J. Dyn. Diff. Eq., 22(2):203–252, 2010.

[Gro77] P.P.N. De Groen. Spectral properties of second-order singularly perturbed boundary value problems

with turning points. J. Math. Anal. Appl., 57(1):119–145, 1977.

[Gro80] P.P.N. De Groen. The nature of resonance in a singular perturbation problem of turning point type.

SIAM J. Math. Anal., 11(1):1–22, 1980.

[Gro81] P.P.N. De Groen. A finite element method with a large mesh-width for a stiff two-point boundary

value problem. J. Comput. Appl. Math., 7(1):3–15, 1981.

[Gru79] L.T. Grujic. Singular perturbations and large-scale systems. Int. J. Contr., 29(1):159–169, 1979.

[Gru81] L.T. Grujic. Uniform asymptotic stability of non-linear singularly perturbed general and large-scale

systems. Int. J. Contr., 33(3):481–504, 1981.

[Gru98] J. Gruendler. Homoclinic solutions and chaos in ordinary differential equations with singular per-

turbations. Trans. Amer. Math. Soc., 350(9):3797–3814, 1998.

Page 37: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 741

[GS77] J.L. Gervais and B. Sakita. WKB wave function for systems with many degrees of freedom: a unified

view of solitons and pseudoparticles. Phys. Rev. D, 16(12):3507–3514, 1977.

[GS83] R. Gardner and J. Smoller. The existence of periodic travelling waves for singularly perturbed

predator–prey equations via the Conley index. J. Differential Equat., 47:133–161, 1983.

[GS85] M. Golubitsky and D. Schaeffer. Singularities and Groups in Bifurcation Theory, volume 1. Springer, 1985.

[GS91] G.N. Gorelov and V.A. Sobolev. Mathematical modeling of critical phenomena in thermal explosion

theory. Combust. Flame, 87(2):203–210, 1991.

[GS92] G.N. Gorelov and V.A. Sobolev. Duck-trajectories in a thermal explosion problem. Appl. Math. Lett.,

5(6):3–6, 1992.

[GS93] I. Gasser and P. Szmolyan. A geometric singular perturbation analysis of detonation and deflagration

waves. SIAM J. Math. Anal., 24(4):968–986, 1993.

[GS95] I. Gasser and P. Szmolyan. Detonation and deflagration waves with multistep reaction schemes.

SIAM J. Appl. Math., 55(1): 175–191, 1995.

[GS99] I. Georgiou and I.B. Schwartz. Dynamics of large scale coupled structural/mechanical systems:

a singular perturbation/proper orthogonal decomposition approach. SIAM J. Appl. Math., 59(4):

1178–1207, 1999.

[GS00] F. Ghorbel and M.W. Spong. Integral manifolds of singularly perturbed systems with application to

rigid-link flexible-joint multibody systems. Int. J. Non-Linear Mech., 35(1):133–155, 2000.

[GS01a] I. Gasser and P. Szmolyan. The frozen flow and the equilibrium limits in a polyatomic gas with

relaxation effects. Math. Mod. Meth. Appl. Sci., 11(1):87–104, 2001.

[GS01b] I. Georgiou and I.B. Schwartz. Invariant manifolds, nonclassical normal modes, and proper orthog-

onal modes in the dynamics of the flexible spherical pendulum. Nonlinear Dyn., 25(1):3–31, 2001.

[GS09a] P. Goel and A. Sherman. The geometry of bursting in the dual oscillator model of pancreatic β-cells.

SIAM J. Appl. Dyn. Syst., 8(4):1664–1693, 2009.

[GS09b] T. Gross and H. Sayama, editors. Adaptive Networks: Theory, Models and Applications. Springer, 2009.

[GS09c] I. Gucwa and P. Szmolyan. Geometric singular perturbation analysis of an autocatalator model.

Discr. Cont. Dyn. Syst. S, 2(4):783–806, 2009.

[GS11] J. Guckenheimer and C. Scheper. A geometric model for mixed-mode oscillations in a chemical

system. SIAM J. Appl. Dyn. Sys., 10(1):92–128, 2011.

[GS12a] R. Gobbi and R. Spigler. Comparing Shannon to autocorre- lation-based wavelets for solving singu-

larly perturbed elliptic BV problems. BIT Numer. Math., 52:21–43, 2012.

[GS12b] M. Guardi and T.M. Seara. Exponentially and non-exponentially small splitting of separatrices for

the pendulum with a fast meromorphic perturbation. Nonlinearity, 25:1367–1412, 2012.

[GS13] J. Guckenheimer and C. Scheper. Multiple time scale analysis of a model Belousov–Zhabotinskii

reaction. SIAM J. Appl. Dyn. Sys., 12(4):1968–1996, 2013.

[GSCE06] D. Golomb, A. Shedmi, R. Curtu, and G.B. Ermentrout. Persistent synchronized bursting activity

in cortical tissues with low magnesium concentration: a modeling study. J. Neurophysiol., 95(2):1049–

1067, 2006.

[GSK97] A. Goryachev, P. Strizhak, and R. Kapral. Slow manifold structure and the emergence of mixed-mode

oscillations. J. Chem. Phys., 107(18):2881–2889, 1997.

[GSLO92] T. Geest, C.G. Steinmetz, R. Larter, and L.F. Olsen. Period-doubling bifurcations and chaos in an

enzyme reaction. J. Phys. Chem., 96:5678–5680, 1992.

[GSS85] M. Golubitsky, D. Schaeffer, and I. Stewart. Singularities and Groups in Bifurcation Theory, volume 2.

Springer, 1985.

[GSS06] G.N. Gorelov, E.A. Shchepakina, and V.A. Sobolev. Canards and critical behavior in autocatalytic

combustion models. J. Engineer. Math., 56(2):143–160, 2006.

[GSS13] A. Ghazaryan, S. Schecter, and P.L. Simon. Gasless combustion fronts with heat loss. SIAM J. Appl.

Math., 73(3):1303–1326, 2013.

[GSW09] D. Givon, P. Stinis, and J. Weare. Variance reduction for particle filters of systems with time scale

separation. IEEE Trans. Signal Proc., 57(2):424–435, 2009.

[GT03] M. Grossglauser and D.N. Tse. A time-scale decomposition approach to measurement-based admis-

sion control. IEEE/ACM Trans. Netw., 11(4):550–563, 2003.

[GT08] V. Gelfreich and D. Turaev. Unbounded energy growth in Hamiltonian systems with a slowly varying

parameter. Comm. Math. Phys., 283(3):769–794, 2008.

[GT12a] A. Genadot and M. Thieullen. Averaging for a fully coupled piecewise-deterministic Markov process

in infinite dimensions. Adv. Appl. Probab., 44(3):749–773, 2012.

[GT12b] A. Genadot and M. Thieullen. Multiscale piecewise deterministic Markov process in infnite dimen-

sion: central limit theorem and Langevin approximation. arXiv:1211.1894v1, pages 1–33, 2012.

[GTF90] L. Gyorgi, T. Turanyi, and R.J. Field. Mechanistic details of the oscillatory Belousov–Zhabotinskii

reaction. J. Phys. Chem., 94:7162–7170, 1990.

[GTGN97] S.V. Gonchenko, D.V. Turaev, P. Gaspard, and G. Nicolis. Complexity in the bifurcation structure

of homoclinic loops to a saddle-focus. Nonlinearity, 10:409–423, 1997.

[GTW05] J. Guckenheimer, J.H. Tien, and A.R. Willms. Bifurcations in the fast dynamics of neurons: impli-

cations for bursting. In Bursting, The Genesis of Rhythm in the Nervous System, pages 89–122. World Sci.

Publ., 2005.

[Gua13] H. Guan. An averaging theorem for a perturbed KdV equation. Nonlinearity, 26(6):1599–1621, 2013.

[Guc80a] J. Guckenheimer. Dynamics of the van der Pol equation. IEEE Trans. Circ. Syst., 27(11):983–989, 1980.

[Guc80b] J. Guckenheimer. Symbolic dynamics and relaxation oscillations. Physica D, 1(2):227–235, 1980.

[Guc84] J. Guckenheimer. Multiple bifurcation problems of codimension two. SIAM J. Math. Anal., 15(1):1–49,

1984.

[Guc96] J. Guckenheimer. Towards a global theory of singularly perturbed systems. Progress in Nonlinear Dif-

ferential Equations and Their Applications, 19:214–225, 1996.

[Guc02] J. Guckenheimer. Bifurcation and degenerate decomposition in multiple time scale dynamical sys-

tems. In Nonlinear Dynamics and Chaos: Where do we go from here?, pages 1–20. Taylor and Francis, 2002.

Page 38: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

742 Bibliography

[Guc03] J. Guckenheimer. Global bifurcations of periodic orbits in the forced van der Pol equation. In

H.W. Broer, B. Krauskopf, and G. Vegter, editors, Global Analysis of Dynamical Systems - Festschrift

dedicated to Floris Takens, pages 1–16. Inst. of Physics Pub., 2003.

[Guc04] J. Guckenheimer. Bifurcations of relaxation oscillations. In Normal Forms, Bifurcations and Finiteness

Problems in Differential Equations, volume 137 of NATO Sci. Ser. II Math. Phys. Chem., pages 295–316.

Springer, 2004.

[Guc08a] J. Guckenheimer. Return maps of folded nodes and folded saddle-nodes. Chaos, 18:015108, 2008.

[Guc08b] J. Guckenheimer. Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn.

Syst., 7(4):1355–1377, 2008.

[Guc13] J. Guckenheimer. The birth of chaos. In Recent Trends in Dynamical Systems, volume 35 of Proceed. Math.

Stat., pages 3–24. Springer, 2013.

[Gun12] J. Gunawardena. A linear framework for time-scale separation in nonlinear biochemical systems.

PLoS ONE, 7:e36321, 2012.

[Gup12] A. Gupta. The Fleming–Viot limit of an interacting spatial population with fast density regulation.

Electronic J. Probab., 17(104):1–55, 2012.

[GV73] J. Grasman and E.J.M. Veling. An asymptotic formula for the period of a Volterra-Lotka system.

Math. Biosci., 18(1):185–189, 1973.

[GV04] J. Guckenheimer and A. Vladimirsky. A fast method for approximating invariant manifolds. SIAM J.

Appl. Dyn. Syst., 3(3):232–260, 2004.

[GV06] D.A. Goussis and M. Valorani. An efficient iterative algorithm for the approximation of the fast and

slow dynamics of stiff systems. J. Comp. Phys., 214:316–346, 2006.

[GV10] Y.A. Godin and B. Vainberg. On the determination of the boundary impedance from the far field

pattern. SIAM J. Appl. Math., 70(7):2273–2280, 2010.

[GVBM09] O.V. Gendelman, A.F. Vakakis, L.A. Bergman, and D.M. McFarland. Asymptotic analysis of passive

nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math.,

70(5):1655–1677, 2009.

[GvL96] G.H. Golub and C. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD,

1996.

[GVS05] J. Grasman, F. Verhulst, and S.D. Shih. The Lyapunov exponents of the van der Pol oscillator. Math.

Meth. Appl. Sci., 28(10):1131–1139, 2005.

[GVW76] J. Grasman, E.J.M. Veling, and G.M. Willems. Relaxation oscillations governed by a van der Pol

equation with periodic forcing term. SIAM J. Appl. Math., 31(4):667–676, 1976.

[GW79] J. Guckenheimer and R.F. Williams. Structural stability of Lorenz attractors. Inst. Hautes Etudes Sci.

Publ. Math., 50:59–72, 1979.

[GW87] P. Gaspard and X.-J. Wang. Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium

systems. Journal of Statistical Physics, 48:151–199, 1987.

[GW92] M. Ghil and G. Wolansky. Non-hamiltonian perturbations of integrable systems and resonance trap-

ping. SIAM J. Appl. Math., 52(4):1148–1171, 1992.

[GW93] J. Guckenheimer and P. Worfolk. Dynamical systems: some computational problems. In

D. Schlomiuk, editor, Bifurcations and Periodic Orbits of Vector Fields, pages 241–277. Kluwer, 1993.

[GW00] J. Guckenheimer and A.R. Willms. Asymptotic analysis of subcritical Hopf-homoclinic bifurcation.

Physica D, 139:195–216, 2000.

[GW12] M.N. Galtier and G. Wainrib. Multiscale analysis of slow–fast neuronal learning models with noise.

J. Math. Neurosci., 2:13, 2012.

[GWY06] J. Guckenheimer, M. Wechselberger, and L.-S. Young. Chaotic attractors of relaxation oscillations.

Nonlinearity, 19:701–720, 2006.

[GX01] P.-L. Gong and J.-X. Xu. Global dynamics and stochastic resonance of the forced FitzHugh–Nagumo

neuron model. Phys. Rev. E, 63(3):031906, 2001.

[GYS95] Y. Gutfreund, Y. Yarom, and I. Segev. Subthreshold oscillations and resonant frequency in guinea-

pig cortical neurons: physiology and modelling. J. Physiol., 483:621–640, 1995.

[GYY06] D. Golomb, C. Yue, and Y. Yaari. Contribution of persistent Na+ current and M-type K+ current to

somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J. Neurophysiol.,

96(4):1912–1926, 2006.

[GZ06] S. Gil and D.H. Zanette. Coevolution of agents and networks: opinion spreading and community

disconnection. Phys. Lett. A, 356:89–94, 2006.

[GZSS96] V. Gol’dshtein, A. Zinoviev, V. Sobolev, and E. Shchepakina. Criterion for thermal explosion with

reactant consumption in a dusty gas. Proc. R. Soc. London A, 542(1952):2013–2119, 1996.

[Hab78] P. Habets. On relaxation oscillations in a forced van der Pol oscillator. Proc. Roy. Soc. Edinburgh A,

82(1):41–49, 1978.

[Hab79] R. Haberman. Slowly varying jump and transition phenomena associated with algebraic bifurcation

problems. SIAM J. Appl. Math., 37(1):69–106, 1979.

[Hab91a] R. Haberman. Phase shift modulations for stable, oscillatory, traveling, strongly nonlinear waves.

Stud. Appl. Math., 84(1):57–69, 1991.

[Hab91b] R. Haberman. Standard form and a method of averaging for strongly nonlinear oscillatory dispersive

traveling waves. SIAM J. Appl. Math., 51(6):1638–1652, 1991.

[Har03] J. Harterich. Viscous profiles for traveling waves of scalar balance laws: the canard case. Meth. Appl.

Anal., 10(1):97–118, 2003.

[Hai05] R. Haiduc. Horseshoes in the forced van der Pol equation. PhD Thesis, Cornell University, 2005.

[Hai09] R. Haiduc. Horseshoes in the forced van der Pol system. Nonlinearity, 22:213–237, 2009.

[Hal66] J.K. Hale. Averaging methods for differential equations with retarded arguments and a small

parameter. J. Differential Equat., 2:57–73, 1966.

[Hal95] G. Haller. Diffusion at intersecting resonances in Hamiltonian systems. Phys. Lett. A, 200(1):34–42,

1995.

[Hal98] G. Haller. Multi-dimensional homoclinic jumping and the discretized NLS equation. Comm. Math.

Phys., 193(1):1–46, 1998.

Page 39: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 743

[Hal99] G. Haller. Homoclinic jumping in the perturbed nonlinear Schrodinger equation. Comm. Pure Appl.

Math., 152(1):1–47, 1999.

[Hal03] B.C. Hall. Lie Groups, Lie Algebras, and Representations. Springer, 2003.

[Hal09] J.K. Hale. Ordinary Differential Equations. Dover, New York, NY, 2009.

[HAL12] Y. Hu, A. Abdulle, and T. Li. Boosted hybrid method for solving chemical reaction systems with

multiple scales in time and population size. Comm. Comp. Phys., 12:981–1005, 2012.

[Hal13] B.C. Hall. Quantum Theory for Mathematicians. Springer, 2013.

[Han95] M. Hanke. Regularizations of differential-algebraic equations revisited. Math. Nachr., 174:159–183,

1995.

[Han98] H. Hanßmann. The quasi-periodic centre-saddle bifurcation. J. Differential Equat., 142(2):305–370,

1998.

[Han02] P. Hanggi. Stochastic resonance in biology how noise can enhance detection of weak signals and help

improve biological information processing. ChemPhysChem, 3(3):285–290, 2002.

[Has71] A.H. Nayfeh S.D. Hassan. The method of multiple scales and non-linear dispersive waves. J. Fluid

Mech., 48:463–475, 1971.

[Has75] S.P. Hastings. Some mathematical problems from neurobiology. The American Mathematical Monthly,

82(9):881–895, 1975.

[Has76a] S.P. Hastings. On the existence of homoclinic and periodic orbits in the FitzHugh–Nagumo equations.

Quart. J. Math. Oxford, 2(27):123–134, 1976.

[Has76b] S.P. Hastings. On travelling wave solutions of the Hodgkin–Huxley equations. Arch. Rat. Mech. Anal.,

60(3):229–257, 1976.

[Has78] B. Hassard. Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon.

J. Theor. Biol., 71(3): 401–420, 1978.

[Has82] S.P. Hastings. Single and multiple pulse waves for the FitzHugh–Nagumo. SIAM J. Appl. Math.,

42(2):247–260, 1982.

[Has83] S.P. Hastings. Formal relaxation oscillations for a model of a catalytic particle. Quart. Appl. Math.,

41(4):395–405, 1983.

[Has10] A. Hastings. Timescales, dynamics, and ecological understanding. Ecology, 91:3471–3480, 2010.

[Hat02] A. Hatcher. Algebraic Topology. CUP, 2002.

[Hau01] W. Hauck. Kinks and rotations in long Josephson junctions. Math. Meth. Appl. Sci., 24(15):1189–1217,

2001.

[Hay00] T. Hayashi. Mixed-mode oscillations and chaos in a glow discharge. Phys. Rev. Lett., 84(15):3334–3337,

2000.

[HB12] X. Han and Q. Bi. Slow passage through canard explosion and mixed-mode oscillations in the forced

van der Pol’s equation. Nonlinear Dyn., 68:275–283, 2012.

[HBB13a] M. Hasler, V. Belykh, and I. Belykh. Dynamics of stochastically blinking systems. Part I: Finite

time properties. SIAM J. Appl. Dyn. Syst., 12(2):1007–1030, 2013.

[HBB13b] M. Hasler, V. Belykh, and I. Belykh. Dynamics of stochastically blinking systems. Part II: Asymp-

totic properties. SIAM J. Appl. Dyn. Syst., 12(2):1031–1084, 2013.

[HBC+91] J.J. Healey, D.S. Broomhead, K.A. Cliffe, R. Jones, and T. Mullin. The origins of chaos in a modified

van der Pol oscillator. Physica D, 48(2):322–339, 1991.

[HDFS06] I. Horenko, E. Dittmer, A. Fischer, and C. Schutte. Automated model reduction for complex systems

exhibiting metastability. Multiscale Model. Simul., 5(3):802–827, 2006.

[HDK13] M. Holzer, A. Doelman, and T.J. Kaper. Existence and stability of traveling pulses in a reaction–

diffusion-mechanics system. J. Nonlinear Sci., 23(1):129–177, 2013.

[HE93a] L. Holden and T. Erneux. Slow passage through a Hopf bifurcation: from oscillatory to steady state

solutions. SIAM J. Appl. Math., 53(4):1045–1058, 1993.

[HE93b] L. Holden and T. Erneux. Understanding bursting oscillations as periodic slow passages through

bifurcation and limit points. J. Math. Biol., 31(4):351–365, 1993.

[HE05] R.C. Hilborn and R.J. Erwin. Fokker–Planck analysis of stochastic coherence in models of an

excitable neuron with noise in both fast and slow dynamics. Phys. Rev. E, 72:031112, 2005.

[Hek01] G. Hek. Fronts and pulses in a class of reaction–diffusion equations: a geometric singular perturba-

tion approach. Nonlinearity, 14(1):35–72, 2001.

[Hek10] G. Hek. Geometric singular perturbation theory in biological practice. J. Math. Biol., 60:347–386,

2010.

[Hel02] B. Helffer. Semiclassical Analysis, Witten Laplacians and Statistical Mechanics. World Scientific, 2002.

[Hen62] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. Wiley, 1962.

[Hen70] J. Henrard. On a perturbation theory using Lie transforms. Celest. Mech., 3(1):107–120, 1970.

[Hen81] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.

[Hen82] J. Henrard. Capture into resonance: an extension of the use of adiabatic invariants. Celest. Mech.,

27(1):3–22, 1982.

[Hen93] J. Henrard. The adiabatic invariant in classical mechanics. In Dynamics Reported Vol. 2, pages 117–235.

Springer, 1993.

[Hen03] M.E. Henderson. Computing invariant manifolds by integrating fat trajectories. Technical Report

RC22944, IBM Research, 2003.

[HFKG06] P.J. Holmes, R.J. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged locomotion:

models, analyses, and challenges. SIAM Rev., 48(2):207–304, 2006.

[HGEK97] A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis. Localized synchronization in two coupled non-

identical semiconductor lasers. Phys. Rev. Lett., 78(25):4745–4748, 1997.

[HGEK99] A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis. Quasiperiodic synchronization for two delay-

coupled semiconductor lasers. Phys. Rev. A, 59(5):3941–3949, 1999.

[HH52a] A.L. Hodgkin and A.F. Huxley. The components of membrane conductance in the giant axon of

Loligo. J. Physiol., 116:473–496, 1952.

[HH52b] A.L. Hodgkin and A.F. Huxley. Currents carried by sodium and potassium ions through the mem-

brane of the giant axon of Loligo. J. Physiol., 116:449–472, 1952.

Page 40: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

744 Bibliography

[HH52c] A.L. Hodgkin and A.F. Huxley. Measurement of current-voltage relations in the membrane of the

giant axon of Loligo. J. Physiol., 116:424–448, 1952.

[HH52d] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application

to conduction and excitation in nerve. J. Physiol., 117:500–544, 1952.

[HH06] R. Huffaker and R. Hotchkiss. Economic dynamics of reservoir sedimentation management: optimal

control with singularly perturbed equations of motion. J. Econ. Dyn. Contr., 30(12):2553–2575, 2006.

[HHH13] J.M. Hong, C.-H. Hsu, and B.-C. Huang. Geometric singular perturbation approach to the existence

and instability of stationary waves for viscous traffic flow models. Comm. Pure Appl. Anal., 12(3):1501–

1526, 2013.

[HHL10a] J.M. Hong, C.-H. Hsu, and W. Liu. Inviscid and viscous stationary waves of gas flow through

contracting–expanding nozzles. J. Differential Equat., 248(1):50–76, 2010.

[HHL10b] J.M. Hong, C.-H. Hsu, and W. Liu. Viscous standing asymptotic states of isentropic compressible

flows through a nozzle. Arch. Rat. Mech. Anal., 196(2):575–597, 2010.

[HHM79] J.L. Hudson, M. Hart, and D. Marinko. An experimental study of multiple peak periodic and non-

periodic oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 71(4):1601–1606, 1979.

[HHS08] F. Herau, M. Hitrik, and J. Sjostrand. Tunnel effect for Kramers–Fokker–Planck type operators.

Ann. Henri Poincare, 9(2):209–275, 2008.

[HHvNS11] M. Hirota, M. Holmgren, E.H. van Nes, and M. Scheffer. Global resilience of tropical forest and

savanna to critical transitions. Science, 334:232–235, 2011.

[HI97] F.C. Hoppenstaedt and E.M. Izhikevich. Weakly Connected Neural Networks. Springer, 1997.

[HI02] S. Herrmann and P. Imkeller. Barrier crossings characterize stochastic resonance. Stoch. Dyn.,

2(3):413–436, 2002.

[HI05] S. Herrmann and P. Imkeller. The exit problem for diffusions with time-periodic drift and stochastic

resonance. Ann. Appl. Probab., 15:39–68, 2005.

[Hig01] D.J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equa-

tions. SIAM Rev., 43(3):525–546, 2001.

[Hin91] E.J. Hinch. Perturbation Methods. CUP, 1991.

[HIP08] S. Herrmann, P. Imkeller, and D. Peithmann. Large deviations and a Kramers type law for self-

stabilizing diffusions. Ann. Appl. Probab., 18(4):1379–1423, 2008.

[Hir64a] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: I.

Ann. of Math., 79(1):109–203, 1964.

[Hir64b] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: II.

Ann. of Math., 79(2):205–326, 1964.

[Hir67] H. Hironaka. Characteristic polyhedra of singularities. Kyoto J. Math., 7(3):251–293, 1967.

[HJ01] G.A. Hagedorn and A. Joye. A time-dependent Born–Oppenheimer approximation with exponentially

small error estimates. Comm. Math. Phys., 223(3):583–626, 2001.

[HJS12] S.-Y. Ha, S. Jung, and M. Slemrod. Fast–slow dynamics of planar particle models for flocking and

swarming. J. Differen. Equat., 252:2563–2579, 2012.

[HJZM93] P. Hanggi, P. Jung, C. Zerbe, and F. Moss. Can colored noise improve stochastic resonance? J. Stat.

Phys., 70(1):25–47, 1993.

[HK71] A. Haddad and P. Kokotovic. Note on singular perturbation of linear state regulators. IEEE Trans.

Aut. Contr., 16(3):279–281, 1971.

[HK77] A. Haddad and P. Kokotovic. Stochastic control of linear singularly perturbed systems. IEEE Trans.

Aut. Contr., 22(5):815–821, 1977.

[HK91] J.K. Hale and H. Kocak. Dynamics and Bifurcations. Springer, New York, NY, 1991.

[HK99] H. Haario and L. Kalachev. Model reductions and identifications for multiphase phenomena. Math.

Engrg. Indust., 7(4):457–478, 1999.

[HK00] A.J. Homburg and B. Krauskopf. Resonant homoclinic flip bifurcations. J. Dyn. Diff. Eq., 12(4):

807–850, 2000.

[HKBS07] C.J. Honey, R. Kotter, M. Breakspear, and O. Sporns. Network structure of cerebral cortex shapes

functional connectivity on multiple time scales. Proc. Natl. Acad. Sci., 104(24):10240–10245, 2007.

[HKK95] S.K. Han, C. Kurrer, and Y. Kuramoto. Dephasing and bursting in coupled neural oscillators. Phys.

Rev. Lett., 75(17):3190–3193, 1995.

[HKKO98] M. Hayes, T.J. Kaper, N. Kopell, and K. Ono. On the application of geometric singular perturbation

theory to some classical two point boundary value problems. Int. J. Bif. Chaos, 8(2): 189–209, 1998.

[HKN01a] A. Harkin, T.J. Kaper, and A. Nadim. Coupled pulsation and translation of two gas bubbles in a

liquid. J. Fluid Mech., 445:377–411, 2001.

[HKN01b] A.J. Homburg, H. Kokubu, and V. Naudot. Homoclinic-doubling cascades. Arch. Rational Mech. Anal.,

160:195–243, 2001.

[HKO68] G.H. Handelman, J.B. Keller, and R.E. O’Malley. Loss of boundary conditions in the asymptotic

solution of linear ordinary differential equations, I eigenvalue problems. Comm. Pure Appl. Math.,

21(3):243–261, 1968.

[HKO+10] E. Harvey, V. Kirk, H.M. Osinga, J. Sneyd, and M. Wechselberger. Understanding anomalous delays

in a model of intracellular calcium dynamics. Chaos, 20:045104, 2010.

[HKV05] M. Higuera, E. Knobloch, and J.M. Vega. Dynamics of nearly inviscid Faraday waves in almost

circular containers. Physica D, 201(1):83–120, 2005.

[HKWS11] E. Harvey, V. Kirk, M. Wechselberger, and J. Sneyd. Multiple time scales, mixed-mode oscillations

and canards in models of intracellular calcium dynamics. J. Nonlinear Sci., 21:639–683, 2011.

[HL55] S. Haber and N. Levinson. A boundary value problem for a singularly perturbed differential equation.

Proc. Amer. Math. Soc., 6(6):866–872, 1955.

[HL86] M.Y. Hussaini and W.D. Lakin. Existence and non-uniqueness of similarity solutions of a boundary-

layer problem. Quarterly. J. Mech. Appl. Math., 39:15–24, 1986.

[HL88] E. Hairer and C. Lubich. Extrapolation at stiff differential equations. Numer. Math., 52(4):377–400,

1988.

[HL93] J.K. Hale and S.M. Verduyn Lunel. Introduction to Functional Differential Equations. Springer, New York,

NY, 1993.

Page 41: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 745

[HL99] J.K. Hale and X.-B. Lin. Multiple internal layer solutions generated by spatially oscillatory pertur-

bations. J. Differential Equat., 154(2):364–418, 1999.

[HL00a] S. Habib and G. Lythe. Dynamics of kinks: nucleation, diffusion, and annihilation. Phys. Rev. Lett.,

84(6):1070–1073, 2000.

[HL00b] E. Hairer and C. Lubich. Long-time energy conservation of numerical methods for oscillatory differ-

ential equations. SIAM J. Numer. Anal., 38(2):414–441, 2000.

[HL06] W. Horsthemke and R. Lefever. Noise-Induced Transitions. Springer, 2006.

[HLM92] S.P. Hastings, C. Lu, and A.D. MacGillivray. A boundary value problem with multiple solutions

from the theory of laminar flow. SIAM J. Math. Anal., 23(1):201–208, 1992.

[HLM+01] A.A. Hill, J. Lu, M. Masino, O.H. Olsen, and R.L. Calabrese. A model of a segmental oscillator in

the leech heartbeat neuronal network. J. Comput. Neurosci., 10(3):281–302, 2001.

[HLN87] M.Y. Hussaini, W.D. Lakin, and A. Nachman. On similarity solutions of a boundary layer problem

with an upstream moving wall. SIAM J. Appl. Math., 47(4):699–709, 1987.

[HLR88] E. Hairer, C. Lubich, and M. Roche. Error of Runge–Kutta methods for stiff problems studied via

differential algebraic equations. BIT, 28(3):678–700, 1988.

[HM75] S.P. Hastings and J.D. Murray. The existence of oscillatory solutions in the Field–Noyes model for

the Belousov–Zhabotinskii reaction. SIAM J. Appl. Math., 28(3):678–688, 1975.

[HM77] J. Henrard and K.R. Meyer. Averaging and bifurcations in symmetric systems. SIAM J. Appl. Math.,

32(1):133–145, 1977.

[HM81] J.L. Hudson and J.C. Mankin. Chaos in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 74:

6171–6177, 1981.

[HM91] S.P. Hastings and J.B. McLeod. On the periodic solutions of a forced second-order equation. J.

Nonlinear Sci., 1(2):225–245, 1991.

[HM09a] M. Hairer and J.C. Mattingly. Slow energy dissipation in anharmonic oscillator chains. Comm. Pure.

Appl. Math., 62(8):999–1032, 2009.

[HM09b] S.P. Hastings and J.B. McLeod. An elementary approach to a model problem of Lagerstrom. SIAM

J. Math. Anal., 40(6):2421–2436, 2009.

[HM09c] P. Hitczenko and G.S. Medvedev. Bursting oscillations induced by small noise. SIAM J. Appl. Math.,

69(5):1359–1392, 2009.

[HM10] M. Hairer and A.J. Majda. A simple framework to justify linear response theory. Nonlinearity,

23(4):909–922, 2010.

[HM12] S.P. Hastings and J.B. McLeod. Classical Methods in Ordinary Differential Equations: With Applications to

Boundary Value Problems. AMS, 2012.

[HM13] M.G. Hennessy and A. Munch. A multiple-scale analysis of evaporation induced Marangoni convec-

tion. SIAM J. Appl. Math., 73(2):974–1001, 2013.

[HMD13] R. Huszak, P. De Maesschalck, and F. Dumortier. Limit cycles in slow–fast codimension 3 saddle

and elliptic bifurcations. J. Differential Equat., pages 1–40, 2013. to appear.

[HMJ10] H. Hu, M. Martina, and P. Jonas. Fast-spiking hippocampal interneurons dendritic mechanisms

underlying rapid synaptic activation of fast-spiking hippocampus interneurons. Science, 327:52–58,

2010.

[HMKS01] S. Handrock-Meyer, L.V. Kalachev, and K.R. Schneider. A method to determine the dimension of

long-time dynamics in multi-scale systems. J. Math. Chem., 30(2):133–160, 2001.

[HMML81] J.L. Hudson, J. Mankin, J. McCullough, and P. Lamba. Experiment on chaos in a continuous stirred

reactor. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 44–48.

Springer, 1981.

[HMO83] J.K. Hale, L.T. Magelhaes, and W.M. Oliva. An Introduction to Infinite Dimensional Dynamical Systems –

Geometric Theory. Springer, 1983.

[HMOS95] A.F. Hegarty, J.J. Miller, E. O’Riordan, and G.I. Shishkin. Special meshes for finite difference

approximations to an advection–diffusion equation with parabolic layers. J. Comput. Phys., 117:

47–54, 1995.

[HMP96] B. Hutcheon, R.M. Miura, and E. Puil. Subthreshold membrane resonance in neocortical neurons.

J. Neurophysiol., 76(2):683–697, 1996.

[HMS85] J. Honerkamp, G. Mutschler, and R. Seitz. Coupling of a slow and a fast oscillator can generate

bursting. Bull. Math. Biol., 47(1):1–21, 1985.

[HMS04] W. Huisinga, S. Meyn, and C. Schutte. Phase transitions and metastability in Markovian and molec-

ular systems. Ann. Prob., 14(1):419–458, 2004.

[HN01] F. Hamel and N. Nadirashvili. Travelling fronts and entire solutions of the Fisher–KPP equation in

RN . Arch. Ration. Mech. Anal., 157:91–163, 2001.

[HN04] B. Helffer and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a

Witten complex approach: the case with boundary. Mat. Contemp., 26:41–85, 2004.

[HN05] B. Helffer and F. Nier. Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten

Laplacians, volume 1862 of Lect. Notes Math. Springer, 2005.

[HNMM10] A. Haselbacher, F.M. Najjar, L. Massa, and R.D. Moser. Slow-time acceleration for modeling

multiple-time-scale problems. J. Comput. Phys., 229(2):325–342, 2010.

[HO96] M.J.B. Hauser and L.F. Olsen. Mixed-mode oscillations and homoclinic chaos in an enzyme reaction.

J. Chem. Soc. Faraday Trans., 92(16):2857–2863, 1996.

[HOBS97] M.J.B. Hauser, L.F. Olsen, T.V. Bronnikova, and W.M. Schaffer. Routes to chaos in the peroxdiase–

oxidase reaction: period-doubling and period-adding. J. Phys. Chem. B, 101:5075–5083, 1997.

[Hog03] S.J. Hogan. Relaxation oscillations in a system with a piecewise smooth drag coefficient. J. Sound

Vibration, 263(2):467–471, 2003.

[Hol80] P.J. Holmes. Averaging and chaotic motions in forced oscillations. SIAM J. Appl. Math., 38(1):65–80,

1980.

[Hol84] P.J. Holmes. Bifurcation sequences in horseshoe maps: infinitely many routes to chaos. Phys. Lett. A,

104(6):299–302, 1984.

[Hol86] P.J. Holmes. Knotted periodic orbits in suspensions of Smale’s horseshoe: period multiplying and

cabled knots. Physica D, 21(1):7–41, 1986.

Page 42: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

746 Bibliography

[Hol95] M.H. Holmes. Introduction to Perturbation Methods. Springer, 1995.

[Hol99] M.H. Holmes. The method of multiple scales. In Analyzing Multiscale Phenomena using Singular Perturbation

Methods, pages 23–46. AMS, 1999.

[Hol00] R.A. Holmgren. A first course in discrete dynamical systems. Springer, 2000.

[Hop66] F.C. Hoppenstaedt. Singular perturbations on the infinite interval. Trans. Amer. Math. Soc.,

123(2):521–535, 1966.

[Hop68] F.C. Hoppenstaedt. Asymptotic stability in singular perturbation problems. J. Differential Equat.,

4:350–358, 1968.

[Hop70] F.C. Hoppenstaedt. Cauchy problems involving a small parameter. Bull. Amer. Math. Soc., 76:142–146,

1970.

[Hop71] F.C. Hoppenstaedt. Properties of solutions of ordinary differential equations with small parameters.

Comm. Pure Appl. Math., 24(6):807–840, 1971.

[Hop74] F.C. Hoppenstaedt. Asymptotic stability in singular perturbation problems. II: Problems having

matched asymptotic expansion solutions. J. Differential Equat., 15(3):510–521, 1974.

[Hop75] F.C. Hoppenstaedt. Analysis of some problems having matched asymptotic expansion solutions. SIAM

Rev., 17:123–135, 1975.

[Hop76] F.C. Hoppenstaedt. A slow selection analysis of two locus, two allele traits. Theor. Popul. Biol., 9:

68–81, 1976.

[Hop95] F.C. Hoppenstaedt. Singular perturbation solutions of noisy systems. SIAM J. Appl. Math., 55(2):

544–551, 1995.

[How75] F.A. Howes. Singularly perturbed nonlinear boundary value problems with turning points. SIAM J.

Math. Anal., 6(4):644–660, 1975.

[How76a] F.A. Howes. Effective characterization of the asymptotic behavior of solutions of singularly per-

turbed boundary value problems. SIAM J. Appl. Math., 30(2):296–306, 1976.

[How76b] F.A. Howes. Singular perturbations and differential inequalities, volume 5 of Memoirs of the Amer. Math. Soc.

AMS, 1976.

[How78a] F.A. Howes. The asymptotic solution of a class of singularly perturbed nonlinear boundary value

problems via differential inequalities. SIAM J. Math. Anal., 9(2):215–249, 1978.

[How78b] F.A. Howes. Boundary-interior layer interactions in nonlinear singular perturbation theory, volume 203 of

Memoirs of the Amer. Math. Soc. AMS, 1978.

[How78c] F.A. Howes. Singularly perturbed boundary value problems with angular limiting solutions. Trans.

Amer. Math. Soc., 241: 155–182, 1978.

[How78d] F.A. Howes. Singularly perturbed nonlinear boundary value problems with turning points. II. SIAM

J. Math. Anal., 9(2):250–271, 1978.

[How79a] F.A. Howes. An improved boundary layer estimate for a singularly perturbed initial value problem.

Math. Zeitschr., 165(2):135–142, 1979.

[How79b] F.A. Howes. Singularly perturbed semilinear elliptic boundary value problems. Comm. Partial Diff.

Eq., 4:1–39, 1979.

[How01] J. Howald. Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc., 353(7):2665–2671, 2001.

[How10] C.J. Howls. Exponential asymptotics and boundary-value problems: keeping both sides happy at all

orders. Proc. R. Soc. A, 466(2121):2771–2794, 2010.

[Hoy06] R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, 2006.

[HP70] M.W. Hirsch and C.C. Pugh. Stable manifolds and hyperbolic sets. In S.-S. Chern and S. Smale,

editors, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 133–163. AMS,

1970.

[HP05] B. Hasselblatt and Y. Pesin. Partially hyperbolic dynamical systems. In Handbook of Dynamical Systems

1B, pages 1–55. Elsevier, 2005.

[HPK08] M. Higuera, J. Porter, and E. Knobloch. Faraday waves, streaming flow, and relaxation oscillations

in nearly circular containers. Chaos, 18(1):015104, 2008.

[HPS77] M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant Manifolds. Springer, 1977.

[HPS11] H.J. Hupkes, D. Pelinovsky, and B. Sandstede. Propagation failure in the discrete Nagumo equation.

Proc. Amer. Math. Soc., 139:3537–3551, 2011.

[HPT00] J.K. Hale, L.A. Peletier, and W.C. Troy. Exact homoclinic and heteroclinic solutions of the Gray–

Scott model for autocatalysis. SIAM J. Appl. Math., 61(1):102–130, 2000.

[HR78] P.J. Holmes and D.A. Rand. Bifurcations of the forced van der Pol oscillator. Quarterly Appl. Math.,

35:495–509, 1978.

[HR82] J.L. Hindmarsh and R.M. Rose. A model of the nerve impulse using two first-order differential

equations. Nature, 296:162–164, 1982.

[HR84] J.L. Hindmarsh and R.M. Rose. A model of neuronal bursting using three coupled first order differ-

ential equations. Proc. Roy. Soc. London B, 221(1222):87–102, 1984.

[HR94] J.L. Hindmarsh and R.M. Rose. A model for rebound bursting in mammalian neurons. Proc. Roy. Soc.

London B, 346(1316):129–150, 1994.

[HR02] E.L. Haseltine and Rawlings. Approximate simulation of coupled fast and slow reactions for stochas-

tic chemical kinetics. J. Chem. Phys., 117(15):6959–6969, 2002.

[HR09] M. El Hajji and A. Rapaport. Practical coexistence of two species in the chemostat - a slow–fast

characterization. Math. Biosci., 218(1):33–39, 2009.

[HRR94] W. Huang, Y. Ren, and R.D. Russell. Moving mesh partial differential equations (MMPDES) based

on the equidistribution principle. SIAM J. Numer. Anal., 31(3):709–730, 1994.

[HS84] B. Helffer and J. Sjostrand. Multiple wells in the semi-classical limit I. Comm. Partial Diff. Equat.,

9(4):337–408, 1984.

[HS93] T. Hauck and F.W. Schneider. Mixed-mode and quasiperiodic oscillations in the peroxidase-oxidase

reaction. J. Phys. Chem., 97:391–397, 1993.

[HS94] T. Hauck and F.W. Schneider. Chaos in a Farey sequence through period doubling in the peroxidase-

oxidase reaction. J. Phys. Chem., 98:2072–2077, 1994.

[HS98] H. Hofmann and S.R. Sanders. Speed-sensorless vector torque control of induction machines using a

two-time-scale approach. IEEE Trans. Ind. Appl., 34:169–177, 1998.

Page 43: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 747

[HS99] P.-F. Hsieh and Y. Sibuya. Basic Theory of Ordinary Differential Equations. Springer, 1999.

[HS04] D. Holcman and Z. Schuss. Escape through a small opening: receptor trafficking in a synaptic

membrane. J. Stat. Phys., 117(5):975–1014, 2004.

[HS05] A. Huber and P. Szmolyan. Geometric singular perturbation analysis of the Yamada model. SIAM J.

Applied Dynamical Systems, 4(3):607–648, 2005.

[HS08] G. Haller and T. Sapsis. Where do inertial particles go in fluid flows? Physica D, 237(5):573–583,

2008.

[HS09] S.-B. Hsu and J. Shi. Relaxation oscillation profile of limit cycle in predator–prey system. Discr.

Cont. Dyn. Syst. B, 11(4):893–911, 2009.

[HS10a] S.-Y. Ha and M. Slemrod. Flocking dynamics of singularly perturbed oscillator chain and the Cucker-

Smale system. J. Dyn. Diff. Eq., 22:325–330, 2010.

[HS10b] A.J. Homburg and B. Sandstede. Homoclinic and heteroclinic bifurcations in vector fields. In

H. Broer, F. Takens, and B. Hasselblatt, editors, Handbook of Dynamical Systems III, pages 379–524.

Elsevier, 2010.

[HS10c] H.J. Hupkes and B. Sandstede. Traveling pulse solutions for the discrete FitzHugh–Nagumo system.

SIAM J. Appl. Dyn. Sys., 9(3):827–882, 2010.

[HS11] S.-Y. Ha and M. Slemrod. A fast–slow dynamical systems theory for the Kuramoto type phase model.

J. Differential Equat., 251(10):2685–2695, 2011.

[HS12] M. Holzer and A. Scheel. A slow pushed front in a Lotka–Volterra competition model. Nonlinearity,

25(7):2151–2179, 2012.

[HS13] H.J. Hupkes and B. Sandstede. Stability of traveling pulse solutions for the discrete FitzHugh–

Nagumo system. Trans. Amer. Math. Soc., 365:251–301, 2013.

[HSD03] M.W. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems, and an Introduction to

Chaos. Academic Press, 2nd edition, 2003.

[Hsi65] P.F. Hsieh. A turning point problem for a system of linear ordinary differential equations of the

third order. Arch. Rat. Mech. Anal., 19(2):117–148, 1965.

[HSR95] Y.-F. Hung, I. Schreiber, and J. Ross. New reaction mechanism for the oscillatory peroxidase-oxidase

reaction and comparison with experiments. J. Phys. Chem., 99:1980–1987, 1995.

[HSS97] P.W. Hemker, G.I Shishkin, and L.P. Shishkina. The use of defect correction for the solution of

parabolic singular perturbation problems. Z. Angew. Math. Mech., 77(1):59–74, 1997.

[HSS00] P.W. Hemker, G.I Shishkin, and L.P. Shishkina. ε-uniform schemes with high-order time-accuracy

for parabolic singular perturbation problems. IMA J. Numer. Anal., 20(1):99–121, 2000.

[HT90] C. Hunter and M. Tajdari. Singular complex periodic solutions of van der Pol’s equation. SIAM J.

Appl. Math., 50(6):1764–1779, 1990.

[HTB90a] P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Mod.

Phys., 62(2):251–341, 1990.

[HTB90b] C. Hunter, M. Tajdari, and S.D. Boyer. On Lagerstrom’s model of slow incompressible viscous flow.

SIAM J. Appl. Math., 50(1):48–63, 1990.

[Hua05] Y. Huang. How do cross-migration models arise? Math. Biosci., 195(2):127–140, 2005.

[Hur13] D.E. Hurtubise. Three approaches to Morse–Bott homology. arXiv:1208.5066v2, pages 1–35, 2013.

[HV97] R.J.A.G. Huveneers and F. Verhulst. A metaphor for adiabatic evolution to symmetry. SIAM J. Appl.

Math., 57(5):1421–1442, 1997.

[HV03] W. Hundsdorfer and J.G. Verwer. Numerical Solution of Time-dependent Advection-Diffusion-Reaction Equa-

tions. Springer, 2003.

[HV07] G. Hek and N. Valkhoff. Pulses in a complex Ginzburg–Landau system: persistence under coupling

with slow diffusion. Physica D, 232(1):62–85, 2007.

[HW85] P.J. Holmes and R.F. Williams. Knotted periodic orbits in suspensions of Smale’s horseshoe: torus

knots and bifurcation sequences. Arch. Rat. Mech. Anal., 90(2):115–194, 1985.

[HW91a] E. Hairer and G. Wanner. Solving Ordinary Differential Equations I. Springer, 1991.

[HW91b] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer, 1991.

[HW93] G. Haller and S. Wiggins. Orbits homoclinic to resonances: the Hamiltonian case. Physica D,

66(3):298–346, 1993.

[HW95] G. Haller and S. Wiggins. N-pulse homoclinic orbits in perturbations of resonant Hamiltonian sys-

tems. Arch. Rat. Mach. Anal., 130(1):25–101, 1995.

[HW10] A. Hastings and D.B. Wysham. Regime shifts in ecological systems can occur with no warning. Ecol.

Lett., 13:464–472, 2010.

[HWF87] R.M. Harris-Warrick and R.E. Flamm. Multiple mechanisms of bursting in a conditional bursting

neuron. J. Neurosci., 7(7):2113–2128, 1987.

[HYL12] D. Hu, J. Yang, and X. Liu. Delay-induced vibrational multiresonance in FitzHugh–Nagumo system.

Commun. Nonlinear Sci. Numer. Simulat., 17:1031–1035, 2012.

[HYY09] C.-H. Hsu, T.-H. Yang, and C.-R. Yang. Diversity of traveling wave solutions in FitzHugh–Nagumo

type equations. J. Differential Equat., 247(4):1185–1205, 2009.

[HZKW09] H.M. Hadin, A. Zagaris, K. Krab, and H.V. Westerhoff. Simplified yet highly accurate enzyme

kinetics for cases of low substrate concentrations. FEBS J., 276(19):5491–5506, 2009.

[IBS98] P. Iannelli, S. Baigent, and J. Stark. Inertial manifolds for dynamics of cells coupled by gap junctions.

Dynamics and Stability of Systems, 13(2):187–213, 1998.

[IH03] E. Izhikevich and F. Hoppensteadt. Slowly coupled oscillators: phase dynamics and synchronization.

SIAM J. Appl. Math., 63(6):1935–1953, 2003.

[IH04] E. Izhikevich and F. Hoppensteadt. Classification of bursting mappings. Int. J. Bif. Chaos,

14(11):3847–3854, 2004.

[IK85] P. Ioannou and P. Kokotovic. Decentralized adaptive control of interconnected systems with reduced-

order models. Automatica, 21(4):401–412, 1985.

[Ike89] G. Ikegami. Singular perturbations in foliations. Invent. Math., 95(2):215–246, 1989.

[IKKB09] G. Iniguez, J. Kertesz, K.K. Kaski, and R.A. Barrio. Opinion and community formation in coevolving

networks. Phys. Rev. E, 80(6):066119, 2009.

Page 44: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

748 Bibliography

[IKKB11] G. Iniguez, J. Kertesz, K.K. Kaski, and R.A. Barrio. Phase change in an opion-dynamics model with

separation of time scales. Phys. Rev. E, 83:016111, 2011.

[IKY99] A.M. Il’in, R.Z. Khasminskii, and G. Yin. Asymptotic expansions of solutions of integro-differential

equations for transition densities of singularly perturbed switching diffusions: rapid switchings. J.

Math. Anal. Appl., 238(2):516–539, 1999.

[Il’69] A.M. Il’in. Differencing scheme for a differential equation with a small parameter affecting the

highest derivative. Math. Notes Acad. Sci. USSR, 6(2):596–602, 1969.

[IL99] Yu. Ilyashenko and W. Li. Nonlocal Bifurcations. AMS, 1999.

[ILNV02] A.P. Itin, R. De La Llave, A.I. Neishtadt, and A.A. Vasiliev. Transport in a slowly perturbed con-

vective cell flow. Chaos, 12(4):1043–1053, 2002.

[Ily97] Yu. Ilyashenko. Embedding theorems for local maps, slow–fast systems and bifurcation from Morse–

Smale to Morse–Williams. Amer. Math. Soc. Transl., 180(2):127–139, 1997.

[Ily02] Yu. Ilyashenko. Centennial history of Hilbert’s 16th problem. Bull. Amer. Math. Soc., 39(3):301–354,

2002.

[IM94] M. Itoh and H. Murakami. Chaos and canards in the van der Pol equation with periodic forcing. Int.

J. Bif. Chaos, 4(4):1023–1029, 1994.

[IN94] T. Ikeda and Y. Nishiura. Pattern selection for two breathers. SIAM J. Appl. Math., 54(1):195–230,

1994.

[IN12] A.P. Itin and A.I. Neishtadt. Fermi acceleration in time-dependent rectangular billiards due to mul-

tiple passages through resonances. Chaos, 22(2):026119, 2012.

[INV00] A.P. Itin, A.I. Neishtadt, and A.A. Vasiliev. Captures into resonance and scattering on resonance

in dynamics of a charged relativistic particle in magnetic field and electrostatic wave. Physica D,

141(3):281–296, 2000.

[IP01] P. Imkeller and I. Pavlyukevich. Stochastic resonance in two-state Markov chains. Archiv Math.,

77:107–115, 2001.

[IP02] P. Imkeller and I. Pavlyukevich. Model reduction and stochastic resonance. Stoch. Dyn., 2(4):463–506,

2002.

[IP06a] P. Imkeller and I. Pavlyukevich. First exit times of SDEs driven by stable Levy processes. Stoch.

Process. Appl., 116(4):611–642, 2006.

[IP06b] P. Imkeller and I. Pavlyukevich. Levy flights: transitions and meta-stability. J. Phys. A, 39(15):L237,

2006.

[IPW09] P. Imkeller, I. Pavlyukevich, and T. Wetzel. First exit times for Levy-driven diffusions with expo-

nentially light jumps. Ann. Probab., 37(2):530–564, 2009.

[Irw70] M.C. Irwin. On the stable manifold theorem. Bull. London Math. Soc., 2(2):196–198, 1970.

[Irw80] M.C. Irwin. A new proof of the pseudostable manifold theorem. J. London Math. Soc., 2(3):557–566,

1980.

[IS63] M. Iwano and Y. Sibuya. Reduction of the order of a linear ordinary differential equation containing

a small parameter. Kodai Math. J., 15:1–28, 1963.

[IS90] P. Ibison and K. Scott. Detailed bifurcation structure and new mixed-mode oscillations of the

Belousov–Zhabotinskii reaction in a stirred flow reactor. J. Chem. Soc. Faraday Trans., 86(22):

3695–3700, 1990.

[IS01] Yu. Ilyashenko and M. Saprykina. Embedding theorems for local families and oscillatory slow–fast

systems. In Progress in Nonlinear Science, volume 1, pages 389–410. Inst. Appl. Phys., 2001.

[Ise77] A. Iserles. Functional fitting - new family of schemes for integration of stiff ODE. Math. Comput.,

31:112–123, 1977.

[Ise81] A. Iserles. Quadrature methods for stiff ordinary differential systems. Math. Comput., 36:171–182,

1981.

[Ise84] A. Iserles. Composite methods for numerical solution of stiff systems of ODEs. SIAM J. Num. Anal.,

21:340–351, 1984.

[Ise96] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. CUP, 1996.

[Ise02] A. Iserles. On the global error of discretization methods for highly-oscillatory ordinary differential

equations. BIT, 42:561–599, 2002.

[ISKB92] A. Isidori, S.S. Sastry, P.V. Kokotovic, and C.I. Byrnes. Singularly perturbed zero dynamics of

nonlinear systems. IEEE Trans. Auto. Contr., 37(10):1625–1631, 1992.

[Ito84] M. Ito. A remark on singular perturbation methods. Hiroshima Math. J., 14:619–629, 1984.

[IVKS07] A.P. Itin, A.A. Vasiliev, G. Krishna, and S.Watanabe. Change in the adiabatic invariant in a non-

linear two-mode model of Feshbach resonance passage. Physica D, 232:108–115, 2007.

[IW87] S. Iyer and C.M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application

of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D, 35(12):3621, 1987.

[IW02] D. Iron and M.J. Ward. The dynamics of multispike solutions to the one-dimensional Gierer–

Meinhardt model. SIAM J. Appl. Math., 62(6):1924–1951, 2002.

[Iwa08] M. Iwasa. Solution of reduced equations derived with singular perturbation methods. Phys. Rev. E,

78:066213, 2008.

[IWW01] D. Iron, M.J. Ward, and J. Wei. The stability of spike solutions to the one-dimensional Gierer–

Meinhardt model. Physica D, 150(1):25–62, 2001.

[IY08] Yu. Ilyashenko and S. Yakovenko. Lectures on Analytic Differential Equations. AMS, 2008.

[Izh00a] E. Izhikevich. Neural excitability, spiking, and bursting. Int. J. Bif. Chaos, 10:1171–1266, 2000.

[Izh00b] E. Izhikevich. Phase equations for relaxation oscillators. SIAM J. Appl. Math., 60(5):1789–1805, 2000.

[Izh00c] E. Izhikevich. Subcritical elliptic bursting of Bautin type. SIAM J. Appl. Math., 60(2):503–535, 2000.

[Izh01] E. Izhikevich. Synchronization of elliptic bursters. SIAM Rev., 43(2):315–344, 2001.

[Izh03] E. Izhikevich. Simple model of spiking neurons. IEEE Trans. Neural Netw., 14(6):1569–1572, 2003.

[Izh04] E. Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw., 15(5):

1063–1070, 2004.

[Izh07] E. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007.

[JAB+01] G. Jongen, J. Anemuller, D. Bolle, A.C.C. Coolen, and C. Perez-Vicente. Coupled dynamics of fast

spins and slow exchange interactions in the XY spin glass. J. Phys. A, 34(19):3957–3984, 2001.

Page 45: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 749

[Jah04] T. Jahnke. Long-time-step integrators for almost-adiabatic quantum dynamics. SIAM J. Sci. Comput.,

25:2145–2164, 2004.

[Jak13] P. Jakobsen. Introduction to the method of multiple scales. arXiv:1312.3651, pages 1–63, 2013.

[Jal04] J. Jalics. Slow waves in mutually inhibitory neuronal networks. Physica D, 192:95–122, 2004.

[Jan89] J.A.M. Janssen. The elimination of fast variables in complex chemical reactions. I. Macroscopic level.

J. Stat. Phys., 57(1):157–169, 1989.

[Jan94] K. Janich. Linear Algebra. Springer, 1994.

[Jan01] K. Janich. Vector Analysis. Springer, 2001.

[Jan03] M. Janowicz. Method of multiple scales in quantum optics. Phys. Rep., 375(5):327–410, 2003.

[Jav78a] S.H. Javid. The time-optimal control of a class of non-linear singularly perturbed systems. Int. J.

Contr., 27(6):831–836, 1978.

[Jav78b] S.H. Javid. Uniform asymptotic stability of linear time-varying singularly perturbed systems. J.

Frank. Inst., 305:27–37, 1978.

[JCdBS10] M.R. Jeffrey, A.R. Champneys, M. di Bernardo, and S.W. Shaw. Catastrophic sliding bifurcations

and onset of oscillations in a superconducting resonator. Phys. Rev. E, 81:016213, 2010.

[Jef24] H. Jeffreys. On certain approximate solutions of linear differential equations of the second order.

Proc. London Math. Soc., 23:428–436, 1924.

[JF96] E.M. De Jager and J. Furu. The Theory of Singular Perturbations. North-Holland, 1996.

[JGB+03] W. Just, K. Gelfert, N. Baba, A. Riegert, and H. Kantz. Elimination of fast chaotic degrees of

freedom: on the accuracy of the Born approximation. J. Stat. Phys., 112:277–292, 2003.

[JH91] P. Jung and P. Hanggi. Amplification of small signals via stochastic resonance. Phys. Rev. A,

44(12):8032, 1991.

[JJK97] M.E. Johnson, M.S. Jolly, and I.G. Kevrekidis. Two-dimensional invariant manifolds and global

bifurcations: some approximation and visualization studies. Num. Alg., 14(1):125–140, 1997.

[JJL05] J. Jansson, C. Johnson, and A. Logg. Computational modeling of dynamical systems. Math. Mod.

Meth. Appl. Sci., 15(3):471, 2005.

[JK75] J. Jarnik and J. Kurzweil. Ryabov’s special solutions of functional differential equations. Boll. Un.

Mat. Ital. (4), 11(3):198–208, 1975.

[JK77] S.H. Javid and P.V. Kokotovic. A decomposition of time scales for iterative computation of time-

optimal controls. J. Optim. Theor. Appl., 21(4):459–468, 1977.

[JK86] C.K.R.T. Jones and T. Kupper. On the infinitely many solutions of a semilinear elliptic equation.

SIAM J. Math. Anal., 17(4):803–835, 1986.

[JK94a] H. Jahnsen and S. Karnup. A spectral analysis of the integration of artificial synaptic potentials in

mammalian central neurons. Brain Res., 666:9–20, 1994.

[JK94b] C.K.R.T. Jones and N. Kopell. Tracking invariant manifolds with differential forms in singularly

perturbed systems. J. Differential Equat., 108(1):64–88, 1994.

[JKK96] C.K.R.T. Jones, T.J. Kaper, and N. Kopell. Tracking invariant manifolds up to exponentially small

errors. SIAM J. Math. Anal., 27(2):558–577, 1996.

[JKL01] C.K.R.T. Jones, N. Kopell, and R. Langer. Construction of the FitzHugh–Nagumo pulse using dif-

ferential forms. In Multiple-Time-Scale Dynamical Systems, pages 101–113. Springer, 2001.

[JKP91] A. Joye, H. Kunz, and C.E. Pfister. Exponential decay and geometric aspect of transition probabil-

ities in the adiabatic limit. Ann. Phys., 208(2):299–332, 1991.

[JKR10] J. Jalics, M. Krupa, and H.G. Rotstein. Mixed-mode oscillations in a three time-scale system of

ODEs motivated by a neuronal model. Dynamical Systems, 25(4):445–482, 2010.

[JKRH01] W. Just, H. Kantz, C. Roderbeck, and M. Helm. Stochastic modelling: replacing fast degrees of

freedom by noise. J. Phys. A, 34:3199–3213, 2001.

[JKT90] M.S. Jolly, I.G. Kevrekidis, and E.S. Titi. Approximate inertial manifolds for the Kuramoto–

Sivashinsky equation: analysis and computations. Physica D, 44(1):38–60, 1990.

[JL92] W. Jager and S. Luckhaus. On explosions of solutions to a system of partial differential equations

modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819–824, 1992.

[JL98] K.M. Jansons and G.D. Lythe. Stochastic calculus: application to dynamic bifurcations and thresh-

old crossings. J. Stat. Phys., 90:227–251, 1998.

[JL03a] T. Jahnke and C. Lubich. Numerical integrators for quantum dynamics close to the adiabatic limit.

Numerische Mathematik, 94:289–314, 2003.

[JL03b] Z. Jia and B. Leimkuhler. A parallel multiple time-scale reversible integrator for dynamics simula-

tion. Future Gen. Comp. Syst., 19:415–424, 2003.

[JL06] Z. Jia and B. Leimkuhler. Geometric integrators for multiple timescale simulation. J. Phys. A,

439:5379–5403, 2006.

[JMS11] S. Jin, P. Markowich, and C. Sparber. Mathematical and computational methods for semiclassical

Schrodinger equations. Acta Numer., 20:121–209, 2011.

[Joh82] F. John. Partial Differential Equations. Springer, 1982.

[Joh05] R.S. Johnson. Singular Perturbation Theory. Springer, 2005.

[Jon84] C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans.

Amer. Math. Soc., 286(2): 431–469, 1984.

[Jon95] C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme,

1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.

[Jos98] K. Josic. Invariant manifolds and synchronization of coupled dynamical systems. Phys. Rev. Lett.,

80(14):3053–3056, 1998.

[Jos00] K. Josic. Synchronization of chaotic systems and invariant manifolds. Nonlinearity, 13(4):1321–1336,

2000.

[Jos06] J. Jost. Partial Differential Equations. Springer, 2006.

[Joy94] A. Joye. Proof of the Landau-Zener formula. Asymp. Anal., 9(3):209–258, 1994.

[JP91a] A. Joye and C.E. Pfister. Exponentially small adiabatic invariant for the Schrodinger equation.

Comm. Math. Phys., 140(1):15–41, 1991.

[JP91b] A. Joye and C.E. Pfister. Full asymptotic expansion of transition probabilities in the adiabatic limit.

J. Phys. A, 24(4):753, 1991.

Page 46: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

750 Bibliography

[JP93] A. Joye and C.E. Pfister. Superadiabatic evolution and adiabatic transition probability between two

nondegenerate levels isolated in the spectrum. J. Math. Phys., 34(2):454, 1993.

[JP04] J. Jacod and P. Protter. Probability Essentials. Springer, 2004.

[Jr60] W.A. Harris Jr. Singular perturbations of two-point boundary problems for systems of ordinary

differential equations. Arch. Rat. Mech. Anal., 5(1):212–225, 1960.

[Jr62] W.A. Harris Jr. Singular perturbations of a boundary value problem for a nonlinear system of dif-

ferential equations. Duke Math. J., 29(3):429–445, 1962.

[JR98] C.K.R.T. Jones and J.E. Rubin. Existence of standing pulse solutions to an inhomogeneous reaction–

diffusion system. J. Dyn. Diff. Eq., 10(1):1–35, 1998.

[JS95] D.A. Jones and A.M. Stuart. Attractive invariant manifolds under approximation part I: inertial

manifolds. J Differential Equat., 123(2):588–637, 1995.

[JT09] C.K.R.T. Jones and S.-K. Tin. Generalized exchange lemmas and orbits heteroclinic to invariant

manifolds. Discr. Cont. Dyn. Syst. S, 2(4):967–1023, 2009.

[Jun09] A. Jungel. Transport Equations for Semiconductors. Springer, 2009.

[JZLZ13] L. Ji, J. Zhang, X. Lang, and X. Zhang. Coupling and noise induced spiking-bursting transition in

a parabolic bursting model. Chaos, 23:013141, 2013.

[KA11] J. Kumar and G. Ananthakrishna. Multi-scale modeling approach to acoustic emission during plastic

deformation. Phys. Rev. Lett., 106:106001, 2011.

[KAAA13] M. Krupa, B. Ambrosio, and M.A. Aziz-Alaoui. Weakly coupled two slow–two fast systems, folded

node and mixed mode oscillations. arXiv:1302.1800v1, pages 1–19, 2013.

[KACW82] P.V. Kokotovic, B. Avramovic, J.H. Chow, and J.R. Winkelman. Coherency based decomposition

and aggregation. Automatica, 18:47–56, 1982.

[Kal03] V. Kaloshin. The existential Hilbert 16-th problem and an estimate for cyclicity of elementary poly-

cycles. Invent. Math., 151(3):451–512, 2003.

[Kal13] V.I. Kalachev. On the algebraic fundamentals of singular perturbation theory. Differential Equat.,

49(3):397–401, 2013.

[Kam04] J. Kamimoto. Newton polyhedra and the Bergman kernel. Math. Z., 246:405–440, 2004.

[Kap98] T. Kapitula. Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear

Schrodinger equation. Proc. R. Soc. Edinburgh A, 128(3):585–629, 1998.

[Kap99] T.J. Kaper. An introduction to geometric methods and dynamical systems theory for singular per-

turbation problems. In J. Cronin and R.E. O’Malley, editors, Analyzing Multiscale Phenomena Using

Singular Perturbation Methods, pages 85–131. Springer, 1999.

[Kap05] T. Kapitula. Stability analysis of pulses via the Evans function: dissipative systems. In Dissipative

Solitons, volume 661 of Lecture Notes in Physics, pages 407–427. Springer, 2005.

[Kar49] G. Karreman. Some types of relaxation oscillations as models of all-or-none phenomena. Bull. Math.

Biophys., 11(4):311–318, 1949.

[Kar93] A. Karma. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys.

Rev. Lett., 71:1103–1106, 1993.

[KARG92] J.M. Kowalski, G.L. Albert, B.K. Rhoades, and G.W. Gross. Neuronal networks with spontaneous,

correlated bursting activity: theory and simulations. Neural Networks, 5(5):805–822, 1992.

[Kat50] T. Kato. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan, 5:435–439, 1950.

[Kat80] T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.

[Kat83a] W.L. Kath. Conditions for sustained resonance. II. SIAM J. Appl. Math., 43:579–583, 1983.

[Kat83b] W.L. Kath. Necessary conditions for sustained re-entry roll resonance. SIAM J. Appl. Math., 43:

314–324, 1983.

[KAWC80] P.V. Kokotovic, J.J. Allemong, J.R. Winkleman, and J.H. Chow. Singular perturbation and iterative

separation of time scales. Automatica, 16:23–33, 1980.

[Kaz58] N.D. Kazarinoff. Asymptotic theory of second order differential equations with two simple turning

points. Arch. Rat. Mech. Anal., 2(1):129–150, 1958.

[Kaz00a] N. Kazantzis. Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical

systems. Phys. Lett. A, 272(4):257–263, 2000.

[Kaz00b] B. Kazmierczak. Travelling waves in a system modelling laser sustained plasma. Z. Angew. Math. Phys.,

51(2):304–317, 2000.

[KB37] N.M. Krylov and N.N. Bogoliubov. Introduction to Nonlinear Mechanics. Izd. AN UkSSR, 1937. (in Rus-

sian).

[KB85] P. De Kepper and J. Boissonade. From bistability to sustained oscillations in homogeneous chemical

systems in flow reactor mode. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in

Chemical Systems, pages 223–256. Wiley-Interscience, 1985.

[KB02] R. Kuske and S.M. Baer. Asymptotic analysis of noise sensitivity in a neuronal burster. Bull. Math.

Biol., 64(3):447–481, 2002.

[KB09a] R. Kuske and R. Borowski. Survival of subthreshold oscillations: the interplay of noise, bifurcation

structure, and return mechanism. Discr. and Cont. Dyn. Sys. S, 2(4):873–895, 2009.

[KB09b] Y.N. Kyrychko and K.B. Blyuss. Persistence of travelling waves in a generalized Fisher equation.

Phys. Lett. A, 373(6):668–674, 2009.

[KBB05] Y.N. Kyrychko, M.V. Bartuccelli, and K.B. Blyuss. Persistence of travelling wave solutions of a

fourth order diffusion system. J. Comp. Appl. Math., 176(2):433–443, 2005.

[KBG99] V. Kecman, S. Bingulac, and Z. Gajic. Eigenvector approach for order-reduction of singularly per-

turbed linear-quadratic optimal control problems. Automatica, 35(1):151–158, 1999.

[KBKW98] A.I. Khibnik, Y. Braimanc, T.A.B. Kennedy, and K. Wiesenfeld. Phase model analysis of two lasers

with injected field. Physica D, 111(1):295–310, 1998.

[KBS12] K.U. Kristiansen, M. Brøns, and J. Starke. An iterative method for the approximation of fibers in

slow–fast systems. arXiv:1208.6420, pages 1–28, 2012.

[KC86] M. Kennedy and L. Chua. Van der Pol and chaos. IEEE Trans. Circ. Syst., 33(10):974–980, 1986.

[KC92] H.K. Khalil and F.C. Chen. H∞-control of two-time-scale systems. Syst. Contr. Lett., 19(1):35–42,

1992.

[KC96] J. Kevorkian and J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer, 1996.

Page 47: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 751

[KC09] M. Kuwamura and H. Chiba. Mixed-mode oscillations and chaos in a prey-predator system with

dormancy of predators. Chaos, 19:043121, 2009.

[KCD98] A. Kumar, P.D. Christofides, and P. Daoutidis. Singular perturbation modeling of nonlinear pro-

cesses with nonexplicit time-scale multiplicity. Chem. Engineer. Sci., 53(8):1491–1504, 1998.

[KCG10] S. Koskie, C. Coumarbatch, and Z. Gajic. Exact slow–fast decomposition of the singularly perturbed

matrix differential Riccati equation. Appl. Math. Comput., 216(5):1401–1411, 2010.

[KCMM03] D.A. Knoll, L. Chacon, L.G. Margolin, and V.A. Mousseau. On balanced approximations for time

integration of multiple time scale systems. J. Comput. Phys., 185(2):583–611, 2003.

[KDMS88] M.M. Klosek-Dygas, B.J. Matkowsky, and Z. Schuss. Colored noise in dynamical systems. SIAM J.

Appl. Math., 48(2):425–441, 1988.

[KDMS89] M.M. Klosek-Dygas, B.J. Matkowsky, and Z. Schuss. Colored noise in activated rate processes. J.

Stat. Phys., 54(5):1309–1320, 1989.

[KDSS99] T.A. Kinard, G. DeVries, A. Sherman and L.S. Satin. Modulation of the bursting properties of single

mouse pancreatic-β-cells by artificial conductances. Biophys. J., 78(3):1423–1435, 1999.

[KE82] P. De Kepper and I.R. Epstein. A mechanistic study of oscillations and bistability in the Briggs–

Rauscher reaction. J. Am. Chem. Soc., 104:49–55, 1982.

[KE86] N. Kopell and G.B. Ermentrout. Subcellular oscillations and bursting. Math. Biosci., 78(2):265–291,

1986.

[KE90] N. Kopell and G.B. Ermentrout. Phase transitions and other phenomena in chains of coupled oscil-

lators. SIAM J. Appl. Math., 50(4):1014–1052, 1990.

[KE97] R. Kuske and W. Eckhaus. Pattern formation in systems with slowly varying geometry. SIAM J. Appl.

Math., 57(1):112–152, 1997.

[KE03] G. Kozyreff and T. Erneux. Singular Hopf bifurcation to strongly pulsating oscillations in lasers

containing a saturable absorber. Euro. J. Appl. Math., 14:407–420, 2003.

[KE14] G. Kozyreff and T. Erneux. Singular hopf bifurcation in a differential equation with large state-

dependent delay. Proc. Roy. Soc. A, 470(2162):20130596, 2014.

[Kee74] J.P. Keener. Perturbed bifurcation theory at multiple eigenvalues. Arch. Rat. Mech. Anal., 56(4):

348–366, 1974.

[Kee80] J.P. Keener. Waves in excitable media. SIAM J. Appl. Math., 39(3):528–548, 1980.

[Kee86] J.P. Keener. A geometrical theory for spiral waves in excitable media. SIAM J. Appl. Math., 46(6):

1039–1056, 1986.

[Kee87] J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl.

Math., 47:556–572, 1987.

[Kee88] J.P. Keener. The dynamics of three-dimensional scroll waves in excitable media. Physica D, 31(2):

269–276, 1988.

[KEE92] K. Krischer, M. Eiswirth, and G. Ertl. Oscillatory CO oxidation on Pt(110): modeling of temporal

self-organization. J. Chem. Phys., 96(12):9161–9172, 1992.

[Kee00a] J.P. Keener. Homogenization and propagation in the bistable equation. Physica D, 136(1):1–17, 2000.

[Kee00b] J.P. Keener. Propagation of waves in an excitable medium with discrete release sites. SIAM J. Appl.

Math., 61(1):317–334, 2000.

[Kel67] A. Kelley. The stable, center-stable, center, center-unstable, unstable manifolds. J. Differential Equat.,

3(4):546–570, 1967.

[Kel71] H.J. Kelley. Flight path optimization with multiple time scales. J. Aircraft, 8(4):238–240, 1971.

[Kel74] H. Keller. Accurate difference methods for nonlinear two-point boundary value problems. SIAM J.

Numer. Anal., 11(2): 305–320, 1974.

[Kel83] H. Keller. The bordering algorithm and path following near singular points of higher nullity. SIAM

J. Sci. Comput., 4(4): 573–582, 1983.

[Kev66] J. Kevorkian. Von Zeipel method and the two-variable expansion procedure. Astronomical J., 71:878,

1966.

[Kev71] J. Kevorkian. Passage through resonance for a one-dimensional oscillator with slowly varying fre-

quency. SIAM J. Appl. Math., 20:364–373, 1971.

[Kev87] J. Kevorkian. Perturbation techniques for oscillatory systems with slowly varying coefficients. SIAM

Rev., 29(3):391–461, 1987.

[KEW06] T. Kolokolnikov, T. Erneux, and J. Wei. Mesa-type patterns in the one-dimensional Brusselator and

their stability. Physica D, 214(1):63–77, 2006.

[KFR01] Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi. Belyakov homoclinic bifurcations in a tritrophic food

chain model. SIAM J. Appl. Math., 62(2):462–487, 2001.

[KG84] H.K. Khalil and Z. Gajic. Near-optimum regulators for stochastic linear singularly perturbed sys-

tems. IEEE Trans. Aut. Contr., 29(6):531–541, 1984.

[KG91] M.T.M. Koper and P. Gaspard. Mixed-mode and chaotic oscillations in a simple model of an elec-

trochemical oscillator. J. Chem. Phys., 95:4945–4947, 1991.

[KG92] M.T.M. Koper and P. Gaspard. The modeling of mixed-mode and chaotic oscillations in electro-

chemical systems. J. Chem. Phys., 96(10):7797–7813, 1992.

[KG98] D. Kaplan and L. Glass. Understanding Nonlinear Dynamics. Springer, 1998.

[KG02] N. Kazantzis and T. Good. Invariant manifolds and the calculation of the long-term asymptotic

response of nonlinear processes using singular PDEs. Comput. Chem. Engineer., 26(7):999–1012, 2002.

[KG11] P. Kowalczyk and P. Glendinning. Boundary-equilibrium bifurcations in piecewise-smooth slow–fast

systems. Chaos, 21: 023126, 2011.

[KG13] C. Kuehn and T. Gross. Nonlocal generalized models of predator–prey systems. Discr. Cont. Dyn. Syst.

B, 18(3): 693–720, 2013.

[KGG07] R. Kuske, L.F. Gordillo, and P. Greenwood. Sustained oscilla- tions via coherence resonance in SIR.

J. Theor. Biol., 245(3): 459–469, 2007.

[KGH+03] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, and C. Theodoropoulos.

Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators to perform

system-level analysis. Comm. Math. Sci., 1(4):715–762, 2003.

Page 48: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

752 Bibliography

[KGH04] I.G. Kevrekidis, C.W. Gear, and G. Hummer. Equation-free: the computer-aided analysis of complex

multiscale systems. AIChE Journal, 50(7):1346–1355, 2004.

[KGN98] A.L. Kawczynski, J. Gorecki, and B. Nowakowski. Microscopic and stochastic simulations of oscilla-

tions in a simple model of chemical system. J. Phys. Chem. A, 102(36):7113–7122, 1998.

[KGS92] M.T.M. Koper, P. Gaspard, and J.H. Sluyters. Mixed-mode oscillations and incomplete homoclinic

scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator. J. Chem. Phys.,

97(11):8250–8260, 1992.

[KH75] P.V. Kokotovic and A. Haddad. Controllability and time-optimal control of systems with slow and

fast modes. IEEE Trans. Aut. Contr., 20(1):111–113, 1975.

[KH89] H.K. Khalil and Y.N. Hu. Steering control of singularly perturbed systems: a composite control

approach. Automatica, 25(1):65–75, 1989.

[KH95] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. CUP, 1995.

[Kha79] H.K. Khalil. Stabilization of multiparameter singularly perturbed systems. IEEE Trans. Aut. Contr.,

24(5):790–791, 1979.

[Kha80] H.K. Khalil. Multimodel design of a Nash strategy. J. Optim. Theor. Appl., 31(4):553–564, 1980.

[Kha81] H.K. Khalil. Asymptotic stability of nonlinear multiparameter singularly perturbed systems. Auto-

matica, 17(6):797–804, 1981.

[Kha89] H.K. Khalil. Feedback control of nonstandard singularly perturbed systems. IEEE Trans. Aut. Contr.,

34(10):1052–1060, 1989.

[Kha93] V.L. Khatskevich. Periodic solutions of monotone differential inclusions with fast and slow variables.

Ukrainian Math. J., 45(5):761–772, 1993.

[Kho89] K. Khorasani. Robust stabilization of non-linear systems with unmodelled dynamics. Int. J. Control,

50(3):827–844, 1989.

[KHS02] V.O. Khavrus, H.Farkas, and P.E. Strizhak. Conditions for mixed-mode oscillations and determin-

istic chaos in nonlinear chemical systems. Theoretical and Experimental Chemistry, 38(5):301–307, 2002.

[Kif81] Yu. Kifer. The exit problem for small random perturbations of dynamical systems with a hyperbolic

fixed point. Israel J. Math., 40(1):74–96, 1981.

[Kif90] Yu. Kifer. A discrete-time version of the Wentzell–Freidlin theory. Ann. Prob., 18(4):1676–1692, 1990.

[Kif92] Yu. Kifer. Averaging in dynamical systems and large deviations. Invent. Math., 110(2):337–370, 1992.

[Kif01a] Yu. Kifer. Averaging and climate models. In Stochastic Climate Models, pages 171–188. Birkhauser,

2001.

[Kif01b] Yu. Kifer. Stochastic versions of Anosov’s and Neistadt’s theorems on averaging. Stoch. Dyn., 1(1):

1–21, 2001.

[Kif03] Yu. Kifer. L2 diffusion approximation for slow motion in averaging. Stoch. Dyn., 3(2):213–246, 2003.

[Kif04a] Yu. Kifer. Averaging principle for fully coupled dynamical systems and large deviations. Ergodic

Theory Dyn. Syst., 24(3): 847–871, 2004.

[Kif04b] Yu. Kifer. Some recent advances in averaging. In Modern Dynamical Systems and Applications,

pages 385–403. CUP, 2004.

[Kif08] Yu. Kifer. Convergence, nonconvergence and adiabatic transitions in fully coupled averaging. Non-

linearity, 21(3):T27, 2008.

[Kin00] W.M. Kinney. An application of Conley index techniques to a model of bursting in excitable mem-

branes. J. Differential Equat., 162(2):451–472, 2000.

[Kin08] W.M. Kinney. Applying the Conley index to fast–slow systems with one slow variable and an

attractor. Rocky Mountain J. Math., 38(4):1177–1214, 2008.

[Kin13] J.R. King. Wavespeed selection in the heterogeneous Fisher equation: slowly varying inhomogeneity.

Networks and Heterogeneous Media, 8(1):343–378, 2013.

[Kir03] R. Kirby. On the convergence of high resolution methods with multiple time scales for hyperbolic

conservation laws. Math. Comp., 72(243):1239–1250, 2003.

[Kir12] E. Kirkinis. The renormalization group: a perturbation method for the graduate curriculum. SIAM

Rev., 54(2):374–388, 2012.

[KJ01] T.J. Kaper and C.K.R.T. Jones. A primer on the exchange lemma for fast–slow systems. In Multiple-

Time-Scale Dynamical Systems, pages 65–88. Springer, 2001.

[KJ11] A. Kumar and K. Josic. Reduced models of networks of coupled enzymatic reactions. J. Theor. Biol.,

pages 87–106, 2011.

[KJB+04] H. Kantz, W. Just, N. Baba, K. Gelfert, and A. Riegert. Fast chaos versus white noise – entropy

analysis and a Fokker–Planck model for the slow dynamics. Physica D, 187:200–213, 2004.

[KJK00] P.G. Kevrekidis, C.K.R.T. Jones, and T. Kapitula. Exponentially small splitting of heteroclinc or-

bits: from the rapidly forced pendulum to discrete solitons. Phys. Lett. A, 269(2): 120–129, 2000.

[KJS76] P.V. Kokotovic, R.E. O’Malley Jr, and P. Sannuti. Singular perturbations and order reduction in

control theory - an overview. Automatica, 12(2):123–132, 1976.

[KK62] A.I Klimushev and N.N Krasovski. Uniform asymptotic stability of systems of differential equations

with a small parameter in the derivative terms. J. Appl. Math. Mech., 25:1011–1025, 1962.

[KK73] J.P. Keener and H.B. Keller. Perturbed bifurcation theory. Arch. Rat. Mech. Anal., 50(3):159–175, 1973.

[KK79a] H.K. Khalil and P.V. Kokotovic. Control of linear systems with multiparameter singular perturba-

tions. Automatica, 15(2): 197–207, 1979.

[KK79b] H.K. Khalil and P.V. Kokotovic. D-stability and multi-parameter singular perturbation. SIAM J.

Contr. Optim., 17(1): 56–65, 1979.

[KK79c] H.K. Khalil and P.V. Kokotovic. Feedback and well-posedness of singularly perturbed Nash games.

IEEE Trans. Aut. Contr., 24(5):699–708, 1979.

[KK81] B. Kreiss and H.-O. Kreiss. Numerical methods for singular perturbation problems. SIAM J. Numer.

Anal., 18(2):262–276, 1981.

[KK85] K. Khorasani and P.V. Kokotovic. Feedback linearization of a flexible manipulator near its rigid

body manifold. Syst. Control Lett., 6(3):187–192, 1985.

[KK86] K. Khorasani and P.V. Kokotovic. A corrective feedback design for nonlinear systems with fast

actuators. IEEE Trans Aut. Contr., 31(1):67–69, 1986.

Page 49: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 753

[KK91] H.K. Khalil and P.V. Kokotovic. On stability properties of nonlinear systems with slowly varying

inputs. IEEE Trans. Aut. Contr., 36(2):229, 1991.

[KK93] A.Yu. Kolesov and Yu.S. Kolesov. Relaxation cycles in systems with delay. Russ. Acad. Sci. Sbor. Math.,

76(2):507–522, 1993.

[KK95] A.Yu. Kolesov and Yu.S. Kolesov. Relaxation oscillations in mathematical models of ecology. Proc.

Steklov Inst. Math., 199(1):1–126, 1995.

[KK96] T.J. Kaper and G. Kovacic. Multi-bump orbits homoclinic to resonance bands. Trans. Amer. Math.

Soc., 348:3835–3888, 1996.

[KK01] R.Z. Khasminskii and N. Krylov. On averaging principle for diffusion processes with null-recurrent

fast component. Stoch. Proc. Appl., 93(2):229–240, 2001.

[KK02] H.G. Kaper and T.J. Kaper. Asymptotic analysis of two reduction methods for systems of chemical

reactions. Physica D, 165:66–93, 2002.

[KK05] M.M. Klosek and R. Kuske. Multiscale analysis of stochastic delay differential equations. Multiscale

Model. Simul., 3(3):706–729, 2005.

[KK13] H.-W. Kang and T.G. Kurtz. Separation of time scales and model reduction for stochastic reaction

networks. Ann. Appl. Prob., 23(2):529–583, 2013.

[KKK04] A. Kuznetsov, M. Kærn, and N. Kopell. Synchrony in a population of hysteresis-based genetic os-

cillators. SIAM J. Appl. Math., 65(2):392–425, 2004.

[KKK+07] L.V. Kalachev, H.G. Kaper, T.J. Kaper, N. Popovic, and A. Zagaris. Reduction for Michaelis–

Menten–Henri kinetics in the presence of diffusion. Electronic J. Diff. Eq., 16:155–184, 2007.

[KKO96a] M. Kisaka, H. Kokubu, and H. Oka. Bifurcations to n-homoclinic orbits and n-periodic orbits in

vector fields. J. Dyn. Diff. Eq., 5(2):305–357, 1996.

[KKO96b] H. Kokubu, M. Komuro, and H. Oka. Multiple homoclinic bifurcations from orbit-flip. I. Successive

homoclinic doublings. Int. J. Bif. Chaos, 6(5):833–850, 1996.

[KKO99] P. Kokotovic, H.K. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design.

SIAM, 1999.

[KKR96] A.Yu. Kolesov, Yu.S. Kolesov, and N.Kh. Rozov. Chaos of the broken torus type in three-dimensional

relaxation systems. J. Math. Sci., 80(1):1533–1545, 1996.

[KKS00a] B. Katzengruber, M. Krupa, and P. Szmolyan. Bifurcation of traveling waves in extrinsic semicon-

ductors. Physica D, 144(1): 1–19, 2000.

[KKS00b] A.L. Kawczynski, V.O. Khavrus, and P.E. Strizhak. Complex mixed-mode periodic and chaotic

oscillations in a simple three-variable model of nonlinear system. Chaos, 10(2):299–310, 2000.

[KKS04] T. Kapitula, J.N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U.

Math. J., 53(4):1095–1126, 2004.

[KKS10] N. Kazantzis, C. Kravaris, and L. Syrou. A new model reduction method for nonlinear dynamical

systems. Nonlinear Dyn., 59(1):183–194, 2010.

[KL88] H. Kurland and M. Levi. Transversal heteroclinic intersections in slowly varying systems. In Dynamical

Systems Approaches to Nonlinear Problems in Systems and Circuits, pages 29–38. Springer, 1988.

[KL93] B. Kreiss and J. Lorenz. Manifolds of slow solutions for highly oscillatory problems. Indiana Univ.

Math. J., 42(4):1169–1191, 1993.

[KL94] B. Kreiss and J. Lorenz. On the existence of slow manifolds for problems with different timescales.

Philosophical Transactions: Physical Sciences and Engineering, 346(1679):159–171, 1994.

[KL95] N. Kopell and M. Landman. Spatial structure of the focusing singularity of the nonlinear Schrodinger

equation: a geometrical analysis. SIAM J. Appl. Math., 55(5):1297–1323, 1995.

[Kla12] A. Klaiber. Viscous profiles for shock waves in isothermal magnetohydrodynamics. J. Dyn. Diff. Eq.,

24(3):663–683, 2012.

[KLE+93] K. Krischer, M. Luebke, M. Eiswirth, W. Wolf, J.L. Hudson, and G. Ertl. A hierarchy of transitions

to mixed mode oscillations in an electrochemical system. Physica D, 62:123–133, 1993.

[Klo83] W. Klonowskii. Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem.,

18(2):73–87, 1983.

[KLS02] K.-R. Kim, D.J. Lee, and K.J. Shin. A simplified model for the Briggs–Rauscher reaction mechanism.

J. Chem. Phys., 117(6):2710–2717, 2002.

[KLVE09] K. Kovacs, M. Leda, V.K. Vanag, and I.R. Epstein. Small-amplitude and mixed-mode oscillations in

the Bromate–Sulfite–Ferrocyanide–Aluminium(III) system. J. Phys. Chem., 113: 146–156, 2009.

[KM89] A.Yu. Kolesov and E.F. Mishchenko. Existence and stability of the relaxation torus. Russ. Math. Surv.,

44(3):204–205, 1989.

[KM91] A.Yu. Kolesov and E.F. Mishchenko. The Pontryagin delay phenomenon and stable duck trajectories

for multidimensional relaxation systems with one slow variable. Math. USSR Sbor., 70:1–10, 1991.

[KM94] P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations with variable

coefficients. J. Comput. Appl. Math., 56(3):225–251, 1994.

[KM98] P. Kunkel and V. Mehrmann. Regular solutions of nonlinear differential-algebraic equations and

their numerical determination. Numer. Math., 79(4):581–600, 1998.

[KM03a] P. Kramer and A. Majda. Stochastic mode reduction for particle-based simulation methods for com-

plex microfluid systems. SIAM J. Appl. Math., 64(2):401–422, 2003.

[KM03b] P. Kramer and A. Majda. Stochastic mode reduction for the immersed boundary method. SIAM J.

Appl. Math., 64(2):369–400, 2003.

[KM06a] R. Klein and A.J. Majda. Systematic multiscale models for deep convection on mesoscales. Theor.

Comp. Fluid Dyn., 20:525–551, 2006.

[KM06b] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. European Mathematical Society, 2006.

[KMO96] H. Kokubu, K. Mischaikow, and H. Oka. Existence of infinitely many connecting orbits in a singularly

perturbed ordinary differential equation. Nonlinearity, 9:1263–1280, 1996.

[KMR95] Y.A. Kuznetsov, S. Muratori, and S. Rinaldi. Homoclinic bifurcations in slow–fast second order

systems. Nonl. Anal.: Theory, Methods & Appl., 25(7):747–767, 1995.

[KMR98] A.Yu. Kolesov, E.F. Mishchenko, and N.Kh. Rozov. Asymptotic methods of investigation of periodic

solutions of nonlinear hyperbolic equations. Proc. Steklov Inst. Math., 222:1–189, 1998.

Page 50: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

754 Bibliography

[KMR99] A.Yu. Kolesov, E.F. Mishchenko, and N.Kh. Rozov. Solution to singularly perturbed boundary value

problems by the duck hunting method. Proc. Steklov Inst. Math., 224:169–188, 1999.

[KMR08] A.Yu. Kolesov, E.F. Mishchenko, and N.Kh. Rozov. On one bifurcation in relaxation systems. Ukr.

Math. Journal, 60(1): 63–72, 2008.

[KMR14] C. Kuehn, E.A. Martens, and D. Romero. Critical transitions in social network activity. J. Complex

Networks, 2(2):141–152, 2014. see also arXiv:1307.8250.

[KMS04] M.A. Katsoulakis, A.J. Majda, and A. Sopasakis. Multiscale couplings in prototype hybrid deter-

ministic/stochastic systems: part I, deterministic closures. Commun. Math. Sci., 2(2): 255–294, 2004.

[KMZT85] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. An asymptotic theory of large deviations for

Markov jump processes. SIAM J. Appl. Math., 45(6):1006–1028, 1985.

[KMZT86a] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. Asymptotic analysis of a state-dependent M/G/1

queueing system. SIAM J. Appl. Math., 46(3):483–505, 1986.

[KMZT86b] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. On the performance of state-dependent single

server queues. SIAM J. Appl. Math., 46(4):657–697, 1986.

[KMZT86c] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. A singular perturbation approach to first passage

times for Markov jump processes. J. Stat. Phys., 42(1):169–184, 1986.

[KMZT87a] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. Asymptotic expansions for a closed multiple

access system. SIAM J. Comput., 16(2):378–398, 1987.

[KMZT87b] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. A Markov-modulated M/G/1 queue I: stationary

distribution. Queueing Syst., 1(4):355–374, 1987.

[KMZT87c] C. Knessl, B.J. Matkowsky, Z. Schuss and C. Tier. The two repairmen problem: a finite source

M/G/2 queue. SIAM J. Appl. Math., 47(2):367–397, 1987.

[KN03] M. Kamenskii and P. Nistri. An averaging method for singularly perturbed systems of semilinear

differential inclusions with analytic semigroups. Nonl. Anal., 53:467–480, 2003.

[Kna04] A.W. Knapp. Lie Groups Beyond an Introduction. Birkhauser, 2004.

[KNB86] H.-O. Kreiss, N.K. Nichols, and D.L. Brown. Numerical methods for stiff two-point boundary value

problems. SIAM J. Numer. Anal., 18(2):325–386, 1986.

[Kne94] C. Knessl. On the distribution of the maximum number of broken machines for the repairman prob-

lem. SIAM J. Appl. Math., 54(2):508–547, 1994.

[KNE+06] T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski. The Q-switching instability in

passively mode-locked lasers. Physica D, 219(1):13–21, 2006.

[Kno92] M. Knorrenschild. Differential/algebraic equations as stiff ordinary differential equations. SIAM J.

Numer. Anal., 29(6):1694–1715, 1992.

[Kno00] R. Knobel. An Introduction to the Mathematical Theory of Waves. AMS, 2000.

[KO92] L.V. Kalachev and I.A. Obukhov. Asymptotic behavior of a solution of the Poisson equation in a

model of a three-dimensional semiconductor structure. Comput. Math. Math. Phys., 32(9):1361–1366,

1992.

[KO96] L.V. Kalachev and R.E. O’Malley. The regularization of linear differential-algebraic equations. SIAM

J. Math. Anal., 27(1):258–273, 1996.

[KO99] B. Krauskopf and H.M. Osinga. Two-dimensional global manifolds of vector fields. Chaos, 9(3):

768–774, 1999.

[KO00] B. Krauskopf and H.M. Osinga. Investigating torus bifurcations in the forced van der Pol oscillator.

In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, pages 199–208. Springer,

2000.

[KO02] R.V. Kohn and F. Otto. Upper bounds on coarsening rates. Comm. Math. Phys., 229(3):375–395, 2002.

[KO03] B. Krauskopf and H.M. Osinga. Computing geodesic level sets on global (un)stable manifolds of

vector fields. SIAM J. Appl. Dyn. Syst., 4(2):546–569, 2003.

[KOD+05] B. Krauskopf, H.M. Osinga, E.J. Doedel, M.E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dell-

nitz, and O. Junge. A survey of methods for computing (un)stable manifolds of vector fields. Int. J.

Bif. Chaos, 15(3):763–791, 2005.

[KOGV07] B. Krauskopf, H.M. Osinga, and J. Galan-Vique, editors. Numerical Continuation Methods for Dynamical

Systems: Path following and boundary value problems. Springer, 2007.

[Kok75] P.V. Kokotovic. A Riccati equation for block-diagonalization of ill-conditioned systems. IEEE Trans.

Aut. Contr., 20(6):812–814, 1975.

[Kok81] P.V. Kokotovic. Subsystems, time scales and multimodeling. Automatica, 17(6):789–795, 1981.

[Kok84] P.V. Kokotovic. Applications of singular perturbation techniques to control problems. SIAM Rev.,

26(4):501–550, 1984.

[Kol74] F.W. Kollett. Two-timing methods valid on expanding intervals. SIAM J. Math. Anal., 5(4):613–625,

1974.

[Kol89] A.Yu. Kolesov. On the instability of duck-cycles arising during the passage of an equilibrium of

a multidimensional relaxation system through the disruption manifold. Russ. Math. Surv., 44(5):

203–205, 1989.

[Kol92] A.Yu. Kolesov. Specific relaxation cycles of systems of Lotka–Volterra type. Math. USSR-Izvestiya,

38(3):503–523, 1992.

[Kol94] A.Yu. Kolesov. On the existence and stability of a two-dimensional relaxational torus. Math. Notes,

56(6):1238–1243, 1994.

[Kol07] J. Kollar. Lectures on Resolution of Singularities. Princeton University Press, 2007.

[Kon03] R.A. Konoplya. Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher

order WKB approach. Phys. Rev. D, 68(2):024018, 2003.

[Kon08] L.I. Kononenko. The influence of the integral manifold shape on the onset of relaxation oscillations.

J. Appl. Ind. Math., 2(4):508–512, 2008.

[Kon09] L.I. Kononenko. Relaxation oscillations and canard solutions in singular systems on a plane. J. Appl.

Ind. Math., 4(2):194–199, 2009.

[Kop79] N. Kopell. A geometric approach to boundary layer problems exhibiting resonance. SIAM J. Appl.

Math., 37(2):436–458, 1979.

Page 51: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 755

[Kop80] N. Kopell. The singularly perturbed turning point problem: a geometric approach. In R. Meyer,

editor, Singular Perturbations and Asymptotics, pages 173–190. Academic Press, 1980.

[Kop85] N. Kopell. Invariant manifolds and the initialization problem for some atmospheric equations. Physica

D, 14(2):203–215, 1985.

[Kop95] M.T.M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous van der Pol–

Duffing model with a cross-shaped phase diagram. Physica D, 80:72–94, 1995.

[Kop00] N. Kopell. We got rhythm: Dynamical systems of the nervous system. Notices of the AMS, 47(1):6–16,

2000.

[KOPR13] A.M. Krasnosel’skii, E. O’Grady, A.V. Pokrovskii, and D.I. Rachinskii. Periodic canards trajectories

with multiple segments following the unstable part of the critical manifold. Discr. Cont. Dyn. Syst. B,

18(2):467–482, 2013.

[Kor04] T.W. Korner. A Companion to Analysis: A Second First and First Second Course in Analysis. AMS, 2004.

[Kor06] S.A. Kordyukova. Approximate group analysis and multiple time scales method for the approximate

Boussinesq equation. Nonlinear Dynam., 46(1):73–85, 2006.

[Kor12] T.W. Korner. Vectors, Pure and Applied: A General Introduction to Linear Algebra. CUP, 2012.

[KORVE07] R.V. Kohn, F. Otto, M.G. Reznikoff, and E. Vanden-Eijnden. Action minimization and sharp-

interface limits for the stochastic Allen–Cahn equation. Comm. Pure Appl. Math., 60(3):393–438, 2007.

[Kou97] M.A. Kouritzin. Averaging for fundamental solutions of parabolic equations. J. Differential Equat.,

136(1):35–75, 1997.

[KOV89] C. Kipnis, S. Olla, and S.R.S. Varadhan. Hydrodynamics and large deviation for simple exclusion

processes. Comm. Pure. Appl. Math., 42(2):115–137, 1989.

[Kov92] G. Kovacic. Dissipative dynamics of orbits homoclinic to a resonance band. Phys. Lett. A, 167(2):

143–150, 1992.

[Kov93] G. Kovacic. Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamil-

tonian systems. J. Dyn. Diff. Eq., 5(4):559–597, 1993.

[Kov95] G. Kovacic. Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipa-

tive systems. SIAM J. Math. Anal., 26(6):1611–1643, 1995.

[KP74] H.-O. Kreiss and S.V. Parter. Remarks on singular perturbations with turning points. SIAM J. Math.

Anal., 5(2):230–251, 1974.

[KP81] N. Kopell and S.V. Parter. A complete analysis of a model nonlinear singular perturbation problem

having a continuous locus of singular points. Adv. Appl. Math., 2:212–238, 1981.

[KP89] M.A. Krasnosel’skii and A.V. Pokrovskii. Systems with Hysteresis. Springer, 1989.

[KP91a] Y.M. Kabanov and S.M. Pergamenshchikov. On optimal control of singularly perturbed stochastic

differential equations. In Modeling, Estimation and Control of Systems with Uncertainty, pages 200–209.

Birkhauser, 1991.

[KP91b] Y.M. Kabanov and S.M. Pergamenshchikov. Optimal control of singularly perturbed stochastic linear

systems. Stochastics, 36(2):109–135, 1991.

[KP92] Y.M. Kabanov and S.M. Pergamenshchikov. Singular perturbations of stochastic differential equa-

tions. Math. USSR-Sbor., 71:15–27, 1992.

[KP95] Y.M. Kabanov and S.M. Pergamenshchikov. Large deviations for solutions of singularly perturbed

stochastic differential equations. Russ. Math. Surv., 50(5):989–1013, 1995.

[KP97] Y.M. Kabanov and S.M. Pergamenshchikov. On convergence of attainability sets for controlled two-

scale stochastic linear systems. SIAM J. Contr. Optim., 35(1):134–159, 1997.

[KP02] M.K. Kadalbajoo and K.C. Patidar. A survey of numerical techniques for solving singularly per-

turbed ordinary differential equations. Appl. Math. Comp., 130(2):457–510, 2002.

[KP03a] Y. Kabanov and S. Pergamenshchikov. Two-Scale Stochastic Systems. Springer, 2003.

[KP03b] M.K. Kadalbajoo and K.C. Patidar. Singularly perturbed problems in partial differential equations:

a survey. Appl. Math. Comp., 134(2):371–429, 2003.

[KP05] R. Kuske and L.A. Peletier. A singular perturbation problem for a fourth order ordinary differential

equation. Nonlinearity, 18(3):1189, 2005.

[KP10] P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, 2010.

[KP13] T. Kapitula and K. Promislow. Spectral and Dynamical Stability of Nonlinear Waves. Springer, 2013.

[KPAK02] B.W. Kooi, J.C. Poggiale, P. Auger, and S.A.L.M. Kooijman. Aggregation methods in food chains

with nutrient recycling. Ecol. Model., 157(1):69–86, 2002.

[KPB00] L. Kocarev, U. Parlitz, and R. Brown. Robust synchronization of chaotic systems. Phys. Rev. E,

61(4):3716–3720, 2000.

[KPK08] M. Krupa, N. Popovic, and N. Kopell. Mixed-mode oscillations in three time-scale systems: a pro-

totypical example. SIAM J. Appl. Dyn. Syst., 7(2):361–420, 2008.

[KPK11] P. Kim, X. Piao, and S.D. Kim. An error-corrected Euler method for solving stiff problems based

on Chebyshev collocation. SIAM J. Numer. Anal., 49(6):2211–2230, 2011.

[KPK13] S. Krumscheid, G.A. Pavliotis and S. Kalliadasis. Semiparametric drift and diffusion estimation for

multiscale diffusions. Multiscale Model. Simul., 11(2):442–473, 2013.

[KPKR08] M. Krupa, N. Popovic, N. Kopell, and H.G. Rotstein. Mixed-mode oscillations in a three time-scale

model for the dopaminergic neuron. Chaos, 18:015106, 2008.

[KPLM13] I.A. Khovanov, A.V. Polovinkin, D.G. Luchinsky, and P.V.E. McClintock. Noise-induced escape in

an excitable system. Phys. Rev. E, 87:032116, 2013.

[KPP91] A. Kolmogorov, I. Petrovskii, and N. Piscounov. A study of the diffusion equation with increase in

the amount of substance, and its application to a biological problem. In V.M. Tikhomirov, editor,

Selected Works of A. N. Kolmogorov I, pages 248–270. Kluwer, 1991. Translated by V. M. Volosov from

Bull. Moscow Univ., Math. Mech. 1, 1–25, 1937.

[KPR12] K.U. Kristiansen, P. Palmer, and R.M. Roberts. The persistence of a slow manifold with bifurcation.

SIAM J. Appl. Dyn. Syst., 11(2):661–683, 2012.

[KPS91] Y.M. Kabanov, S.M. Pergamenshchikov, and J.M. Stoyanov. Asymptotic expansions for singularly

perturbed stochastic differential equations. In V. Sazanov and T. Shervashidze, editors, New Trends

in Probability and Statistics - In Honor of Yu. Prohorov, pages 413–435. VSP, 1991.

Page 52: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

756 Bibliography

[KR89] M.K. Kadalbajoo and Y.N. Reddy. Asymptotic and numerical analysis of singular perturbation prob-

lems: a survey. Appl. Math. Comp., 30(3):223–259, 1989.

[KR96] Y.M. Kabanov and W.J. Runggaldier. On control of two-scale stochastic systems with linear dynam-

ics in the fast variables. Math. Contr. Sig. Syst., 9(2):107–122, 1996.

[KR99] A.Yu. Kolesov and N.Kh. Rozov. ’Buridan’s ass’ problem in relaxation systems with one slow vari-

able. Math. Notes, 65(1): 128–131, 1999.

[KR00] T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–

Landau equations. Nonlinearity, 13(1):77–112, 2000.

[KR03] A.Yu. Kolesov and N.Kh. Rozov. On-off intermittency in relaxation systems. Differ. Equat., 39(1):

36–45, 2003.

[KR08] B. Krauskopf and T. Riess. A Lin’s method approach to finding and continuing heteroclinic connec-

tions involving periodic orbits. Nonlinearity, 21(8):1655–1690, 2008.

[KR09] A.Yu. Kolesov and N.Kh. Rozov. On the definition of chaos. Russian Math. Surveys, 64(4):701–744,

2009.

[KR11] A.Yu. Kolesov and N.Kh. Rozov. The theory of relaxation oscillations for the Hutchinson equation.

Sb. Math., 202(5):829–858, 2011.

[KR12] D. Kushnir and V. Rokhlin. A highly accurate solver for stiff ordinary differential equations. SIAM

J. Sci. Comput., 34(3): A1296–A1315, 2012.

[KR14] C. Kuehn and M.G. Riedler. Large deviations for nonlocal stochastic neural fields. J. Math. Neurosci.,

4(1):1–33, 2014.

[Kra26] H.A. Kramers. Wellenmechanik und halbzahlige Quantisierung. Zeitschrift fur Physik, 39(10):828–840,

1926.

[Kra40] H.A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions.

Physica, 7(4):284–304, 1940.

[KRA+07] S. Kefi, M. Rietkerk, C.L. Alados, Y. Peyo, V.P. Papanastasis, A. El Aich, and P.C. de Ruiter.

Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature,

449:213–217, 2007.

[Kre79] H.-O. Kreiss. Problems with different time scales for ordinary differential equations. SIAM J. Numer.

Anal., 16(6):980–998, 1979.

[Kre80] H.-O. Kreiss. Problems with different time scales for partial differential equations. Comm. Pure Appl.

Math., 33:399–439, 1980.

[Kre81] H.-O. Kreiss. Resonance for singular perturbation problems. SIAM J. Appl. Math., 41(2):331–344, 1981.

[Kre84] H.-O. Kreiss. Central difference schemes and stiff boundary value problems. BIT, 24:560–567, 1984.

[Kre96] P. Krejcı. Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo, 1996.

[Kre05] P. Krejcı. Hysteresis, convexity and dissipation in hyperbolic equations. J. Phys.: Conf. Ser.,

22(1):103–123, 2005.

[Kri89] G.A. Kriegsmann. Bifurcation in classical bipolar transistor oscillator circuits. SIAM J. Appl. Math.,

49(2):390–403, 1989.

[Kro91] M.S. Krol. On the averaging method in nearly time-periodic advection–diffusion problems. SIAM J.

Appl. Math., 51(6):1622–1637, 1991.

[KRP85] P. Kokotovic, B. Riedle, and L. Praly. On a stability criterion for continuous slow adaptation. Syst.

Contr. Lett., 6(1):7–14, 1985.

[KRS04] A.Yu. Kolesov, N.Kh. Rozov, and V.A. Sadovnichiy. Life on the edge of chaos. J. Math. Sci.,

120(3):1372–1398, 2004.

[KRS13] V. Kelptsyn, O. Romaskevich, and I. Schurov. Josephson effect and slow–fast systems. Nanostructures.

Math. Phys. Model., 8(1):31–46, 2013.

[KS68] P. Kokotovic and P. Sannuti. Singular perturbation method for reducing the model order in optimal

control design. IEEE Trans. Aut. Contr., 13(4):377–384, 1968.

[KS70] E. Keller and S. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol.,

26:399–415, 1970.

[KS86] A. Katok and J.-M. Strelcyn. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities,

volume 1222 of Springer Lecture Notes in Math. Springer, 1986.

[KS91a] T. Kapitaniak and W.H. Steeb. Transition to hyperchaos in coupled generalized van der Pol equa-

tions. Phys. Lett. A, 152: 33–36, 1991.

[KS91b] M.T.M. Koper and J.H. Sluyters. Electrochemical oscillators: an experimental study of the in-

dium/thiocyanate oscillator. J. Electroanal. Chem., 303:65–72, 1991.

[KS91c] M.T.M. Koper and J.H. Sluyters. Electrochemical oscillators: their description through a mathe-

matical model. J. Electroanal. Chem., 303:73–94, 1991.

[KS94] L.I. Kononenko and V.A. Sobolev. Asymptotic decomposition of slow integral manifolds. Siberian

Math. J., 35(6):1119–1132, 1994.

[KS95] N. Kopell and D. Somers. Anti-phase solutions in relaxation oscillators coupled through excitatory

interactions. J. Math. Biol., 33(3):261–280, 1995.

[KS00a] A.L. Kawczynski and P.E. Strizhak. Period adding and broken Farey tree sequences of bifurcations

for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system. J. Chem. Phys.,

112(14):6122–6130, 2000.

[KS00b] M. Kunze and H. Spohn. Adiabatic limit for the Maxwell-Lorentz equations. Ann. Henri Poincare,

1(4):625–653, 2000.

[KS01a] N. Kopteva and M. Stynes. A robust adaptive method for a quasi-linear one-dimensional convection-

diffusion problem. SIAM J. Numer. Anal., 39(4):1446–1467, 2001.

[KS01b] M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to nonhyperbolic

points - fold and canard points in two dimensions. SIAM J. Math. Anal., 33(2):286–314, 2001.

[KS01c] M. Krupa and P. Szmolyan. Extending slow manifolds near transcritical and pitchfork singularities.

Nonlinearity, 14: 1473–1491, 2001.

[KS01d] M. Krupa and P. Szmolyan. Geometric analysis of the singularly perturbed fold. in: Multiple-Time-Scale

Dynamical Systems, IMA Vol. 122:89–116, 2001.

Page 53: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 757

[KS01e] M. Krupa and P. Szmolyan. Relaxation oscillation and canard explosion. J. Differential Equat., 174:

312–368, 2001.

[KS01f] M. Kunze and H. Spohn. Post-Coulombian dynamics at order c-3. J. Nonlinear Sci., 11(5):321–396,

2001.

[KS03] L.V. Kalachev and T.I. Seidman. Singular perturbation analysis of a stationary diffusion/reaction

system whose solution exhibits a corner-type behavior in the interior of the domain. J. Math. Anal.

Appl., 288(2):722–743, 2003.

[KS05] L.V. Kalachev and K.R. Schneider. Global behavior and asymptotic reduction of a chemical kinetics

system with continua of equilibria. J. Math. Chem., 37(1):57–74, 2005.

[KS06] M. Kunze and H. Spohn. Radiation reaction and center manifolds. SIAM J. Math. Anal., 32(1):30–53,

2006.

[KS08a] J. Keener and J. Sneyd. Mathematical Physiology 1: Cellular Physiology. Springer, 2008.

[KS08b] J. Keener and J. Sneyd. Mathematical Physiology 2: Systems Physiology. Springer, 2008.

[KS09] I.G. Kevrekidis and G. Samaey. Equation-free multiscale computation: algorithms and applications.

Ann. Rev. Phys. Chem., 60:321–344, 2009.

[KS11] I. Kosiuk and P. Szmolyan. Scaling in singular perturbation problems: blowing-up a relaxation

oscillator. SIAM J. Appl. Dyn. Syst., 10(4):1307–1343, 2011.

[KS12] G. Karali and C. Sourdis. Radial and bifurcating non-radial solutions for a singular perturbation

problem in the case of exchange of stabilities. Ann. Inst. Henri Poincare (C), 29(2): 131–170, 2012.

[KS13] I. Kosiuk and P. Szmolyan. A new type of relaxation oscillations in a model of the mitotic oscillator.

preprint, 2013.

[KSG+98] B.N. Kholdenko, S. Schuster, J. Garcia, H.V. Westerhoff, and M. Cascante. Control analysis

of metabolic systems involving quasi-equilibrium reactions. Biochimica et Biophysica Acta, 1379(3):

337–352, 1998.

[KSG10] P.D. Kourdis, R. Steuer, and D.A. Goussis. Physical understanding of complex multiscale bio-

chemical models via algorithmic simplification: glycolysis in Saccharomyces cerevisiae. Physica D,

239(18):1798–1817, 2010.

[KSG13] C. Kuehn, S. Siegmund, and T. Gross. On the analysis of evolution equations via generalized models.

IMA J. Appl. Math., 78(5):1051–1077, 2013.

[KSL04] K.-R. Kim, K.J. Shin, and D.J. Lee. Complex oscillations in a simple model for the Briggs–Rauscher

reaction. J. Chem. Phys., 121(6):2664–2672, 2004.

[KSM92] P. Kirrmann, G. Schneider, and A. Mielke. The validity of modulation equations for extended systems

with cubic nonlinearities. Proc. R. Soc. Edinburgh A, 122(1):85–91, 1992.

[KSS97] M. Krupa, B. Sandstede, and P. Szmolyan. Fast and slow waves in the FitzHugh–Nagumo equation.

J. Differential Equat., 133:49–97, 1997.

[KSS+01] M. Krupa, M. Schagerl, A. Steindl, P. Szmolyan, and H. Troger. Relative equilibria of tethered

satellite systems and their stability for very stiff tethers. Dynamical Systems, 16(3):253–278, 2001.

[KSS+03] B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum. Excitability and self-

pulsations near homoclinic bifurcations in semiconductor lasers. Optics Communications, 215:367–379,

2003.

[KSWW06] T. Kolokolnikov, W. Sun, M.J. Ward, and J. Wei. The stability of a stripe for the Gierer–Meinhardt

model and the effect of saturation. SIAM J. Appl. Dyn. Syst., 5(2):313–363, 2006.

[KT84] G.A. Klaasen and W.C. Troy. Stationary wave solutions of a system of reaction–diffusion equations

derived from the FitzHugh–Nagumo equations. SIAM J. Appl. Math., 44(1):96–110, 1984.

[KT92] J.P. Keener and J.J. Tyson. The dynamics of scroll waves in excitable media. SIAM Rev., 34(1):1–39,

1992.

[KT97] N. Kakiuchi and K. Tchizawa. On an explicit duck solution and delay in the FitzHugh–Nagumo

equation. J. Differential Equat., 141(2):327–339, 1997.

[KT05] A.K. Kassam and L.N. Trefethen. Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput.,

26(4):1214–1233, 2005.

[KT12] B.L. Keyfitz and C. Tsikkou. Conserving the wrong variables in gas dynamics: a Riemann solution

with singular shocks. Quart. Appl. Math., 70:407–436, 2012.

[KTK08] M.A. Kramer, R.D. Traub, and N.J. Kopell. New dynamics in cerebellar Purkinje cells: torus ca-

nards. Phys. Rev. Lett., 101(6):068103, 2008.

[KTS11] K. Konishi, M. Takeuchi and T. Shimizu. Design of external forces for eliminating traveling wave in

a piecewise linear FitzHugh–Nagumo model. Chaos, 21:023101, 2011.

[KTY09] V. Krishnamurthy, K. Topley, and G. Yin. Consensus formation in a two-time-scale Markovian sys-

tem. Multiscale Model. Simul., 7(4):1898–1927, 2009.

[Kue02] W. Kuehnel. Differential Geometry - Curves, Surfaces, Manifolds. AMS, 2002.

[Kue09] C. Kuehn. Scaling of saddle-node bifurcations: degeneracies and rapid quantitative changes. J. Phys.

A: Math. and Theor., 42(4):045101, 2009.

[Kue10a] C. Kuehn. Characterizing slow exit points. Electron. J. Differential Equations, 2010(106):1–20, 2010.

[Kue10b] C. Kuehn. From first Lyapunov coefficients to maximal canards. Int. J. Bif. Chaos, 20(5):1467–1475,

2010.

[Kue11a] C. Kuehn. A mathematical framework for critical transitions: bifurcations, fast–slow systems and

stochastic dynamics. Physica D, 240(12):1020–1035, 2011.

[Kue11b] C. Kuehn. On decomposing mixed-mode oscillations and their return maps. Chaos, 21(3):033107,

2011.

[Kue12a] C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations

and ellipsoids. SIAM J. Sci. Comp., 34(3):A1635–A1658, 2012.

[Kue12b] C. Kuehn. Time-scale and noise optimality in self-organized critical adaptive networks. Phys. Rev. E,

85(2):026103, 2012.

[Kue13a] C. Kuehn. A mathematical framework for critical transitions: normal forms, variance and applica-

tions. J. Nonlinear Sci., 23(3):457–510, 2013.

[Kue13b] C. Kuehn. Warning signs for wave speed transitions of noisy Fisher-KPP invasion fronts. Theor. Ecol.,

6(3):295–308, 2013.

Page 54: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

758 Bibliography

[Kue14] C. Kuehn. Normal hyperbolicity and unbounded critical manifolds. Nonlinearity, 27(6):1351–1366,

2014.

[Kun76] C.F. Kung. Singular perturbation of an infinite interval linear state regulator problem in optimal

control. J. Math. Anal. Appl., 55(2):365–374, 1976.

[Kur86] H.L. Kurland. Following homology in singularly perturbed systems. J. Differential Equat., 62(1):1–72,

1986.

[KUR12] K.U. Kristiansen, P.L. Uldall, and R.M. Roberts. Numerical modelling of elastic space tethers.

Celestial Mech. Dynam. Astronom., 113(2):235–254, 2012.

[Kus90] H.J. Kushner. Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems.

Birkhauser, 1990.

[Kus99] R. Kuske. Probability densities for noisy delay bifurcation. J. Stat. Phys., 96(3):797–816, 1999.

[Kus00] R. Kuske. Gradient-particle solutions of Fokker–Planck equations for noisy delay bifurcations. SIAM

J. Sci. Comput., 22(1):351–367, 2000.

[Kus03] R. Kuske. Multi-scale analysis of noise-sensitivity near a bifurcation. In IUTAM Symposium on Nonlinear

Stochastic Dynamics, pages 147–156. Springer, 2003.

[Kus10] R. Kuske. Competition of noise sources in systems with delay: the role of multiple time scales. J.

Vibration and Control, 16(7):983–1003, 2010.

[Kuz04] Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.

[KVC13] M. Krupa, A. Vidal, and F. Clement. A network model of the periodic synchronization process in

the dynamics of calcium concentration in GnRH neurons. J. Math. Neurosci., 3(4):1–40, 2013.

[KVDC12] M. Krupa, A. Vidal, M. Desroches, and F. Clement. Mixed-mode oscillations in a multiple time scale

phantom bursting system. SIAM J. Appl. Dyn. Syst., 11(4):1458–1498, 2012.

[KvdGL97] B. Krauskopf, W.A. van der Graaf, and D. Lenstra. Bifurcations of relaxation oscillations in an

optically injected diode laser. Quantum Semiclass. Optics, 9(5):797–809, 1997.

[KW79] G.A. Kriegsmann and M. Williams. On the tracing of light rays through deformed glass rods with

radially graded refractive indices. SIAM J. Appl. Math., 36(2):263–272, 1979.

[KW91] T.J. Kaper and S. Wiggins. Lobe area in adiabatic Hamiltonian systems. Physica D, 51(1):205–212,

1991.

[KW02] B. Krauskopf and S.M. Wieczorek. Accumulating regions of winding periodic orbits in optically

driven lasers. Physica D, 173:97–113, 2002.

[KW10] M. Krupa and M. Wechselberger. Local analysis near a folded saddle-node singularity. J. Differential

Equat., 248(12): 2841–2888, 2010.

[KW12] K.U. Kristiansen and C. Wulff. Exponential estimates of slow manifolds. arXiv:1208.4219, pages 1–31,

2012.

[Kwa13] F. Kwasniok. Analysis and modelling of glacial climate transitions using simple dynamical systems.

Phil. Trans. R. Soc. A, 371(1991):20110472, 2013.

[KWR10] T. Kispersky, J.A. White, and H.G. Rotstein. The mechanism of abrupt transition between theta

and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells. PLoS ONE,

5(11):e13697, 2010.

[KWW05a] T. Kolokolnikov, M. J. Ward, and J. Wei. The existence and stability of spike equilibria in the

one-dimensional Gray–Scott model: the pulse-splitting regime. Physica D, 202(3):258–293, 2005.

[KWW05b] T. Kolokolnikov, M.J. Ward, and J. Wei. The existence and stability of spike equilibria in the one-

dimensional Gray–Scott model: the low feed rate regime. Stud. Appl. Math., 115(1):21–71, 2005.

[KY72] P. Kokotovic and R. Yackel. Singular perturbation of linear regulators: basic theorems. IEEE Trans.

Aut. Contr., 17(1):29–37, 1972.

[KY96a] R.Z. Khasminskii and G. Yin. Asymptotic expansions of singularly perturbed systems involving

rapidly fluctuating Markov chains. SIAM J. Appl. Math., 56(1):277–293, 1996.

[KY96b] R.Z. Khasminskii and G. Yin. Asymptotic series for singularly perturbed Kolmogorov–Fokker–Planck

equations. SIAM J. Appl. Math., 56(6):1766–1793, 1996.

[KY96c] R.Z. Khasminskii and G. Yin. On transition densities of singularly perturbed diffusions with fast

and slow components. SIAM J. Appl. Math., 56(6):1794–1819, 1996.

[KY97] R.Z. Khasminskii and G. Yin. Constructing asymptotic series for probability distributions of Markov

chains with weak and strong interactions. Quart. Appl. Math., 55(1):177–200, 1997.

[KY99] R.Z. Khasminskii and G. Yin. Singularly perturbed switching diffusions: rapid switchings and fast

diffusions. J. Optim. Theor. Appl., 102(3):555–591, 1999.

[KY04] R.Z. Khasminskii and G. Yin. On averaging principles: an asymptotic expansion approach. SIAM J.

Math. Anal., 35(6):1534–1560, 2004.

[KY05] R.Z. Khasminskii and G. Yin. Limit behavior of two-time-scale diffusions revisited. J. Differential

Equat., 212(1):85–113, 2005.

[LACFG13] M. Lahutte-Auboin, R. Costalat, J.-P. Francoise, and R. Guillevin. Dip and buffering in a fast–slow

system associated to brain lactate kinetics. arXiv:1308.0486v1, pages 1–11, 2013.

[LAE08] T. Li, A. Abdulle, and W. E. Effectiveness of implicit methods for stiff stochastic differential equa-

tions. Comm. Comp. Phys., 3(2):295–307, 2008.

[Lag88] P.A. Lagerstrom. Matched Asymptotic Expansions: Ideas and Techniques. Springer, 1988.

[Lan08] P. Langevin. Sur la theorie du mouvement brownien. Compte-rendus des seances de l’Academie des sciences,

146:530–534, 1908.

[Lan49] R.E. Langer. The asymptotic solutions of ordinary linear differential equations of the second order,

with special reference to a turning point. Trans. Amer. Math. Soc., 67(2):461–490, 1949.

[LaS49] J. LaSalle. Relaxation oscillations. Quart. Appl. Math., 7:1–19, 1949.

[Lax02] P.D. Lax. Functional Analysis. John Wiley & Sons, 2002.

[LBLA87] R. Larter, C.L. Bush, T.R. Lonis, and B.D. Aguda. Multiple steady states, complex oscillations, and

the devil’s staircase in the peroxidase-oxidase reaction. J. Chem. Phys., 87(10): 5765–5771, 1987.

[LBR96] Y.X. Li, R. Bertram, and J. Rinzel. Modeling N-methyl-d-aspartate-induced bursting in dopamine

neurons. Neurosci., 71(2):397–410, 1996.

[LC72] P.A. Lagerstrom and R.G. Casten. Basic concepts underlying singular perturbation techniques. SIAM

Rev., 14(1):63–120, 1972.

Page 55: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 759

[LC98] A. Longtin and D.R. Chialvo. Stochastic and deterministic resonances for excitable systems. Phys.

Rev. Lett., 81(18):4012–4015, 1998.

[LCDS12] D. Linaro, A. Champneys, M. Desroches, and M. Storace. Codimension-two homoclinic bifurcations

underlying spike adding in the Hindmarsh–Rose burster. SIAM J. Appl. Dyn. Syst., 11(3):939–962, 2012.

[LD77] W.D. Lakin and P. Van Den Driessche. Time scales in population biology. SIAM J. Appl. Math.,

32(3):694–705, 1977.

[LdST07] J. Llibre, P.R. da Silva, and M.A. Teixeira. Regularization of discontinuous vector fields on via

singular perturbation. J. Dyn. Diff. Eq., 19(2):309–331, 2007.

[LdST08] J. Llibre, P.R. da Silva, and M.A. Teixeira. Sliding vector fields via slow–fast systems. Bull. Belg.

Math. Soc., 15(5):851–869, 2008.

[LdST09] J. Llibre, P.R. da Silva, and M.A. Teixeira. Study of singularities in nonsmooth dynamical systems

via singular perturbation. SIAM J. Appl. Dyn. Syst., 8(1):508–526, 2009.

[LE88] S.A. Lomov and A.G. Eliseev. Asymptotic integration of singularly perturbed problems. Russ. Math.

Surv., 43(3):1–63, 1988.

[LE92] J.P. Laplante and T. Erneux. Propagation failure in arrays of coupled bistable chemical reactors. J.

Phys. Chem., 96(12): 4931–4934, 1992.

[Leb04] D. Lebiedz. Computing minimal entropy production trajectories: an approach to model reduction

in chemical kinetics. J. Chem. Phys., 120:6890–6897, 2004.

[Lee06] J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006.

[Lee11] C.F. Lee. Singular perturbation analysis of a reduced model for collective motion: a renormalization

group approach. Phys. Rev. E, 83:031127, 2011.

[Lef57] S. Lefschetz. Differential Equations: Geometric Theory. Interscience Publishers, 1957.

[Leh02] B. Lehman. The influence of delays when averaging slow and fast oscillating systems: overview. IMA

J. Math. Control Inform., 19:201–215, 2002.

[Les98] A. Lesne. Renormalization Methods: Critical Phenomena, Chaos, Fractal Structures. Wiley, 1998.

[Lev47] N. Levinson. Perturbations of discontinuous solutions of nonlinear systems of differential equations.

Proc. Nat. Acad. Sci. USA, 33:214–218, 1947.

[Lev49] N. Levinson. A second order differential equation with singular solutions. Ann. Math., 50:127–153,

1949.

[Lev50] N. Levinson. Perturbations and discontinuous solutions of non-linear systems of differential equa-

tions. Acta. Math., 50:127–153, 1950.

[Lev56] J.J. Levin. Singular perturbations of nonlinear systems of differential equations related to condi-

tional stability. Duke Math. J., 23(4):609–620, 1956.

[Lev80] M. Levi. Periodically forced relaxation oscillations. In Global Theory of Dynamical Systems. Springer,

1980.

[Lev81] M. Levi. Qualitative analysis of the periodically forced relaxation oscillations, volume 32 of Mem. Amer. Math.

Soc. AMS, 1981.

[Lev90] H.A. Levine. The role of critical exponents in blowup theorems. SIAM Rev., 32(2):262–288, 1990.

[LeV92] R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhauser, 1992.

[Lev98] M. Levi. A new randomness-generating mechanism in forced relaxation oscillations. Physica D,

114(3):230–236, 1998.

[Lev99] M. Levi. Geometry and physics of averaging with applications. Physica D, 132(1):150–164, 1999.

[LFS+09] B.N. Lundstrom, M. Famulare, L.B. Sorensen, W.J. Spain, and A.L. Fairhall. Sensitivity of firing

rate to input fluctuations depends on time scale separation between fast and slow variables in single

neurons. J. Comput. Neurosci., 27(2):277–290, 2009.

[LG00] M.T. Lim and Z. Gajic. Reduced-order H∞ optimal filtering for systems with slow and fast modes.

IEEE Tans. Circ. Syst., 47(2):250–254, 2000.

[LG05] L. Lerman and V. Gelfreich. Fast-slow Hamiltonian dynamics near a ghost separatrix loop. J. Math.

Sci., 126:1445–1466, 2005.

[LG09] C. Letellier and J.-M. Ginoux. Development of the nonlinear dynamical systems theory from radio

engineering to electronics. Int. J. Bif. Chaos, 19:2131–2163, 2009.

[LG12] S.J. Lade and T. Gross. Early warning signals for critical transitions: a generalized modeling ap-

proach. PLoS Comp. Biol., 8:e1002360–6, 2012.

[LG13] M. Linkerhand and C. Gros. Self-organized stochastic tipping in slow–fast dynamical systems. Math.

Mech. Complex Syst., pages 1–16, 2013. to appear.

[LGONSG04] B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier. Effects of noise in excitable

systems. Physics Reports, 392:321–424, 2004.

[LGY91] R.R. Llinas, A.A. Grace, and Y. Yarom. In vitro neurons in mammalian cortical layer 4 exhibit

intrinsic oscillatory activity in the 10-to 50-Hz frequency range. Proc. Natl. Acad. Sci., 88(3):897–901,

1991.

[LH96] R. Larter and S. Hemkin. Further refinements of the peroxidase-oxidase oscillator mechanism:

Mixed-mode oscillations and chaos. J. Phys. Chem., 100:18924–18930, 1996.

[LHK+08] T.M. Lenton, H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber.

Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA, 105(6):1786–1793, 2008.

[Li03] Y. Li. Homoclinic tubes in discrete nonlinear Schrodinger equation under Hamiltonian perturbations.

Nonlinear Dyn., 31(4):393–434, 2003.

[Li08] X.M. Li. An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlin-

earity, 21(4):803–822, 2008.

[Lic69] W. Lick. Two-variable expansions and singular perturbation problems. SIAM J. Appl. Math., 17(4):

815–825, 1969.

[Lin88] X.-B. Lin. Shadowing lemma and singularly perturbed boundary value problems. SIAM J. Appl. Math.,

49(1):26–54, 1988.

[Lin90a] X.-B. Lin. Heteroclinic bifurcation and singularly perturbed boundary value problems. J. Differential

Equat., 84:319–382, 1990.

[Lin90b] X.-B. Lin. Using Melnikov’s method to solve Shilnikov’s problems. Proc. Roy. Soc. Edinburgh, 116:

295–325, 1990.

Page 56: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

760 Bibliography

[Lin91] P. Lin. A numerical method for quasilinear singular perturbation problems with turning points.

Computing, 46(2):155–164, 1991.

[Lin01] X.-B. Lin. Construction and asymptotic stability of structurally stable internal layer solutions. Trans.

Amer. Math. Soc., 353:2983–3043, 2001.

[Lin03] P. Lin. Theoretical and numerical analysis for the quasi-continuum approximation of a material

particle model. Math. Comput., 72(242):657–675, 2003.

[Lin04] B. Lindner. Interspike interval statistics of neurons driven by colored noise. Phys. Rev. E, 69:022901,

2004.

[Lin06] X.-B. Lin. Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of

conservation laws: an analytic approach. J. Dyn. Diff. Eq., 18(1):1–52, 2006.

[Lin07] G. Lin. Periodic solutions for van der Pol equation with time delay. Appl. Math. Comp., 187(2):

1187–1198, 2007.

[Lin09] X.-B. Lin. Algebraic dichotomies with an application to the stability of Riemann solutions of con-

servation laws. J. Differential Equat., 11(1):2924–2965, 2009.

[Lio37] J. Liouville. Sur le developpement des fonctions et series. J. de Mathematiques Pures et Appliquees, 1:

16–35, 1837.

[Lio73] J.L. Lions. Perturbations singulieres dans les problemes aux limites et en controle optimal. Springer, 1973.

[Lip96] R. Liptser. Large deviations for two scaled diffusions. Prob. Theor. Rel. Fields, 106:71–104, 1996.

[Lit57a] J.E. Littlewood. On non-linear differential equations of second order: III. The equation y − k

(1 − y2)y + y = bμk cos(μt + α) for large k, and its generalizations. Acta. Math., 97:267–308, 1957.

[Lit57b] J.E. Littlewood. On non-linear differential equations of second order: IV. The general equation

y − kf(y)y + g(y) = bkp(ϕ), ϕ = t + a for large k and its generalizations. Acta. Math., 98: 1–110,

1957.

[Liu00] D. Liu. Exchange lemmas for singular perturbation problems with certain turning points. J. Differ-

ential Equat., 167:134–180, 2000.

[Liu04] W. Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conserva-

tion laws. Discr. Cont. Dyn. Syst., 10(4):871–884, 2004.

[Liu05] W. Liu. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems.

SIAM J. Appl. Math., 65(3):754–766, 2005.

[Liu06] W. Liu. Geometric singular perturbations for multiple turning points: invariant manifolds and

exchange lemmas. J. Dyn. Diff. Eq., 18(3):667–691, 2006.

[LJH78] D. Ludwig, D.D. Jones, and C.S. Holling. Qualitative analysis of insect outbreak systems: The

spruce budworm and forest. J. Animal Ecol., 47(1):315–332, 1978.

[LJL05] K. Lorenz, T. Jahnke, and C. Lubich. Adiabatic integrators for highly oscillatory second-order linear

differential equations with time-varying eigendecomposition. BIT, 45:91–115, 2005.

[LK70] R.Y.S. Lynn and J.B. Keller. Uniform asymptotic solutions of second order linear ordinary differen-

tial equations with turning points. Comm. Pure Appl. Math., 23(3):379–408, 1970.

[LK84] B. Litkouhi and H. Khalil. Infinite-time regulators for singularly perturbed difference equations. Int.

J. Contr., 39(3):587–598, 1984.

[LK85a] B. Litkouhi and H. Khalil. Multirate and composite control of two-time-scale discrete-time systems.

IEEE Trans. Aut. Contr., 30(7):645–651, 1985.

[LK85b] D. Luse and H. Khalil. Frequency domain results for systems with slow and fast dynamics. IEEE

Trans. Aut. Contr., 30(12):1171–1179, 1985.

[LK00] W.M. Long and L.V. Kalachev. Asymptotic analysis of dissolution of a spherical bubble (case of fast

reaction outside the bubble). Rocky Mountain J. Math., 30(1):293–313, 2000.

[LKMH94] T. LoFaro, N. Kopell, E. Marder, and S.L. Hooper. Subharmonic coordination in networks of neurons

with slow conductances. Neural Comput., 6(1):69–84, 1994.

[LL03a] F. Lin and T.-C. Lin. Multiple time scale dynamics in coupled Ginzburg–Landau equations. Commun.

Math. Sci., 1(4): 671–695, 2003.

[LL03b] J. Lin and F.L. Lewis. Two-time scale fuzzy logic controller of flexible link robot arm. Fuzzy Sets

Syst., 139:125–149, 2003.

[LL07] V.N. Livina and T.M. Lenton. A modified method for detecting incipient bifurcations in a dynamical

system. Geophysical Research Letters, 34:L03712, 2007.

[LL09a] C. Laing and G. Lord, editors. Stochastic Methods in Neuroscience. OUP, 2009.

[LL09b] C.H. Lee and R. Lui. A reduction method for multiple time scale stochastic reaction networks. J.

Math. Chem., 46(4):1292–1321, 2009.

[LL10] C.H. Lee and R. Lui. A reduction method for multiple time scale stochastic reaction networks with

non-unique equilibrium probability. J. Math. Chem., 47(2):750–770, 2010.

[LL13] S. Lahbabi and F. Legoll. Effective dynamics for a kinetic Monte-Carlo model with slow and fast

time scales. arXiv:1301.0266v1, pages 1–44, 2013.

[LLB13] J. Li, K. Lu, and P. Bates. Normally hyperbolic invariant manifolds for random dynamical systems:

Part I - persistence. Trans. Amer. Math. Soc., 365(11):5933–5966, 2013.

[LLS13] F. Legoll, T. Lelievre, and G. Samaey. A micro-macro parareal algorithm: application to singularly

perturbed ordinary differential equations. SIAM J. Sci. Comput., 35(4):A1951–A1986, 2013.

[LM88] P. Lochak and C. Meunier. Multiphase averaging for classical systems: with applications to adiabatic theorems.

Springer, 1988.

[LM94a] C.G. Lange and R.M. Miura. Singular perturbation analysis of boundary value problems for

differential-difference equations. V. Small shifts with layer behaviour. SIAM J. Appl. Math., 54(1):249–

272, 1994.

[LM94b] C.G. Lange and R.M. Miura. Singular perturbation analysis of boundary value problems for

differential-difference equations. VI. Small shifts with rapid oscillations. SIAM J. Appl. Math.,

54(1):273–283, 1994.

[LM97a] Y. Li and D.W. McLaughlin. Homoclinic orbits and chaos in discretized perturbed NLS systems:

Part I. Homoclinic orbits. J. Nonlinear Sci., 7(3):211–269, 1997.

[LM97b] Y. Li and D.W. McLaughlin. Homoclinic orbits and chaos in discretized perturbed NLS systems:

Part II. Symbolic dynamics. J. Nonlinear Sci., 7(4):315–370, 1997.

Page 57: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 761

[LM13] P.S. Landa and P.V.E. McClintock. Nonlinear systems with fast and slow motions. Changes in the

probability distribution for fast motions under the influence of slower ones. Phys. Rep., 532(1):1–26,

2013.

[LMH92] C. Lu, A.D. MacGillivray, and S.P. Hastings. Asymptotic behaviour of solutions of a similarity

equation for laminar flows in channels with porous walls. IMA J. Appl. Math., 49(2):139–162, 1992.

[LMP05] S. Luzzatto, I. Melbourne, and F. Paccaut. The Lorenz attractor is mixing. Comm. Math. Phys.,

260(2):393–401, 2005.

[LMT13] R. Lamour, R. Marz, and C. Tischendorf. Differential-Algebraic Equations: A Projector Based Analysis.

Springer, 2013.

[LMYZ12] J. Lei, M.C. Mackey, R. Yvinec, and C. Zhuge. Adiabatic reduction of a piecewise deterministic

Markov model of stochastic gene expression with bursting transcription. arXiv:1202.5411, pages 1–39,

2012.

[LN04] R.I. Leine and H. Nijmeijer. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, 2004.

[LN05] Y. Li and L. Nirenberg. The Dirichlet problem for singularly perturbed elliptic equations. Comm.

Pure Appl. Math., 15(6):1162–1222, 2005.

[LN13] M.J. Luczak and J.R. Norris. Averaging over fast variables in the fluid limit for Markov chains:

application to the supermarket model with memory. Ann. Appl. Probab., 23(3):957–986, 2013.

[LNS95] Ch. Lubich, K. Nipp, and D. Stoffer. Runge–Kutta solutions of stiff differential equations near

stationary points. SIAM J. Numer. Anal., 32(4):1296–1307, 1995.

[LNT88] C.S. Lin, W.M. Ni, and I. Takagi. Large amplitude stationary solutions to a chemotaxis system. J.

Differential Equat., 72(1): 1–27, 1988.

[LNW07] C.S. Lin, W.M. Ni, and J.C. Wei. On the number of interior peak solutions for a singularly perturbed

Neumann problem. Comm. Pure Appl. Math., 60:252–281, 2007.

[LO93] J.G. Laforgue and R.E. O’Malley. Supersensitive boundary value problems. In Asymptotic and Numerical

Methods for Partial Differential Equations with Critical Parameters, pages 215–223. Springer, 1993.

[LO09] M. Luskin and C. Ortner. An analysis of node-based cluster summation rules in the quasicontinuum

method. SIAM J. Numer. Anal., 47(4):3070–3086, 2009.

[LO10] C.H. Lee and H.G. Othmer. A multi-time-scale analysis of chemical reaction networks: I. Determin-

istic systems. J. Math. Biol., 60:387–450, 2010.

[LO13a] D.J.B. Lloyd and H. O’Farrell. On localised hotspots of an urban crime model. Physica D, 253:23–39,

2013.

[LO13b] M. Luskin and C. Ortner. Atomistic-to-continuum coupling. Acta Numerica, 22:397–508, 2013.

[Lob91] C. Lobry. Dynamic bifurcations. In E. Benoıt, editor, Dynamic Bifurcations, volume 1493 of Lecture

Notes in Mathematics, pages 1–13. Springer, 1991.

[Lom92] S.A. Lomov. Introduction to the General Theory of Singular Perturbations. AMS, 1992.

[Lon87] L.N. Long. Uniformly-valid asymptotic solutions to the Orr-Sommerfeld equation using multiple

scales. J. Eng. Math., 21(3):167–178, 1987.

[Lon97] A. Longtin. Autonomous stochastic resonance in bursting neurons. Phys. Rev. E, 55(1):868–876, 1997.

[Lop82] O. Lopes. FitzHugh–Nagumo system: boundedness and convergence to equilibrium. J. Differential

Equat., 44(3):400–413, 1982.

[Lor63] E.N. Lorenz. Deterministic nonperiodic flows. J. Atmosph. Sci., 20:130–141, 1963.

[Lou59] W.S. Loud. Periodic solutions of a perturbed autonomous system. Ann. Math., 70(3):490–529, 1959.

[LP77] A.M. Lentini and V. Pereyra. An adaptive finite difference solver for nonlinear two-point boundary

value problems with mild boundary layers. SIAM J. Numer. Anal., 14:91–111, 1977.

[LP93] G.D. Lythe and M.R.E. Proctor. Noise and slow–fast dynamics in a three-wave resonance problem.

Phys. Rev. E, 47:3122–3127, 1993.

[LP99] A. Luongo and A. Paolone. On the reconstitution problem in the multiple time-scale method. Non-

linear Dynam., 19(2):133–156, 1999.

[LQY10] Y. Li, H. Qian, and Y. Yi. Nonlineaar oscillations and multiscale dynamics in a closed chemical

reaction system. J. Dyn. Diff. Eq., 22:491–507, 2010.

[LR60] C.C. Lin and A.L. Rabenstein. On the asymptotic solutions of a class of ordinary differential equa-

tions of the fourth order: I. Existence of regular formal solutions. Trans. Amer. Math. Soc., 94(1):24–57,

1960.

[LR84a] P.A. Lagerstrom and D.A. Reinelt. Note on logarithmic switchback terms in regular and singular

perturbation expansions. SIAM J. Appl. Math., 44(3):451–462, 1984.

[LR84b] P. Lundberg and L. Rahm. A nonlinear convective system with oscillatory behaviour for certain

parameter regimes. J. Fluid Mech., 139:237–260, 1984.

[LR94] Y.X. Li and J. Rinzel. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a

detailed kinetic model: a Hodgkin–Huxley like formalism. J. Theor. Biol., 166(4): 461–473, 1994.

[LR01] B. Leimkuhler and S. Reich. A reversible averaging integrator for multiple time-scale dynamics. J.

Comput. Phys., 171:95–114, 2001.

[LR04a] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. CUP, 2004.

[LR04b] T. Linß and H.-G. Roos. Analysis of a finite-difference scheme for a singularly perturbed problem

with two small parameters. J. Math. Anal. Appl., 289(2):355–366, 2004.

[LRV00] T. Linß, H.-G. Roos, and R. Vulanovic. Uniform pointwise convergence on Shishkin-type meshes for

quasi-linear convection-diffusion problems. SIAM J. Numer. Anal., 38(3):897–912, 2000.

[LS42] N. Levinson and O.K. Smith. A general equation for relaxation oscillations. Duke Math. J., 9(2):

382–403, 1942.

[LS75] N.R. Lebovitz and R.J. Schaar. Exchange of stabilities in autonomous systems I. Stud. Appl. Math.,

54:229–260, 1975.

[LS77] N.R. Lebovitz and R.J. Schaar. Exchange of stabilities in autonomous systems II. Stud. Appl. Math.,

56:1–50, 1977.

[LS80] R. Llinas and M. Sugimori. Electrophysiological properties of in vitro Purkinje cell dendrites in

mammalian cerebellar slices. J. Physiol., 305(1):197–213, 1980.

[LS83] G.S. Ladde and D.D. Siljak. Multiparameter singular perturbations of linear systems with multiple

time scales. Automatica, 19(4):385–394, 1983.

Page 58: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

762 Bibliography

[LS86] J. Lorenz and R. Sanders. Second order nonlinear singular perturbation problems with boundary

conditions of mixed type. SIAM J. Math. Anal., 17(3):580–594, 1986.

[LS91] R. Larter and C.G. Steinmetz. Chaos via mixed-mode oscillations. Phil. Trans. R. Soc. Lond. A, 337:

291–298, 1991.

[LS00] R. Liptser and V. Spokoiny. On estimating a dynamic function of a stochastic system with averaging.

Stat. Inf. Stoch. Proc., 3(3):225–249, 2000.

[LS01a] T. Linß and M. Stynes. Asymptotic analysis and Shishkin-type decomposition for an elliptic

convection–diffusion problem. J. Math. Anal. Appl., 261(2):604–632, 2001.

[LS01b] T. Linß and M. Stynes. The SDFEM on Shishkin meshes for linear convection–diffusion problems.

Numer. Math., 87(3):457–484, 2001.

[LS03] X.-B. Lin and S. Schecter. Stability of self-similar solutions of the Dafermos regularization of a

system of conservation laws. SIAM J. Math. Anal., 35(4):884–921, 2003.

[LS12] K.W. Lee and S.N. Singh. Bifurcation of orbits and synchrony in inferior olive neurons. J. Math. Biol.,

65:465–491, 2012.

[LS13] D. Lebiedz and J. Siehr. A continuation method for the efficient solution of parametric optimization

problems in kinetic model reduction. arXiv:1301.5815, pages 1–19, 2013.

[LSA88] R. Larter, C.G. Steinmetz, and B.D. Aguda. Fast-slow variable analysis of the transition to mixed-

mode oscillations and chaos in the peroxidase reaction. J. Chem. Phys., 89(10):6506–6514, 1988.

[LSAC08] D.J.B. Lloyd, B. Sandstede, D. Avitabile, and A.R. Champneys. Localized hexagon patterns of the

planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst., 7(3):1049–1100, 2008.

[LSB11] G. Lajoie and E. Shea-Brown. Shared inputs, entrainment, and desynchrony in elliptic bursters:

from slow passage to discontinuous circle maps. SIAM J. Appl. Dyn. Syst., 10(4):1232–1271, 2011.

[LSG99] B. Lindner and L. Schimansky-Geier. Analytical approach to the stochastic FitzHugh–Nagumo sys-

tem and coherence resonance. Phys. Rev. E, 60(6):7270–7276, 1999.

[LSG00] B. Lindner and L. Schimansky-Geier. Coherence and stochastic resonance in a two-state system.

Phys. Rev. E, 61(6):6103–6110, 2000.

[LSR07] T. Lelievre, G. Stoltz, and M. Rousset. Computation of free energy profiles with parallel adaptive

dynamics. J. Chem. Phys., 126:134111, 2007.

[LSR10] T. Lelievre, G. Stoltz, and M. Rousset. Free Energy Computations: A Mathematical Perspective. World

Scientific, 2010.

[LSS13] H.K.H. Lentz, T. Selhorst, and I.M. Sokolov. Unfolding accessibility provides a macroscopic approach

to temporal networks. Phys. Rev. Lett., 110:118701, 2013.

[LST98] C. Lobry, T. Sari, and S. Touhami. On Tykhonov’s theorem for convergence of solutions of slow and

fast systems. Electron. J. Differential Equat., 19:1–22, 1998.

[LSU11] D. Lebiedz, J. Siehr, and J. Unger. A variational principle for computing slow invariant manifolds

in dissipative dynamical systems. SIAM J. Sci. Comput., 33(2):703–720, 2011.

[LT99] E. Lee and D. Terman. Uniqueness and stability of periodic bursting solutions. J. Differential Equat.,

158:48–78, 1999.

[LT03] C.R. Laing and W.C. Troy. PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst., 2(3):487–516,

2003.

[LT13] E. Lee and D. Terman. Stable antiphase oscillations in a network of electrically coupled model

neurons. SIAM J. Appl. Dyn. Syst., 12(1):1–27, 2013.

[LTB90] D. Lindberg, J.S. Turner, and D. Barkley. Chaos in the Showalter–Noyes–Bar-Eli model of the

Belousov–Zhabotinskii reaction. J. Chem. Phys., 92(5):3238–3239, 1990.

[LTGE02] C.R. Laing, W.C. Troy, B. Gutkin, and B. Ermentrout. Multiple bumps in a neuronal model of

working memory. SIAM J. Appl. Math., 63(1):62–97, 2002.

[LTK+07] K. Henzler-Wildman M. Lei, V. Thai, J. Kerns, M. Karplus, and D. Kern. A hierarchy of timescales

in protein dynamics is linked to enzyme catalysis. Nature, 450:913–918, 2007.

[LTLE95] A.M. Levine, G.H.M. Van Tartwijk, D. Lenstra, and T. Erneux. Diode lasers with optical feedback:

stability of the maximum gain mode. Phys. Rev. A, 52(5):3436–3439, 1995.

[Lu76] Y.-C. Lu. Singularity Theory and an Introduction to Catastrophe Theory. Springer, 1976.

[Lub88] Ch. Lubich. Convolution quadrature and discretized operational calculus. II. Numer. Math., 52(4):

413–415, 1988.

[Lub90] Ch. Lubich. On the convergence of multistep methods for nonlinear stiff differential equations. Numer.

Math., 58(1):839–853, 1990.

[Lub93] Ch. Lubich. Integration of stiff mechanical systems by Runge–Kutta methods. Z. Angew. Math. Phys.,

44(6):1022–1053, 1993.

[Lub08] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. EMS,

2008.

[Lus01] K. Lust. Improved numerical Floquet multipliers. Int. J. Bif. Chaos, 11:2389–2410, 2001.

[LV02] B. Lanova and J. Vrest’al. Study of the Bray–Liebhafsky reaction by on-line mass spectrometry. J.

Phys. Chem. A, 106: 1228–1232, 2002.

[LV06] W. Liu and E. Van Vleck. Turning points and traveling waves in FitzHugh–Nagumo type equations.

J. Differential Equat., 225(2):381–410, 2006.

[LV13] J. Llibre and C. Valls. Darboux integrability of polynomial differential systems in R3. Bull. Belg. Math.

Soc., 20(4):603–619, 2013.

[LVEZE04] T. Li, E. Vanden-Eijnden, P. Zhang, and W. E. Stochastic models of polymeric fluids at small

Deborah number. J. Non-Newtonian Fluid Mech., 121:117–125, 2004.

[LW70] W. Liniger and R.A. Willoughby. Efficient integration methods for stiff systems of ordinary differ-

ential equations. SIAM J. Numer. Anal., 7(1):47–66, 1970.

[LW99a] B. Lehman and S.P. Weibel. Averaging theory for delay difference equations with time-varying

delays. SIAM J. Appl. Math., 59(4):1487–1506, 1999.

[LW99b] B. Lehman and S.P. Weibel. Fundamental theorems of averaging for functional-differential equations.

J. Differential Equat., 152:160–190, 1999.

[LW10a] W. Liu and B. Wang. Poisson–Nernst–Planck systems for narrow tubular-like membrane channels.

J. Dyn. Diff. Eq., 22(3):413–437, 2010.

Page 59: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 763

[LW10b] G. Lv and M. Wang. Existence, uniqueness and asymptotic behavior of traveling wave fronts for a

vector disease model. Nonl. Anal.: Real World Appl., 11(3):2035–2043, 2010.

[LWH07] X. Li, J. Wang, and W. Hu. Effects of chemical synapses on the enhancement of signal propagation

in coupled neurons near the canard regime. Phys. Rev. E, 76(4):041902, 2007.

[LWW12] D. Liang, P. Weng, and J. Wu. Travelling wave solutions in a delayed predator–prey diffusion PDE

system point-to-periodic and point-to-point waves. IMA J. Appl. Math., 77(4):516–545, 2012.

[LXY03] W. Liu, D. Xiao, and Y. Yi. Relaxation oscillations in a class of predator–prey systems. J. Differential

Equat., 188(1):306–331, 2003.

[LY75] T.-Y. Li and J.A. Yorke. Period three implies chaos. Amer. Math. Monthly, 82(10):985–992, 1975.

[LY05] G. Lin and R. Yuan. Periodic solution for a predator–prey system with distributed delay. Math.

Comput. Model., 42(9):959–966, 2005.

[LY06a] G. Lin and R. Yuan. Periodic solution for equations with distributed delays. Proc. R. Soc. Edinburgh

A, 136(6):1317–1325, 2006.

[LY06b] G. Lin and R. Yuan. Travelling waves for the population genetics model with delay. The ANZIAM

Journal, 48(1):57–71, 2006.

[Lya47] A.M. Lyapunov. Probleme general de la stabilite du mouvement. Princeton University Press, 1947.

[Lyt95] G.D. Lythe. Noise and dynamic transitions. In Stochastic Partial Differential Equations (Edinburgh, 1994),

pages 181–188. Springer, 1995.

[Lyt96] G.D. Lythe. Domain formation in transitions with noise and a time-dependent bifurcation parameter.

Phys. Rev. E, 53:4271, 1996.

[LZ11] N. Lu and C. Zeng. Normally elliptic singular perturbations and persistence of homoclinic orbits. J.

Differential Equat., 250(11):4124–4176, 2011.

[LZ13] C. Li and H. Zhu. Canard cycles for predator–prey systems with Holling types of functional response.

J. Differential Equat., 254:879–910, 2013.

[LZSK12] C.R. Laing, Y. Zou, B. Smith, and I.G. Kevrekidis. Managing heterogeneity in the study of neural

oscillator dynamics. J. Math. Neurosci., 2:5, 2012.

[Maa98] U. Maas. Efficient calculation of intrinsic low-dimensional manifolds for simplification of chemical

kinetics. Comp. Vis. Sci., 1:69–82, 1998.

[Mac68] B.D. MacMillan. Asymptotic methods for systems of differential equations in which some variables

have very short response times. SIAM J. Appl. Math., 16(4):704–722, 1968.

[Mac78] A.D. MacGillivray. On a model equation of Lagerstrom. SIAM J. Appl. Math., 34(4):804–812, 1978.

[Mac79] A.D. MacGillivray. The existence of an overlap domain for a singular perturbation problem. SIAM

J. Appl. Math., 36(1):106–114, 1979.

[Mac80] A.D. MacGillivray. On the switchback term in the asymptotic expansion of a model singular pertur-

bation problem. J. Math. Anal. Appl., 77(2):612–625, 1980.

[Mac01] A. Maccari. The response of a parametrically excited van der Pol oscillator to a time delay state

feedback. Nonlinear Dynamics, 26(2):105–119, 2001.

[Mac04] R.S. MacKay. Slow manifolds. In Energy Localisation and Transfer, pages 149–192. World Scientific,

2004.

[Mae07a] P. De Maesschalck. Ackerberg-O’Malley resonance in boundary value problems with a turning point

of any order. Comm. Pure Appl. Anal., 6(2):311–333, 2007.

[Mae07b] P. De Maesschalck. Gevrey properties of real planar singularly perturbed systems. J. Differential Equat.,

238:338–365, 2007.

[MAEL07] F. Mormann, R.G. Andrzejak, C.E. Elger, and K. Lehnertz. Seizure prediction: the long and winding

road. Brain, 130:314–333, 2007.

[Mag78] K. Maginu. Stability of periodic travelling wave solutions of a nerve conduction equation. J. Math.

Biol., 6(1):49–57, 1978.

[Mag80] K. Maginu. Existence and stability of periodic travelling wave solutions to Nagumo’s nerve equation.

J. Math. Biol., 10(2):133–153, 1980.

[Mag85] K. Maginu. Geometrical characteristics associated with stability and bifurcations of periodic trav-

elling waves in reaction–diffusion systems. SIAM J. Appl. Math., 45(5):750–774, 1985.

[MAG05] A.J. Majda, R.V. Abramov, and M.J. Grote. Information Theory and Stochastics for Multiscale Nonlinear

Systems. AMS, 2005.

[Mah82] M.S. Mahmoud. Structural properties of discrete systems with slow and fast modes. Large Scale Sys-

tems, 3(4):227–236, 1982.

[Maj03] A.J. Majda. Introduction to PDEs and Waves for the Atmosphere and Ocean. AMS, 2003.

[Maj07] A.J. Majda. New multiscale models and self-similarity in tropical convection. J. Atmos. Sci.,

64(4):1393–1404, 2007.

[Mal05] A. Malchiodi. Concentration at curves for a singularly perturbed Neumann problem in three-

dimensional domains. Geom. Funct. Anal., 15(6):1162–1222, 2005.

[Man78] R. Mane. Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc., 246:261–283, 1978.

[Man87] P. Mandel. Properties of a good cavity laser with swept losses. Optics Commun., 64(6):549–552, 1987.

[Man06] M.B.A. Mansour. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations.

Comm. Math. Sci., 4(4):731–739, 2006.

[Man09a] M.B.A. Mansour. Existence of traveling wave solutions for a nonlinear dissipative-dispersive equa-

tion. Appl. Math. Mech., 30(4):513–516, 2009.

[Man09b] M.B.A. Mansour. Travelling wave solutions for a singularly perturbed Burgers-KdV equation. Pra-

mana, 73(5):799–806, 2009.

[Man13] M.B.A. Mansour. A geometric construction of traveling waves in a generalized nonlinear dispersive–

dissipative equation. J. Geom. Phys., pages 1–11, 2013. in press.

[MAP96] A.M. Mandel, M. Akke, and A.G. Palmer. Dynamics of ribonuclease H: temperature dependence of

motions on multiple time scales. Biochem., 35(50):16009–16023, 1996.

[Mar70] R.A. Marcus. Extension of the WKB method to wave functions and transition probability amplitudes

(S-matrix) for inelastic or reactive collisions. Chem. Phys. Lett., 7(5):525–532, 1970.

[Mar85] R. Marino. High-gain feedback in non-linear control systems. Int. J. Control, 42(6):1369–1385, 1985.

[Mar86] P.A. Markowich. The Stationary Semiconductor Device Equations. Springer, 1986.

Page 60: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

764 Bibliography

[Mar96] G.J.M. Maree. Slow passage through a pitchfork bifurcation. SIAM J. Appl. Math., 56(3):889–918,

1996.

[Mas80] J. Maselko. Experimental studies of complicated oscillations. The system Mn2+-malonic acid-

KBrO3-H2SO4. Chem. Phys., 51(3):473–480, 1980.

[Mas94] V.P. Maslov. The Complex WKB Method for Nonlinear Equations: Linear theory. Springer, 1994.

[Mas02] M. Massot. Singular perturbation analysis for the reduction of complex chemistry in gaseous mix-

tures using the entropic structure. Comptes Rendus Math., 335:93–98, 2002.

[Mat95] P. Mathieu. Spectra, exit times and long time asymptotics in the zero-white-noise limit. Stoch. Stoch.

Rep., 55(1):1–20, 1995.

[Mat00] E. Matzinger. A note on the forced van der Pol equation. C. R. Acad. Sci. Paris Ser. I Math., 331(4):

281–286, 2000.

[Mat01] K. Matthies. Time-averaging under fast periodic forcing of parabolic partial differential equations:

exponential estimates. J. Differential Equat., 174(1):133–180, 2001.

[Mat06] E. Matzinger. Asymptotic behaviour of solutions near a turning point: the example of the Brusselator

equation. J. Differential Equat., 220(2):478–510, 2006.

[May03] I.D. Mayergoyz. Mathematical Models of Hysteresis and their Applications. Academic Press, 2003.

[Maz73] B. Mazur. Frobenius and the Hodge filtration (estimates). Ann. Math., 98(1):58–95, 1973.

[MB95] J.R. Mika and J. Banasiak. Singularly perturbed evolution equations with applications to kinetic theory. World

Scientific, 1995.

[MB04] A.J. Majda and J.A. Biello. A multiscale model for tropical intraseasonal oscillations. Proc. Nat. Acad.

Sci. USA, 101:4736–4741, 2004.

[MBK13] W.W. Mohammed, D. Blomker, and K. Klepel. Modulation equation for stochastic Swift–Hohenberg

equation. SIAM J. Math. Anal., 45(1):14–30, 2013.

[MC85] D.D. Moerder and A.J. Calise. Two-time scale stabilization of systems with output feedback. J. Guid.

Contr. Dyn., 8:731–736, 1985.

[MC86] M.R. Maxey and S. Corrsin. Gravitational settling of aerosol particles in randomly oriented cellular

flow fields. J. Atmos. Sci., 43(11):1112–1134, 1986.

[MC04] G.S. Medvedev and J.E. Cisternas. Multimodal regimes in a compartmental model of the dopamine

neuron. Phys. D, 194(3–4):333–356, 2004.

[MCA+11] F. Marino, M. Ciszak, S.F. Abdalah, K. Al-Naimee, R. Meucci, and F.T. Arecchi. Mixed-mode

oscillations via canard explosions in light-emitting diodes with optoelectronic feedback. Phys. Rev. E,

84:047201, 2011.

[McC88] C. McCord. The connection map for attractor-repeller pairs. Trans. Amer. Math. Soc., 307(1):195–203,

1988.

[McC06] C. McCluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Math.

Biosci. Eng., 3(4):603–614, 2006.

[MCC+08] M. Mikikian, M. Cavarroc, L. Couedel, Y. Tessier, and L. Boufendi. Mixed-mode oscillations in

complex plasma instabilities. Physical Review Letters, 100(22), 2008.

[MCJS09] V. Manukian, N. Costanzino, C.K.R.T. Jones, and B. Sandstede. Existence of multi-pulses of the

regularized short-pulse and Ostrovsky equations. J. Dyn. Diff. Eq., 21:607–622, 2009.

[McK55] R.W. McKelvey. The solutions of second order linear ordinary differential equations about a turning

point of order two. Trans. Amer. Math. Soc., 79(1):103–123, 1955.

[McK70] H.P. McKean. Nagumo’s equation. Adv. Math., 4:209–223, 1970.

[MCS86] M.S. Mahmoud, Y. Chen, and M.G. Singh. Discrete two-time-scale systems. Int. J. Syst. Sci.,

17(8):1187–1207, 1986.

[MD10] P. De Maesschalck and F. Dumortier. Singular perturbations and vanishing passage through a turn-

ing point. J. Differential Equat., 248:2294–2328, 2010.

[MD11] P. De Maesschalck and F. Dumortier. Detectable canard cycles with singular slow dynamics of any

order at the turning point. Discr. Cont. Dyn. Syst. A, 29(1):109–140, 2011.

[MD13] P. De Maesschalck and M. Desroches. Numerical continuation techniques for planar slow–fast sys-

tems. SIAM J. Appl. Dyn. Syst., 12(3):1159–1180, 2013.

[MDK00] D.S. Morgan, A. Doelman, and T.J. Kaper. Stationary periodic patterns in the 1D Gray-Scott model.

Math. Appl. Anal., 7(1):105–150, 2000.

[ME84] P. Mandel and T. Erneux. Laser Lorenz equations with a time-dependent parameter. Phys. Rev. Lett.,

53(19):1818–1821, 1984.

[ME87] P. Mandel and T. Erneux. The slow passage through a steady bifurcation: delay and memory effects.

J. Stat. Phys., 48(5):1059–1070, 1987.

[Mea95] K.D. Mease. Geometry of computational singular perturbations. Nonlinear Contr. Syst. Design, 2:

855–861, 1995.

[Mea05] K.D. Mease. Multiple time-scales in nonlinear flight mechanics: diagnosis and modeling. Appl. Math.

Comput., 164(2):627–648, 2005.

[Med05] G.S. Medvedev. Reduction of a model of an excitable cell to a one-dimensional map. Physica D,

202(1):37–59, 2005.

[Med06] G.S. Medvedev. Transition to bursting via deterministic chaos. Phys. Rev. Lett., 97(4):048102, 2006.

[Mei78] W. Meiske. An approximate solution of the Michaelis–Menten mechanism for quasi-steady and state

quasi-equilibrium. Math. Biosci., 42:63–71, 1978.

[Mei07] J.D. Meiss. Differential Dynamical Systems. SIAM, 2007.

[Mel03] J.M. Melenk. hp-Finite Element Methods for Singular Perturbations, volume 1796 of Lecture Notes in Mathe-

matics. Springer, 2003.

[MEvdD13] A. Machina, R. Edwards, and P. van den Driessche. Singular dynamics in gene network models. SIAM

J. Appl. Dyn. Syst., 12(1):95–125, 2013.

[Mey67] R.E. Meyer. On the approximation of double limits by single limits and the Kaplun extension theo-

rem. J. Inst. Math. Appl., 3:245–249, 1967.

[Mey83] R.E. Meyer. A view of the triple deck. SIAM J. Appl. Math., 43(4):639–663, 1983.

[MG53] S.C. Miller and R.H. Good. A WKB-type approximation to the Schrodinger equation. Phys. Rev.,

91:174, 1953.

Page 61: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 765

[MG12] L. Mitchell and G.A. Gottwald. On finite-size Lyapunov exponents in multiscale systems. Chaos,

22(2):023115, 2012.

[MG13a] J. MacLean and G.A. Gottwald. On the convergence of the projective integration method for stiff

ordinary differential equations. arXiv:1301:6851v1, pages 1–22, 2013.

[MG13b] I. Mirzaev and J. Gunawardena. Laplacian dynamics on general graphs. Bull. Math. Biol., 75(11):

2118–2149, 2013.

[MGB95] F. Marchesoni, L. Gammaitoni, and A.R. Bulsara. Spatiotemporal stochastic resonance in a φ4

model of kink-antikink nucleation. Phys. Rev. Lett., 76(15):2609, 1995.

[MGM+91] J.A.J. Metz, S.A.H. Geritz, G. Meszena, F.J.A. Jacobs, and J.S. van Heerwaarden. Adaptive dy-

namics: a geometrical study of the consequences of nearly faithful reproduction. In S.J. van Strien

and S.M. Verduyn Lunel, editors, Stochastic and Spatial Structures of Dynamical Systems, pages 183–231.

North-Holland, 1991.

[MH01] G. Menon and G. Haller. Infinite dimensional geometric singular perturbation theory for the

Maxwell-Bloch equations. SIAM J. Math. Anal., 33(2):315–346, 2001.

[Mic08] P.W. Michor. Topics in Differential Geometry. AMS, 2008.

[Mie90] A. Mielke. Normal hyperbolicity of center manifolds and Saint-Venant’s principle. Arch. Rat. Mech.

Anal., 110(4):353–372, 1990.

[Mie02] A. Mielke. The Ginzburg–Landau equation in its role as a modulation equation. In Handbook of Dy-

namical Systems 2, pages 759–834. Elsevier, 2002.

[Mik08] O. Mikitchenko. Applications of the resolution of singularities to asymptotic analysis of differential equations.

PhD thesis, Boston University, Boston, USA, 2008.

[Mil85] J. Milnor. On the concept of attractor. Comm. Math. Phys., 99:177–195, 1985.

[Mil97a] P.D. Miller. Nonmonotone waves in a three species reaction–diffusion model. Meth. Appl. Anal., 4:

261–282, 1997.

[Mil97b] J.W. Milnor. Topology from the Differentiable Viewpoint. Princeton University Press, 1997.

[Mil06] P.D. Miller. Applied Asymptotic Analysis. AMS, 2006.

[Min47] N. Minorsky. Introduction to Non-Linear Mechanics. Topological Methods. Analytical Methods. Non-Linear Reso-

nance. Relaxation Oscillations. Ann Arbor [Mich.]: J.W. Edwards, 1947.

[Min62] N. Minorsky. Nonlinear Oscillations. Van Nostrand, 1962.

[Mir81] W.L. Miranker. Numerical Methods for Stiff Equations and Singular Perturbation Problems. Kluwer, 1981.

[Mis58] E.F. Mishchenko. Asymptotic theory of relaxation oscillations described by systems of second order.

Mat. Sb. N.S. (in Russian), 44(86):457–480, 1958.

[Mis61] E.F. Mishchenko. Asymptotic calculation of periodic solutions of systems of differential equations

containing small parameters in the derivatives. AMS Transl. Ser., 2(18):199–230, 1961.

[Mis95] K. Mischaikow. Conley Index Theory. In Dynamical Systems, pages 119–207. Springer, 1995.

[Mit09] A. Mitrofanova. Efficient systems biology algorithms for biological networks over multiple time-scales: from evo-

lutionary to regulatory time. PhD thesis, Courant Institute of Mathematical Sciences, NYU, New York,

USA, 2009.

[Miu76] R.M. Miura. The Korteweg-de Vries equation: a survey of results. SIAM Rev., 18(3):412–459, 1976.

[MK74] R.M. Miura and M.D. Kruskal. Application of a nonlinear WKB method to the Korteweg-DeVries

equation. SIAM J. Appl. Math., 26:376–395, 1974.

[MK88] R. Marino and P.V. Kokotovic. A geometric approach to nonlinear singularly perturbed control

systems. Automatica, 24(1):31–41, 1988.

[MK93a] G.B. Di Masi and Y.M. Kabanov. The strong convergence of two-scale stochastic systems and sin-

gular perturbations of filtering equations. J. Math. Syst. Est. Contr., 3:207–224, 1993.

[MK93b] E.F. Mishchenko and A.Yu. Kolesov. Asymptotical theory of relaxation oscillations. Proc. Steklov Inst.

Math., 197:1–93, 1993.

[MK01] G.S. Medvedev and N. Kopell. Synchronization and transient dynamics in the chains of electrically

coupled Fitzhugh-Nagumo oscillators. SIAM J. Appl. Math., 61(5):1762–1801, 2001.

[MK03] A.J. Majda and R. Klein. Systematic multi-scale models for the tropics. J. Atmosph. Sci., 60:393–408,

2003.

[MK12a] M.M. McCarthy and N. Kopell. The effect of propofol anesthesia on rebound spiking. SIAM J. Appl.

Dyn. Syst., 11(4):1674–1697, 2012.

[MK12b] C. Meisel and C. Kuehn. On spatial and temporal multilevel dynamics and scaling effects in epileptic

seizures. PLoS ONE, 7(2):e30371, 2012.

[MKHC02] D. McMillen, N. Kopell, J. Hasty, and J.J. Collins. Synchronizing genetic relaxation oscillators by

intercell signaling. Proc. Natl. Acad. Sci. USA, 99(2):679–684, 2002.

[MKK00] G.S. Medvedev, T.J. Kaper, and N. Kopell. A reaction–diffusion system with periodic front dynam-

ics. SIAM J. Appl. Math., 60(5):1601–1638, 2000.

[MKKR94] E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov. Asymptotic Methods in Singularly

Perturbed Systems. Plenum Press, 1994.

[MKP97] M. Moallem, K. Khorasani, and R.V. Patel. An integral manifold approach for tip-position tracking

of flexible multi-link manipulators. IEEE Trans. Robot. Aut., 13(6):823–837, 1997.

[ML81] C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35(1):

193–213, 1981.

[ML93] K. Murali and M. Lakshmanan. Transmission of signals by synchronization in a chaotic van der

Pol-Duffing oscillator. Phys. Rev. E, 48(3):R1624–R1626, 1993.

[MLK94] A.D. MacGillivray, B. Liu, and N.D. Kazarinoff. Asymptotic analysis of the peeling-off point of a

French duck. Methods and Applications of Analysis, 1(4):488–509, 1994.

[MLR11] K. Manktelow, M.J. Leamy, and M. Ruzzene. Multiple scales analysis of wave-wave interactions in

a cubically nonlinear atomic chain. Nonlinear Dyn., 63:193–203, 2011.

[MLS08] R. May, S.A. Levin, and G. Sugihara. Ecology for bankers. Nature, 451:893–895, 2008.

[MLSA07] R. Mankin, T. Laasa, E. Soika, and A. Ainsaar. Noise-controlled slow–fast oscillations in predator–

prey models with the Beddington functional response. Eur. Phys. J. B, 59:259–269, 2007.

[MM76] J. Marsden and M. McCracken. The Hopf Bifurcation and Its Applications. Springer, 1976.

Page 62: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

766 Bibliography

[MM02] K. Mischaikow and M. Mrozek. Conley Index Theory. In B. Fiedler, editor, Handbook of Dynamical

Systems, volume 2, pages 393–460. North-Holland, 2002.

[MM13a] S. MacLachlan and N. Madden. Robust solution of singularly perturbed problems using multigrid

methods. SIAM J. Sci. Comput., 35(5):A2225–A2254, 2013.

[MM13b] F. Marino and F. Marin. Coexisting attractors and chaotic canard explosions in a slow–fast optome-

chanical system. Phys. Rev. E, 87(5):052906, 2013.

[MMK02] A.G. Makeev, D. Maroudas, and I.G. Kevrekidis. “Coarse” stability and bifurcation analysis using

stochastic simulators: kinetic Monte Carlo examples. J. Chem. Phys., 116(23):10083–10091, 2002.

[MMKW13] J. Mitry, M. McCarthy, N. Kopell, and M. Wechselberger. Excitable neurons, firing threshold man-

ifolds and canards. J. Math. Neurosci., 3:12, 2013.

[MMR99] K. Mischaikow, M. Mrozek, and J.F. Reineck. Singular index pairs. J. Dyn. Diff. Eq., 11(3):399–425,

1999.

[MMR10] E. Manica, G.S. Medvedev, and J.E. Rubin. First return maps for the dynamics of synaptically

coupled conditional bursters. Biol. Cybernet., 103:87–104, 2010.

[MN11a] J. Mohapatra and S. Natesan. Parameter-uniform numerical methods for singularly perturbed mixed

boundary value problems using grid equidistribution. J. Appl. Math. Comput., 37:247–265, 2011.

[MN11b] K. Mukherjee and S. Natesan. Optimal error estimate of upwind scheme on Shishkin-type meshes

for singularly perturbed parabolic problems with discontinuous convection coefficients. BIT Numer.

Math., 51:289–315, 2011.

[MNB01] S.K. Mazmuder, A.H. Nayfeh, and D. Boroyevich. Theoretical and experimental investigation of the

fast-and slow-scale instabilities of a DC-DC converter. IEEE Trans. Power Electron., 16(2):201–216,

2001.

[MNS02] P. Morin, R.H. Nochetto, and K.G. Siebert. Convergence of adaptive finite element methods. SIAM

Rev., 44(4):631–658, 2002.

[MO03] B. Mudavanhu and R.E. O’Malley. A new renormalization method for the asymptotic solution of

weakly nonlinear vector systems. SIAM J. Appl. Math., 63(2):373–397, 2003.

[Moe96] R. Moeckel. Transition tori in the five-body problem. J. Differential Equat., 129(2):290–314, 1996.

[Moe02] J. Moehlis. Canards in a surface oxidation reaction. J. Nonlinear Sci., 12:319–345, 2002.

[Moe06] J. Moehlis. Canards for a reduction of the Hodgkin–Huxley equations. J. Math. Biol., 52:141–153,

2006.

[Mon86] J.T. Montgomery. Existence and stability of periodic motion under higher order averaging. J. Differ-

ential Equat., 64(1):67–78, 1986.

[Moo66] R.E. Moore. Interval Analysis. Prentice-Hall, 1966.

[MOPS05] M.P. Mortell, R.E. O’Malley, A. Pokrovskii, and V. Sobolev. Singular Perturbations and Hysteresis. SIAM,

2005.

[Mor66] J.A. Morrison. Comparison of the modified method of averaging and the two variable expansion

procedure. SIAM Rev., 8:66–85, 1966.

[Mor86] I.M. Moroz. Amplitude expansions and normal forms in a model for thermohaline convection. Stud.

Appl. Math., 74(2):155–170, 1986.

[MOS89] F. Martinelli, E. Olivieri, and E. Scoppola. Small random perturbations of finite-and infinite-

dimensional dynamical systems: unpredictability of exit times. J. Stat. Phys., 55(3):477–504, 1989.

[MOS96] J.J. Miller, E. O’Riordan, and G.I. Shishkin. Fitted Numerical Methods for Singular Perturbation Problems.

World Scientific, 1996.

[MOS02] S. Matthews, E. O’Riordan, and G.I. Shishkin. A numerical method for a system of singularly per-

turbed reaction–diffusion equations. J. Comput. Appl. Math., 145:151–166, 2002.

[MP92a] U. Maas and S.B. Pope. Implementation of simplified chemical kinetics based on intrinsic low-

dimensional manifolds. In Proceedings of the 24th International Symposium on Combustion, pages 103–112.

The Combustion Institute, 1992.

[MP92b] U. Maas and S.B. Pope. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in com-

position space. Combust. Flame, 88:239–264, 1992.

[MP94] P.K. Moore and L.R. Petzold. A stepsize control strategy for stiff systems of ordinary differential

equations. Appl. Numer. Math., 15(4):449–463, 1994.

[MP96] A. Milik and A. Prskawetz. Slow-fast dynamics in a model of population and resource growth. Math.

Popul. Stud., 6(2):155–169, 1996.

[MP98] T.A. Mel’nik and V.A. Plotnikov. Averaging of quasidifferential equations with fast and slow vari-

ables. Siberian Math. J., 39(5):947–952, 1998.

[MP99] J. Mallet-Paret. The global structure of traveling waves in spatially discrete dynamical systems. J.

Dyn. Diff. Eq., 8:49–128, 1999.

[MP07] R. Molle and D. Passaseo. Multispike solutions of nonlinear elliptic equations with critical Sobolev

exponent. Comm. Partial Differential Equations, 32:797–818, 2007.

[MP08] R.O. Moore and K. Promislow. The semistrong limit of multipulse interaction in a thermally driven

optical system. J. Differential Equat., 245(6):1616–1655, 2008.

[MP11] A. Mokkadem and M. Pelletier. A generalization of the averaging procedure: the use of two-time-

scale algorithms. SIAM J. Control Optim., 49(4):1523–1543, 2011.

[MP12] P. De Maesschalck and N. Popovic. Gevrey properties of the asymptotic critical wave speed in a

family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 386(2):542–558, 2012.

[MP13] J.D. Mengers and J.M. Powers. One-dimensional slow invariant manifolds for fully coupled reaction

and micro-scale diffusion. SIAM J. Appl. Dyn. Syst., 12(2):560–595, 2013.

[MPdlP12] M. Marva, J.-C. Poggiale, and R. Bravo de la Parra. Reduction of slow–fast periodic systems with

applications to population dynamics models. Math. Models Methods Appl. Sci., 22(10):1250025, 2012.

[MPFS96] A. Milik, A. Prskawetz, G. Feichtinger, and W.C. Sanderson. Slow-fast dynamics in Wonderland.

Environ. Model. Assessm., 1(1):3–17, 1996.

[MPK09] P. De Maesschalck, N. Popovic, and T.J. Kaper. Canards and bifurcation delays of spatially homoge-

neous and inhomogeneous types in reaction–diffusion equations. Adv. Differential Equat., 14(9):943–962,

2009.

Page 63: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 767

[MPL93] R. Mettin, U. Parlitz, and W. Lauterborn. Bifurcation structure of the driven van der Pol oscillator.

Int. J. Bif. Chaos, 3(6):1529–1555, 1993.

[MPM08] A. Mielke, A. Petrov, and J.A.C. Martins. Convergence of solutions of kinetic variational inequalities

in the rate-independent quasi-static limit. J. Math. Anal. Appl., 348:1012–1020, 2008.

[MPN11] J. Mallet-Paret and R.D. Nussbaum. Superstability and rigorous asymptotics in singularly perturbed

state-dependent delay-differential equations. J. Differential Equat., 11(1):4037–4084, 2011.

[MPS88] J. Mallet-Paret and G.R. Sell. Inertial manifolds for reaction diffusion equations in higher space

dimensions. J. Amer. Math. Soc., 1(4):805–866, 1988.

[MPSS93] J. Mallet-Paret, G.R. Sell, and Z.D. Shao. Obstructions to the existence of normally hyperbolic

inertial manifolds. Indiana Univ. Math. J., 42(3):1027–1055, 1993.

[MPY11] K.R. Meyer, J.F. Palacian, and P. Yanguas. Geometric averaging of Hamiltonian systems: periodic

solutions, stability, and KAM tori. SIAM J. Appl. Dyn. Syst., 10(3):817–856, 2011.

[MR71] B.J. Matkowsky and E.L. Reiss. On the asymptotic theory of dissipative wave motion. Arch. Rat.

Mech. Anal., 42(3):194–212, 1971.

[MR77] B.J. Matkowsky and E.L. Reiss. Singular perturbations of bifurcations. SIAM J. Appl. Math.,

33(2):230–255, 1977.

[MR80] E.F. Mishchenko and N.Kh. Rozov. Differential Equations with Small Parameters and Relaxation Oscillations

(translated from Russian). Plenum Press, 1980.

[MR83] P.A. Markowich and C.A. Ringhofer. Singular perturbation problems with a singularity of the second

kind. SIAM J. Math. Anal., 14(5):897–914, 1983.

[MR84] P.A. Markowich and C.A. Ringhofer. A singularly perturbed boundary value problem modelling a

semiconductor device. SIAM J. Appl. Math., 44:213–256, 1984.

[MR90] V. Moll and S.I. Rosencrans. Calculation of the threshold surface for nerve equations. SIAM J. Appl.

Math., 50:1419–1441, 1990.

[MR12a] K.L. Maki and Y. Renardy. The dynamics of a viscoelastic fluid which displays thixotropic yield

stress behavior. J. Non-Newtonian Fluid Mech., 181:30–50, 2012.

[MR12b] L. Mamouhdi and R. Roussarie. Canard cycles of finite codimension with two breaking parameters.

Qual. Theory Dyn. Syst., 11(1):167–198, 2012.

[MR13] C. Melcher and J.D.M. Rademacher. Patterns formation in axially symmetric Landau-Lifshitz-

Gilbert-Slonczewski equations. arXiv:1309.5523, pages 1–27, 2013.

[MRC+05] T. Mei, J. Roychowdhury, T.S. Coffey, S.A. Hutchinson, and D.M. Day. Robust, stable time-domain

methods for solving MPDEs of fast/slow systems. IEEE Trans. Computer-Aided Desg. Integr. Circ. Syst.,

24(2):226–239, 2005.

[MRS90] P.A. Markowich, C.A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, 1990.

[MRS06] J.A.C. Martins, N.V. Rebrova, and V.A. Sobolev. On the (in)-stability of quasi-static paths of

smooth systems: definitions and sufficient conditions. Math. Meth. Appl. Sci., 29(6):741–750, 2006.

[MS74] J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974.

[MS77] B.J. Matkowsky and Z. Schuss. The exit problem for randomly perturbed dynamical systems. SIAM

J. Appl. Math., 33(2):365–382, 1977.

[MS79] B.J. Matkowsky and Z. Schuss. The exit problem: a new approach to diffusion across potential

barriers. SIAM J. Appl. Math., 36(3):604–623, 1979.

[MS82] B.J. Matkowsky and Z. Schuss. Diffusion across characteristic boundaries. SIAM J. Appl. Math.,

42(4):822–834, 1982.

[MS84] R. Silva Madriz and S.S. Sastry. Input–output description of linear systems with multiple time-scales.

Int. J. Contr., 40(4):699–721, 1984.

[MS85] J. Maselko and H.L. Swinney. A complex transition sequence in the Belousov–Zhabotinskii reaction.

Physica Scripta, T9:35–39, 1985.

[MS86a] P.A. Markowich and C. Schmeiser. Uniform asymptotic representation of solutions of the basic

semiconductor-device equations. IMA J. Appl. Math., 36(1):43–57, 1986.

[MS86b] J. Maselko and H.L. Swinney. A Farey triangle in the Belousov–Zhabotinskii reaction. Phys. Lett. A,

119(8):403–406, 1986.

[MS86c] J. Maselko and H.L. Swinney. Complex periodic oscillation and Farey arithmetic in the Belousov–

Zhabotinskii reaction. J. Chem. Phys., 85:6430–6441, 1986.

[MS87] J. Marsden and J. Scheurle. The construction and smoothness of invariant manifolds by the defor-

mation method. SIAM J. Math. Anal., 18(5):1261–1274, 1987.

[MS88] B.J. Matkowsky and Z. Schuss. Uniform asymptotic expansions in dynamical systems driven by

colored noise. Phys. Rev. A, 38(5):2605, 1988.

[MS89] P.A. Markowich and P. Szmolyan. A system of convection-diffusion equations with small diffusion-

coefficient arising in semiconductor physics. J. Differential Equat., 81(2):234–254, 1989.

[MS92] R.S. Maier and D.L. Stein. Transition-rate theory for nongradient drift fields. Phys. Rev. Lett.,

69(26):3691, 1992.

[MS93a] R.S. Maier and D.L. Stein. Effect of focusing and caustics on exit phenomena in systems lacking

detailed balance. Phys. Rev. Lett., 71(12):1783, 1993.

[MS93b] R.S. Maier and D.L. Stein. Escape problem for irreversible systems. Phys. Rev. E, 48(2):931, 1993.

[MS95] A. Mielke and G. Schneider. Attractors for modulation equations on unbounded domains-existence

and comparison. Nonlinearity, 8(5):743, 1995.

[MS96a] R.S. Maier and D.L. Stein. Oscillatory behavior of the rate of escape through an unstable limit

cycle. Phys. Rev. Lett., 77(24):4860, 1996.

[MS96b] R.S. Maier and D.L. Stein. A scaling theory of bifurcations in the symmetric weak-noise escape

problem. J. Stat. Phys., 83(3):291–357, 1996.

[MS96c] R. McGehee and E. Sander. A new proof of the stable manifold theorem. Z. Angew. Math. Phys.,

47(4):497–513, 1996.

[MS96d] D. McLaughlin and J. Shatah. Melnikov analysis for PDE’s. In P. Deift, C.D. Levermore, and C.E.

Wayne, editors, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA,

1994), pages 51–100. AMS, 1996.

Page 64: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

768 Bibliography

[MS97] R.S. Maier and D.L. Stein. Limiting exit location distributions in the stochastic exit problem. SIAM

J. Appl. Math., 57(3):752–790, 1997.

[MS01a] R.S. Maier and D.L. Stein. Noise-activated escape from a sloshing potential well. Phys. Rev. Lett.,

86(18):3942, 2001.

[MS01b] A. Milik and P. Szmolyan. Multiple time scales and canards in a chemical oscillator. In C.K.R.T.

Jones, editor, Multiple Time Scale Dynamical Systems, volume 122, pages 117–140. Springer, 2001.

[MS03a] N. Madden and M. Stynes. A uniformly convergent numerical method for a coupled system of two

singularly perturbed linear reaction–diffusion problems. IMA J. Numer. Anal., 23(4):627–644, 2003.

[MS03b] D. Marchesin and S. Schecter. Oxidation heat pulses in two-phase expansive flow in porous media.

Z. Angew. Math. Phys., 54(1):48–83, 2003.

[MS03c] K. Matthies and A. Scheel. Exponential averaging for Hamiltonian evolution equations. Trans. Amer.

Math. Soc., 355:747–773, 2003.

[MS03d] G. Metivier and S. Schochet. Averaging theorems for conservative systems and the weakly compress-

ible Euler equations. J. Differential Equat., 187(1):106–183, 2003.

[MS03e] C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bull.

Math. Biol., 65:767–793, 2003.

[MS05] C. Mira and A. Shilnikov. Slow-fast dynamics generated by noninvertible plane maps. Int. J. Bif.

Chaos, 15(11):3509–3534, 2005.

[MS06] J.C. Da Mota and S. Schecter. Combustion fronts in a porous medium with two layers. J. Dyn. Diff.

Eq., 18(3):615–665, 2006.

[MS09] V. Manukian and S. Schecter. Travelling waves for a thin liquid film with surfactant on an inclined

plane. Nonlinearity, 22(1):85–122, 2009.

[MS10] S. McCalla and B. Sandstede. Snaking of radial solutions of the multi-dimensional Swift–Hohenberg

equation: A numerical study. Physica D, 239:1581–1592, 2010.

[MS11] I. Melbourne and A. Stuart. A note on diffusion limits of chaotic skew product flows. Nonlinearity,

24:1361–1367, 2011.

[MS13] J.B. McLeod and S. Sadhu. Existence of solutions and asymptotic analysis of a class of singularly

perturbed ODEs with boundary conditions. Adv. Differential Equat., 18(9):825–848, 2013.

[MSB+13] C. Marschler, J. Sieber, R. Berkemer, A. Kawamoto, and J. Starke. Implicit methods for equation-

free analysis: convergence results and analysis of emergent waves in microscopic traffic models.

arXiv:1301.6640v1, pages 1–30, 2013.

[MSBJ82] B.J. Matkowsky, Z. Schuss, and E. Ben-Jacob. A singular perturbation approach to Kramers’ diffu-

sion problem. SIAM J. Appl. Math., 42(4):835–849, 1982.

[MSC11] T. Malashchenko, A. Shilnikov, and G. Cymbalyuk. Bistability of bursting and silence regimes in a

model of a leech heart interneuron. Phys. Rev. E, 84:041910, 2011.

[MSdlPS09] M. Marva, E. Sanchez, R. Bravo de la Parra, and L. Sanz. Reduction of slow–fast discrete models

coupling migration and demography. J. Theoret. Biol., 258(3):371–379, 2009.

[MSK+84] B.J. Matkowsky, Z. Schuss, C. Knessl, C. Tier, and M. Mangel. Asymptotic solution of the Kramers–

Moyal equation and first-passage times for Markov jump processes. Phys. Rev. A, 29(6):3359, 1984.

[MSLG98] A. Milik, P. Szmolyan, H. Loeffelmann, and E. Groeller. Geometry of mixed-mode oscillations in the

3-d autocatalator. Int. J. Bif. Chaos, 8(3):505–519, 1998.

[MST83] B.J. Matkowsky, Z. Schuss, and C. Tier. Diffusion across characteristic boundaries with critical

points. SIAM J. Appl. Math., 43(4):673–695, 1983.

[MST03] P.E. McSharry, L.A. Smith, and L. Tarassenko. Prediction of epileptic seizures. Nature Med., 9:

241–242, 2003.

[MSU07] K. Matthies, G. Schneider, and H. Uecker. Exponential averaging for traveling wave solutions in

rapidly varying periodic media. Math. Nachr., 280(4):408–422, 2007.

[MSVE06] P. Metzner, C. Schutte, and E. Vanden-Eijnden. Illustration of transition path theory on a collection

of simple examples. J. Chem. Phys., 125:084110, 2006.

[MSVE09] P. Metzner, C. Schutte, and E. Vanden-Eijnden. Transition path theory for Markov jump processes.

Multiscale Model. Simul., 7(3):1192–1219, 2009.

[MSZ00] A. Mielke, G. Schneider, and A. Ziegra. Comparison of inertial manifolds and application to modu-

lated systems. Math. Machr., 214:53–70, 2000.

[MT04] F. Mazzia and D. Trigiante. A hybrid mesh selection strategy based on conditioning for boundary

value ODE problems. Numerical Algorithms, 36:169–187, 2004.

[MT10] W. Marszalek and Z. Trzaska. Mixed-mode oscillations in a modified Chua’s circuit. Circuits Syst.

Signal Process., 29(6):1075–1087, 2010.

[MT11] T.V. Martins and R. Toral. Synchronisation induced by repulsive interactions in a system of van der

Pol oscillators. Prog. Theor. Phys., 126(3):353–368, 2011.

[MT12] S. Meleard and V.C. Tran. Slow and fast scales for superprocess limits of age-structured populations.

Stochastic Process. Appl., 122:250–276, 2012.

[MTA08] K.D. Mease, U. Topcu, and E. Aykutlug. Characterizing two-timescale nonlinear dynamics using

finite-time Lyapunov exponents and vectors. arXiv:0807.0239v1, pages 1–38, 2008.

[MTVE99] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Models for stochastic climate prediction. Proc.

Nat. Acad. USA, 96:14687–14691, 1999.

[MTVE01] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A mathematical framework for stochastic climate

models. Comm. Pure and Appl. Math., 54:891–974, 2001.

[MTVE02] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A priori tests of a stochastic mode reduction

strategy. Physica D, 170:206–252, 2002.

[MTVE03] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Systematic strategies for stochastic mode reduc-

tion in climate. J. Atmosph. Sci., 60:1705–1722, 2003.

[MTVE06] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Stochastic models for selected slow variables in

large deterministic systems. Nonlinearity, 19:769–794, 2006.

[Mun79] T. Munakata. Hydrodynamic equations from Fokker–Planck equations - multiple time scale method.

J. Phys. Soc. Japan, 46:748–755, 1979.

[Mun96] J.R. Munkres. Elements Of Algebraic Topology. Westview Press, 1996.

Page 65: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 769

[Mun97] J.R. Munkres. Analysis on Manifolds. Westview Press, 1997.

[Mur74] J.D. Murray. On the role of myoglobin in muscle respiration. J. Theor. Biol., 47(1):115–126, 1974.

[Mur83] J. Murdock. Some asymptotic estimates for higher order averaging and a comparison with iterated

averaging. SIAM J. Math. Anal., 14(3):421–424, 1983.

[Mur84] J.D. Murray. Asymptotic Analysis. Springer, 1984.

[Mur87] J.A. Murdock. Perturbations: Theory and Methods. SIAM, 1987.

[Mur94] J. Murdock. Some foundational issues in multiple scale theory. Applicable Analysis, 53(3):157–173,

1994.

[Mur02a] J. Murdock. Normal Forms and Unfoldings for Local Dynamical Systems. Springer, 2002.

[Mur02b] J.D. Murray. Mathematical Biology I: An Introduction. Springer, 3rd edition, 2002.

[Mur03] J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, 3rd edition,

2003.

[Mus06] A. Mustafin. Two mutually loss-coupled lasers featuring astable multivibrator. Physica D, 218(2):167–

176, 2006.

[MVE08] C.B. Muratov and E. Vanden-Eijnden. Noise-induced mixed-mode oscillations in a relaxation oscil-

lator near the onset of a limit cycle. Chaos, 18:015111, 2008.

[MVEE05] C.B. Muratov, E. Vanden-Eijnden, and W. E. Self-induced stochastic resonance in excitable systems.

Physica D, 210:227–240, 2005.

[MW96] J. Murdock and L.C. Wang. Validity of the multiple scale method for very long intervals. Z. Angew.

Math. Phys., 47(5):760–789, 1996.

[MXO13] J.M. Melenk, C. Xenophontos, and L. Oberbroeckling. Robust exponential convergence of hp

FEM for singularly perturbed reaction–diffusion systems with multiple scales. IMA J. Numer. Anal.,

33(2):609–628, 2013.

[MY07] G. Medvedev and Y. Yoo. Multimodal oscillations in systems with strong contraction. Physica D,

228:87–106, 2007.

[MY08] G. Medvedev and Y. Yoo. Chaos at the border of criticality. Chaos, 18:033105, 2008.

[MY09] P. Ming and J.Z. Yang. Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale

Model. Simul., 7(4):1838–1875, 2009.

[MZ08] A. Miranville and S. Zelik. Attractors for dissipative partial differential equations in bounded and

unbounded domains. In Handbook of Differential Equations: Evolutionary Equations, pages 103–200. Else-

vier, 2008.

[MZ12] G. Medvedev and S. Zhuravytska. Shaping bursting by electrical coupling and noise. Biol. Cybern.,

106(2):67–88, 2012.

[NA12] A.I. Neishtadt and A.V. Artemyev. Destruction of adiabatic invariance for billiards in a strong

nonuniform magnetic field. Phys. Rev. Lett., 108:064102, 2012.

[Nag39] M. Nagumo. Uber das Verhalten der Integrale von λy′′ + f(x, y, y′, λ) = 0 fur λ → 0. Proc. Phys.

Math. Soc. Japan, 21:529–534, 1939.

[Nag93] M. Nagumo. Mitio Nagumo Collected Papers. Springer, 1993.

[Nai02] D.S. Naidu. Singular perturbations and time scales in control theory and applications: an overview.

Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 9:233–278, 2002.

[Nak03] M. Nakahara. Geometry, Topology and Physics. Taylor & Francis, 2003.

[Nam90] S. Namachchivaya. Stochastic bifurcation. Appl. Math. Comp., 38:101–159, 1990.

[Nam03] S. Namachchivaya. Spindle speed variation for the suppression of regenerative chatter. J. Nonl. Sci.,

13(3):265–288, 2003.

[Nar87] K. Narita. Asymptotic analysis for interactive oscillators of the van der Pol type. Adv. Appl. Prob.,

19:44–80, 1987.

[Nar91] K. Narita. Asymptotic behavior of velocity process in the Smoluchowski-Kramers approximation for

stochastic differential equations. Adv. Appl. Prob., 23:317–326, 1991.

[Nar93] K. Narita. Asymptotic behavior of solutions of SDE for relaxation oscillations. SIAM J. Math. Anal.,

24(1):172–199, 1993.

[NAY62] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon.

Proc. IRE, 50:2061–2070, 1962.

[Nay70] A.H. Nayfeh. Nonlinear stability of a liquid jet. Phys. Fluids, 13:841, 1970.

[Nay81] A.H. Nayfeh. Introduction to Perturbation Techniques. Wiley, 1981.

[Nay04] A.H. Nayfeh. Perturbation Methods. Wiley, 2004.

[Nay05] A.H. Nayfeh. Resolving controversies in the application of the method of multiple scales and the

generalized method of averaging. Nonlinear Dynam., 40:61–102, 2005.

[Nay11] A.H. Nayfeh. The Method of Normal Forms. Wiley, 2011.

[NBB08] W.H. Nesse, A. Borisyuk, and P.C. Bressloff. Fluctuation-driven rhythmogenesis in an excitatory

neuronal network with slow adaptation. J. Comput. Neurosci., 25(2):317–333, 2008.

[NBK13] J.M. Newby, P.C. Bressloff, and J.P. Keener. Breakdown of fast–slow analysis in an excitable system

with channel noise. Phys. Rev. Lett., 111(12):128101, 2013.

[NBS+06] C.S. Nunemaker, R. Bertram, A. Sherman, K. Tsaneva-Atanasova, C.R. Daniel, and L.S. Satin.

Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms.

Biophys. J., 91(6):2082–2096, 2006.

[NBW03] M.E.J. Newman, A.-L. Barabasi, and D.J. Watts. The Structure and Dynamics of Networks. Princeton

University Press, 2003.

[NC01] D.S. Naidu and A.J. Calise. Singular perturbations and time scales in guidance and control of

aerospace systems: a survey. J. Guid. Contr. Dyn., 24(6):1057–1078, 2001.

[NDL+11] A.B. Neiman, K. Dierkes, B. Lindner, L. Han, and A.L. Shilnikov. Spontaneous voltage oscillations

and response dynamics of a Hodgkin–Huxley type model of sensory hair cells. J. Math. Neurosci.,

1:1–24, 2011.

[NE03] W.I. Newman and M. Efroimsky. The method of variation of constants and multiple time scales in

orbital mechanics. Chaos, 13(2):476–485, 2003.

[Neg08] C. Negulescu. Numerical analysis of a multiscale finite element scheme for the resolution of the

stationary Schrodinger equation. Numer. Math., 108(4):625–652, 2008.

Page 66: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

770 Bibliography

[Nei76] A.I. Neishtadt. Passage through a separatrix in a resonance problem with a slowly-varying parameter.

J. Appl. Math. Mech., 39(4):594–605, 1976.

[Nei81] A.I. Neishtadt. On the accuracy of conservation of the adiabatic invariant. J. Appl. Math. Mech.,

45(1):58–63, 1981.

[Nei84] A.I. Neishtadt. The separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech.,

48(2):133–139, 1984.

[Nei87a] A.I. Neishtadt. On the change in the adiabatic invariant on crossing a separatrix in systems with

two degrees of freedom. J. Appl. Math. Mech., 51(5):586–592, 1987.

[Nei87b] A.I. Neishtadt. Persistence of stability loss for dynamical bifurcations. I. Differential Equations Trans-

lations, 23:1385–1391, 1987.

[Nei88] A.I. Neishtadt. Persistence of stability loss for dynamical bifurcations. II. Differential Equations Trans-

lations, 24:171–176, 1988.

[Nei91] A.I. Neishtadt. Probability phenomena due to separatrix crossing. Chaos, 1(1):42–48, 1991.

[Nei00] A.I. Neishtadt. On the accuracy of persistence of adiabatic invariant in single-frequency systems.

Reg. Chaotic. Dyn., 5(2):213–218, 2000.

[Nei03] A.I. Neishtadt. On averaging in two-frequency systems with small Hamiltonian and much smaller

non-Hamiltonian perturbations. Mosc. Math. J., 3:1039–1052, 2003.

[Nei09] A.I. Neishtadt. On the stability loss delay for dynamical bifurcations. Discr. Cont. Dyn. Sys. S,

2(4):897–909, 2009.

[Nes93] A.V. Nesterov. A modification of the boundary function method for singularly perturbed partial

differential equations. Math. Notes, 54(1):705–709, 1993.

[Net68] A.V. Netushil. Nonlinear element of stop type. Avtomat. Telemech., 7:175–179, 1968. (in Russian).

[Net70] A.V. Netushil. Self-oscillations in systems with negative hysteresis. In Proc. 5th International Conference

on Nonlinear Oscillations, volume 4, pages 393–396. Izdanie Inst. Mat. Akad. Nauk Ukrain., 1970. (in

Russian).

[Neu83] J.C. Neu. Resonantly interacting waves. SIAM J. Appl. Math., 43:141–156, 1983.

[New03] M.E.J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.

[New11] M.E.J. Newman. Networks - An Introduction. OUP, 2011.

[NF82] R.M. Noyes and S.D. Furrow. The oscillatory Briggs–Rauscher reaction. 3. A skeleton mechanism

for oscillations. J. Am. Chem. Soc., 104:45–48, 1982.

[NF87] Y. Nishiura and H. Fujii. Stability of singularly perturbed solutions to systems of reaction–diffusion

equations. SIAM J. Math. Anal., 18(6):1726–1770, 1987.

[NF89] A.H. Nguyen and S.J. Fraser. Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys.,

91:186, 1989.

[NF13] P. Nicolini and D. Frezzato. Features in chemical kinetics. II. A self-emerging definition of slow

manifolds. J. Chem. Phys., 138:234102, 2013.

[Ngu89] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization.

SIAM J. Math. Anal., 20(3):608–623, 1989.

[NHCG98] C.A. Del Negro, C.F. Hsiao, S.H. Chandler, and A. Garfinkel. Evidence for a novel bursting mecha-

nism in rodent trigeminal neurons. Biophysical J., 75:174–182, 1998.

[NHdlPA11] T. Nguyen-Huu, R. Bravo de la Parra, and P. Auger. Approximate aggregation of linear discrete

models with two time scales: re-scaling slow processes to the fast scale. J. Difference Equ. Appl.,

17(4):621–635, 2011.

[NHSS07] F. Noe, I. Horenko, C. Schutte, and J.C. Smith. Hierarchical analysis of conformational dynamics

in biomolecules: transition networks of metastable states. J. Chem. Phys., 126:(155101), 2007.

[Ni98] W.-M. Ni. Diffusion, cross-diffusion and their spike-layer steady states. Notices Amer. Math. Soc.,

45(1):9–18, 1998.

[Ni04] W.-M. Ni. Qualitative properties of solutions to elliptic problems. In Stationary Partial Differential

Equations, volume 1 of Handbook of Differential Equations, pages 157–233. North-Holland, 2004.

[Nii96] S. Nii. N-homoclinic bifurcations for homoclinic orbits changing their twisting. J. Dyn. Diff. Eq.,

8(4):549–572, 1996.

[Nii97] S. Nii. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh–Nagumo

equations. SIAM J. Math. Anal., 28(5):1094–1112, 1997.

[Nip83] K. Nipp. An extension of Tikhonov’s theorem in singular perturbations for the planar case. Z. Angew.

Math. Phys., 34(3):277–290, 1983.

[Nip85] K. Nipp. Invariant manifolds of singularly perturbed ordinary differential equations. ZAMP, 36:

309–320, 1985.

[Nip86a] K. Nipp. Breakdown of stability in singularly perturbed autonomous systems I. Orbit equations.

SIAM J. Math. Anal., 17(5):512–532, 1986.

[Nip86b] K. Nipp. Breakdown of stability in singularly perturbed autonomous systems II. Estimates for the

solutions and application. SIAM J. Math. Anal., 17(5):1068–1085, 1986.

[Nip91] K. Nipp. Numerical integration of stiff ODE’s of singular perturbation type. Zeitschr. Appl. Math.

Phys., 42:54–79, 1991.

[Nip02] K. Nipp. Numerical integration of differential algebraic systems and invariant manifolds. BIT,

42(2):408–439, 2002.

[Nis94] Y. Nishiura. Coexistence of infinitely many stable solutions to reaction diffusion systems in the

singular limit. In Dynamics Reported, pages 25–103. Springer, 1994.

[NKMS90] T. Naeh, M.M. Klosek, B.J. Matkowsky, and Z. Schuss. A direct approach to the exit problem. SIAM

J. Appl. Math., 50(2):595–627, 1990.

[NLCK06] B. Nadler, S. Lafon, R.R. Coifman, and I.G. Kevrekidis. Diffusion maps, spectral clustering and

reaction coordinates of dynamical systems. Appl. Comput. Harmonic Anal., 21(1):113–127, 2006.

[NM89] Y. Nishiura and M. Mimura. Layer oscillations in reaction–diffusion systems. SIAM J. Appl. Math.,

49(2):481–514, 1989.

[NM95] A.H. Nayfeh and D.T. Mook. Nonlinear Oscillations. Wiley, 1995.

Page 67: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 771

[NM+10] J. Nowacki, , S.H. Mazlan, H.M. Osinga, and K.T. Tsaneva-Atanasova. The role of large-conductance

Calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model.

Physica D, 239(9):485–493, 2010.

[NMIF90] Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii. Singular limit analysis of stability of traveling wave

solutions in bistable reaction–diffusion systems. SIAM J. Math. Anal., 21(1):85–122, 1990.

[NN81] C. Nicolis and G. Nicolis. Stochastic aspects of climatic transitions—additive fluctuations. Tellus,

33(3):225–234, 1981.

[NN13] F. Noe and F. Nuske. A variational approach to modeling slow processes in stochastic dynamical

systems. Multiscale Model. Simul., 11(2):635–655, 2013.

[NOB+11] J. Nowacki, H.M. Osinga, J.T. Brown, A.D. Randall, and K.T. Tsaneva-Atanasova. A unified model

of CA1/3 pyramidal cells: an investigation into excitability. Progress in Biophysics and Molecular Biology,

105:34–48, 2011.

[Nor06] J.R. Norris. Markov Chains. Cambridge University Press, 2006.

[NOTA12] J. Nowacki, H.M. Osinga, and K.T. Tsaneva-Atanasova. Dynamical systems analysis of spike-adding

mechanisms in transient bursts. J. Math. Neurosci., 2:7, 2012.

[NP87] D.S. Naidu and D.B. Price. Time-scale synthesis of a closed-loop discrete optimal control system. J.

Guid. Contr. Dyn., 10(5):417–421, 1987.

[NP88] D.S. Naidu and D.B. Price. Singular perturbation and time scale approaches in discrete control

systems. J. Guid. Contr. Dyn., 11(6):592–594, 1988.

[NP03] E. Neumann and A. Pikovsky. Slow-fast dynamics in Josephson junctions. Eur. Phys. J. B, 34:293–303,

2003.

[NPT95] G. Neher, L. Pohlmann, and H. Tributsch. Mixed-mode oscillations self-similarity and time-transient

chaotic behaviour in the (photo-) electrochemical system p − CuInSe2/H2O2. J. Phys. Chem.,

99:17763–17771, 1995.

[NR85] D.S. Naidu and A.K. Rao. Singular Perturbation Analysis of Discrete Control Systems. Springer, 1985.

[NRL86] A. Neves, H. Ribeiro, and O. Lopes. On the spectrum of evolution operators generated by hyperbolic

systems. J. Funct. Anal., 67:320–344, 1986.

[NRT+10] J. Nawrath, M.C. Romano, M. Thiel, I. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and

B. Schelter. Distinguishing direct from indirect interactions in oscillatory networks with multiple

time scales. Phys. Rev. Lett., 104:038701, 2010.

[NS95] K. Nipp and D. Stoffer. Invariant manifolds and global error estimates of numerical integration

schemes applied to stiff systems of singular perturbation type - Part I: RK-methods. Numer. Math.,

70:245–257, 1995.

[NS96] K. Nipp and D. Stoffer. Invariant manifolds and global error estimates of numerical integration

schemes applied to stiff systems of singular perturbation type - Part II: Linear multistep methods.

Numer. Math., 74:305–323, 1996.

[NS98] J.A. Nohel and D.H. Sattinger, editors. Selected Papers of Norman Levinson Volume 1. Springer, 1998.

[NS99] N.N. Nefedov and K.R. Schneider. Immediate exchange of stabilities in singularly perturbed systems.

Differential and Integral Equat., 12:583–600, 1999.

[NS03] M.C. Natividad and M. Stynes. Richardson extrapolation for a convection-diffusion problem using

a Shishkin mesh. Appl. Numer. Math., 45(2):315–329, 2003.

[NS04] A.I. Neishtadt and V.V. Sidorenko. Wisdom system: dynamics in the adiabatic approximation.

Celestial Mechanics and Dynamical Astronomy, 90(3):307–330, 2004.

[NS08] N.N. Nefedov and K.R. Schneider. On immediate-delayed exchange of stabilities and periodic forced

canards. Comput. Math. Math. Phys., 48(1):43–58, 2008.

[NS12] A.I. Neishtadt and T. Su. On phenomenon of scattering on resonances associated with discretisation

of systems with fast rotating phase. Regular & Chaotic Dyn., 17(3):359–366, 2012.

[NS13a] A.I. Neishtadt and T. Su. On asymptotic description of passage through a resonance in quasilinear

Hamiltonian systems. SIAM J. Appl. Dyn. Syst., 12(3):1436–1473, 2013.

[NS13b] K. Nipp and D. Stoffer. Invariant Manifolds in Discrete and Continuous Dynamical Systems. EMS, 2013.

[NST97] A.I. Neishtadt, V.V. Sidorenko, and D.V. Treschev. Stable periodic motions in the problem on pas-

sage through a separatrix. Chaos, 7(1):2–11, 1997.

[NSTV08] A. Neishtadt, C. Simo, D.V. Treschev, and A. Vasiliev. Periodic orbits and stability islands in chaotic

seas created by separatrix crossings in slow–fast systems. Discr. Contin. Dyn. Syst. B, 10(2):621–650,

2008.

[NT01] P. Noble and S. Travadel. Non-persistence of roll-waves under viscous perturbations. Discr. Cont. Dyn.

Syst. B, 1(1):61–70, 2001.

[Num84] E. Nummelin. General irreducible Markov chains and nonnegative operators, volume 84 of Tracts in Mathemat-

ics. CUP, 1984.

[NV99] A.I. Neishtadt and A.A. Vasiliev. Change of the adiabatic invariant at a separatrix in a volume-

preserving 3D system. Nonlinearity, 12(2):303, 1999.

[NV05] A.I. Neishtadt and A.A. Vasiliev. Phase change between separatrix crossings in slow–fast Hamilto-

nian systems. Nonlinearity, 18(3):1393–1406, 2005.

[NV06] A.I. Neishtadt and A.A. Vasiliev. Destruction of adiabatic invariance at resonances in slow–fast

Hamiltonian systems. Nucl. Instr. Meth. Phys. Res. A, 561:158–165, 2006.

[NW99] M.E. Newman and D.J. Watts. Renormalization group analysis of the small-world network model.

Phys. Lett. A, 263(4):341–346, 1999.

[NW07] L. Noethen and S. Walcher. Quasi-steady state in the Michaelis–Menten system. Nonl. Anal.: Real

World Appl., 8(5):1512–1535, 2007.

[NW11] L. Noethen and S. Walcher. Tikhonov’s theorem and quasi-steady state. Discr. Cont. Dyn. Syst. B,

16(3):945–961, 2011.

[NWB+02] C.A. Del Negro, C.G. Wilson, R.J. Butera, H. Rigatto, and J.C. Smith. Periodicity, mixed-mode

oscillations, and quasiperiodicity in a rhythm-generating neural network. Biophysical J., 82:206–214,

2002.

[NY10] S.L. Nguyen and G. Yin. Asymptotic properties of Markov-modulated random sequences with fast

and slow timescales. Stochastics, 82(4):445–474, 2010.

Page 68: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

772 Bibliography

[OA82] R.E. O’Malley and L.R. Anderson. Time-scale decoupling and order reduction for linear time-varying

systems. Optim. Contr. Appl. Meth., 3:133–153, 1982.

[O’B03] N. O’Bryant. A noisy system with a flattened Hamiltonian and multiple time scales. Stoch. Dyn.,

3(1):1–54, 2003.

[OC12] D. O’Malley and J.H. Cushman. Two-scale renormalization-group classification of diffusive pro-

cesses. Phys. Rev. E, 86:011126, 2012.

[OCA11] E. Olbrich, J.C. Claussen, and P. Achermann. The multiple time scales of sleep dynamics as a

challenge for modelling the sleeping brain. Philos. Trans. R. Soc. Lond. Ser. A, 369(1952):3884–3901,

2011.

[OCK03] B.E. Oldeman, A.R. Champneys, and B. Krauskopf. Homoclinic branch switching: a numerical im-

plementation of Lin’s method. Int. J. Bif. Chaos, 13(10):2977–2999, 2003.

[OCN99] S.S. Oueini, C.-M. Chin, and A.H. Nayfeh. Dynamics of a cubic nonlinear vibration absorber. Non-

linear Dyn., 20:283–295, 1999.

[OD78] L.F. Olsen and H. Degn. Oscillatory kinetics of the peroxidase-oxidase reaction in an open system.

Experimental and theoretical studies. Biochim. Biophys. Acta, 523(2):321–334, 1978.

[Oda95] K. Odani. The limit cycle of the van der Pol equation is not algebraic. J. Differential Equat., 115(1):

146–152, 1995.

[OE87] M. Orban and I.R. Epstein. Chemical oscillators in group VIA: The Cu(II)-catalyzed reaction

between hydrogen peroxide and thiosulfate ion. J. Am. Chem. Soc., 109:101–106, 1987.

[OF80] R.E. O’Malley and J.E. Flaherty. Analytical and numerical methods for nonlinear singular singularly-

perturbed initial value problems. SIAM J. Appl. Math., 38(2):225–248, 1980.

[OH98] N. Okazaki and I. Hanazaki. Photo-induced chaos in the Briggs–Rauscher reaction. J. Chem. Phys.,

109(2):637–642, 1998.

[OHLM03] J. Ockendon, S. Howison, A. Lacey, and A. Movchan. Applied Partial Differential Equations. OUP, 2003.

[OK68] R.E. O’Malley and J.B. Keller. Loss of boundary conditions in the asymptotic solution of linear

ordinary differential equations, II boundary value problems. Comm. Pure Appl. Math., 21(3):263–270,

1968.

[OK75] R.E. O’Malley and C.F. Kung. The singularly perturbed linear state regulator problem. II. SIAM J.

Contr., 13(2):327–337, 1975.

[OK94] R.E. O’Malley and L.V. Kalachev. Regularization of nonlinear differential-algebraic equations. SIAM

J. Math. Anal., 25(2):615–629, 1994.

[OK96] R.E. O’Malley and L.V. Kalachev. The regularization of linear differential-algebraic equations. SIAM

J. Math. Anal., 27(1):258–273, 1996.

[OK09] R.E. O’Malley and E. Kirkinis. Examples illustrating the use of renormalization techniques for sin-

gularly perturbed differential equations. Stud. Appl. Math., 122:105–122, 2009.

[OK11] R.E. O’Malley and E. Kirkinis. Two-timing and matched asymptotic expansions for singular pertur-

bation problems. European J. Appl. Math., 22(6):613–629, 2011.

[Oka87] H. Oka. Constrained systems, characteristic surfaces, and normal forms. Japan J. Appl. Math.,

4(3):393–431, 1987.

[OKCRE00] M. Orban, K. Kurin-Csorgei, G. Rabai, and I.R. Epstein. Mechanistic studies of oscillatory cop-

per(II) catalyzed oxidation reactions of sulfour compounds. Chem. Eng. Sci., 55:267–273, 2000.

[Øks03] B. Øksendal. Stochastic Differential Equations. Springer, Berlin Heidelberg, Germany, 5th edition, 2003.

[Olv61] F.W.J. Olver. Error bounds for the Liouville–Green (or WKB) approximation. Proc. Cambridge Philos.

Soc., 57:790–810, 1961.

[O’M68a] R.E. O’Malley. A boundary value problem for certain nonlinear second order differential equations

with a small parameter. Arch. Rat. Mech. Anal., 29(1):66–74, 1968.

[O’M68b] R.E. O’Malley. Topics in singular perturbations. Adv. Math., 2:365–470, 1968.

[O’M69] R.E. O’Malley. On a boundary value problem for a nonlinear differential equation with a small

parameter. SIAM J. Appl. Math., 17(3):569–581, 1969.

[O’M70a] R.E. O’Malley. A non-linear singular perturbation problem arising in the study of chemical flow

reactors. IMA J. Appl. Math., 6(1):12–20, 1970.

[O’M70b] R.E. O’Malley. On boundary value problems for a singularly perturbed differential equation with a

turning point. SIAM J. Math. Anal., 1(4):479–490, 1970.

[O’M70c] R.E. O’Malley. Singular perturbations of a boundary value problem for a system of nonlinear differ-

ential equations. J. Differential Equat., 8:431–447, 1970.

[O’M71a] R.E. O’Malley. Boundary layer methods for nonlinear initial value problems. SIAM Rev., 13(4):

425–434, 1971.

[O’M71b] R.E. O’Malley. On initial value problems for nonlinear systems of differential equations with two

small parameters. Arch. Rat. Mech. Anal., 40(3):209–222, 1971.

[O’M72a] R.E. O’Malley. Singular perturbation of the time-invariant linear state regulator problem. J. Differ-

ential Equat., 12:117–128, 1972.

[O’M72b] R.E. O’Malley. The singularly perturbed linear state regulator problem. SIAM J. Contr., 10(3):

399–413, 1972.

[O’M74] R.E. O’Malley. Boundary layer methods for certain nonlinear singularly perturbed optimal control

problems. J. Math. Anal. Appl., 45(2):468–484, 1974.

[O’M75] R.E. O’Malley. On two methods of solution for a singularly perturbed linear state regulator problem.

SIAM Rev., 17(1):16–37, 1975.

[O’M76a] R.E. O’Malley. A more direct solution of the nearly singular linear regulator problem. SIAM J. Contr.

Optim., 14(6):1063–1077, 1976.

[O’M76b] R.E. O’Malley. Phase-plane solutions to some singular perturbation problems. J. Math. Anal. Appl.,

54(2):449–466, 1976.

[O’M78a] R.E. O’Malley. On singular singularly-perturbed initial value problems. Applicable Analysis, 8(1):

71–81, 1978.

[O’M78b] R.E. O’Malley. Singular perturbations and optimal control. In W.A. Coppel, editor, Mathematical

Control Theory, volume 680 of Lect. Notes Math., pages 170–218. Springer, 1978.

Page 69: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 773

[O’M79] R.E. O’Malley. A singular singularly-perturbed linear boundary value problem. SIAM J. Math. Anal.,

10(4):695–708, 1979.

[O’M83] R.E. O’Malley. Shock and transition layers for singularly perturbed second-order vector systems.

SIAM J. Appl. Math., 43(4):935–943, 1983.

[O’M88] R.E. O’Malley. On nonlinear singularly perturbed initial value problems. SIAM Rev., 30(2):193–212,

1988.

[O’M91] R.E. O’Malley. Singular Perturbation Methods for Ordinary Differential Equations. Springer, 1991.

[O’M00] R.E. O’Malley. On the asymptotic solution of the singularly perturbed boundary value problems

posed by Bohe. J. Math. Anal. Appl., 242(1):18–38, 2000.

[O’M01] R.E. O’Malley. Naive singular perturbation theory. Math. Mod. Meth. Appl. Sci., 11:119–131, 2001.

[O’M08] R.E. O’Malley. Singularly rerturbed linear two-point boundary value problems. SIAM Rev., 50(3):

459–482, 2008.

[O’M10] R.E. O’Malley. Singular perturbation theory: a viscous flow out of Gottingen. Ann. Rev. Fluid Mech.,

42:1–17, 2010.

[OM11] M. Oh and V. Mateev. Non-weak inhibition and phase resetting at negative values of phase in cells

with fast–slow dynamics at hyperpolarized potentials. J. Comput. Neurosci., 31:31–42, 2011.

[Oor00] F. Oort. Newton polygons and formal groups: conjectures by Manin and Grothendieck. Ann. Math.,

152(1):183–206, 2000.

[OP11] M. Ottobre and G.A. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlin-

earity, 24(5):1629, 2011.

[ØPO03] L. Øyehaug, E. Plathe, and S.W. Omholt. Targeted reduction of complex models with time scale

hierarchy - a case study. Math. Biosci., 185(2):123–152, 2003.

[OQ11] E. O’Riordan and J. Quinn. Parameter-uniform numerical methods for some linear and nonlinear

singularly perturbed convection diffusion boundary turning point problems. BIT Numer. Math., 51:

317–337, 2011.

[OR75] P. Ortoleva and J. Ross. Theory of propagation of discontinuities in kinetic systems with multiple

time scales: fronts, front multiplicity, and pulses. J. Chem. Phys., 63:3398–3408, 1975.

[O’R79a] J. O’Reilly. Full-order observers for a class of singularly perturbed linear time-varying systems. Int.

J. Contr., 30(5):745–756, 1979.

[O’R79b] J. O’Reilly. Two time-scale feedback stabilization of linear time-varying singularly perturbed sys-

tems. J. Frank. Inst., 308(5):465–474, 1979.

[O’R80] J. O’Reilly. Dynamical feedback control for a class of singularly perturbed linear systems using a

full-order observer. Int. J. Contr., 31(1):1–10, 1980.

[OR07] F. Otto and M.G. Reznikoff. Slow motion of gradient flows. J. Differential Equat., 237(2):372–420,

2007.

[OS90] R.E. O’Malley and C. Schmeiser. The asymptotic solution of a semiconductor device problem in-

volving reverse bias. SIAM J. Appl. Math., 50(2):504–520, 1990.

[OS91] E. O’Riordan and M. Stynes. A globally uniformly convergent finite element method for a singularly

perturbed elliptic problem in two dimensions. Math. Comput., 57(195):47–62, 1991.

[OS95] E. Olivieri and E. Scoppola. Markov chains with exponentially small transition probabilities: first

exit problem from a general domain. I. The reversible case. J. Stat. Phys., 79(3):613–647, 1995.

[OS96] E. Olivieri and E. Scoppola. Markov chains with exponentially small transition probabilities: first

exit problem from a general domain. II. The general case. J. Stat. Phys., 84(5):987–1041, 1996.

[OS99] O.A. Oleinik and V.N. Samokhin. Mathematical Models in Boundary Layer Theory. Chapman & Hall, 1999.

[Osi97] G. Osipenko. Linearization near a locally nonunique invariant manifold. Discr. Cont. Dyn. Syst., 3:

189–205, 1997.

[OSS92] H.K. Ozcetin, A. Saberi, and P. Sannuti. Design for H∞ almost disturbance decoupling problem

with internal stability via state or measurement feedback-singular perturbation approach. Int. J.

Contr., 55(4):901–944, 1992.

[OSTA12] H.M. Osinga, A. Sherman, and K. Tsaneva-Atanasova. Cross-currents between biology and mathe-

matics: the codimension of pseudo-plateau bursting. Discr. Cont. Dyn. Syst. A, 32:2853–2877, 2012.

[OSY92] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian. Mathematical Problems in Elasticity and Homogenization.

North-Holland, 1992.

[OT94] H. Okuda and I. Tsuda. A coupled chaotic system with different time scales: possible implications

of observations by dynamical systems. Int. J. Bif. Chaos, 4(4):1011–1022, 1994.

[OTA10] H.M. Osinga and K.T. Tsaneva-Atanasova. Dynamics of plateau bursting in dependence on the

location of its equilibrium. J. Neuroendocrinology, 22(12):1301–1314, 2010.

[OV05] E. Olivieri and M.E. Vares. Large Deviations and Metastability. CUP, 2005.

[OW04] C.H. Ou and R. Wong. Shooting method for nonlinear singularly perturbed boundary-value problems.

Stud. Appl. Math., 112(2):161–200, 2004.

[OW06] R.E. O’Malley and D.B. Williams. Deriving amplitude equations for weakly-nonlinear oscillators and

their generalizations. J. Comput. Appl. Math., 190(1):3–21, 2006.

[OWS95] D.L. Olson, E.P. Williksen, and A. Scheeline. An experimentally based model of the Peroxidase-

NADH biochemical oscillator: An enzyme-mediated chemical switch. J. Am. Chem. Soc., 117:2–15,

1995.

[PACNH09] J.-C. Poggiale, P. Auger, F. Cordoleani, and T. Nguyen-Huu. Study of a virus-bacteria interaction

model in a chemostat: application of geometric singular perturbation theory. Phil. Trans. R. Soc. A,

367:4685–4697, 2009.

[Pal82] K.J. Palmer. Exponential separation, exponential dichotomy and spectral theory for linear systems

of ordinary differential equations. J. Differential Equat., 46(3):324–345, 1982.

[Pal84] K.J. Palmer. Exponential dichotomies and transversal homoclinic points. J. Differential Equat., 55:

225–256, 1984.

[Pal88] K.J. Palmer. Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc., 104:149–156,

1988.

[Pan96] C.L. Pando. Recurrent synchronism in the internal dynamics of CO2 lasers. Phys. Lett. A, 210(6):

391–401, 1996.

Page 70: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

774 Bibliography

[Pan00] D. Panazzolo. On the existence of canard solutions. Publicacions Matematiques, 44:503–592, 2000.

[Pan02] D. Panazzolo. Desingularization of nilpotent singularities in families of planar vector fields, volume 752 of Mem.

Amer. Math. Soc. AMS, 2002.

[Pan05] R.L. Panton. Incompressible Flow. Wiley, 2005.

[Pan06] D. Panazzolo. Resolution of singularities of real-analytic vector fields in dimension three. Acta Math.,

197:167–289, 2006.

[Pap76] G.C. Papanicolaou. Some probabilistic problems and methods in singular perturbations. Rocky Moun-

tain J. Math., 6:653–674, 1976.

[Pap77] G.C. Papanicolaou. Introduction to the asymptotic analysis of stochastic equations. In Modern Mod-

eling of Continuum Phenomena, volume 16 of Lect. Appl. Math., pages 109–147. AMS, 1977.

[Pav05] G.A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344(5):331–345, 2005.

[Paz83] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New

York, 1983.

[PB81] B. Porter and A. Bradshaw. Singular perturbation methods in the design of tracking systems

incorporating inner-loop compensators and high-gain error-actuated controllers. Int. J. Syst. Sci.,

12(10):1193–1205, 1981.

[PB93] Z. Pan and T. Basar. H∞-optimal control for singularly perturbed systems. Part I: Perfect state

measurements. Automatica, 29(2):401–423, 1993.

[PB11] Y. Pomeau and M. Le Berre. Critical speed-up vs critical slow-down: a new kind of relaxation

oscillation with application to stick-slip phenomena. arXiv:1107.3331, pages 1–8, 2011.

[PCA+09] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, and S. Merler. Spontaneous behavioural changes in

response to epidemics. J. Theor. Biol., 260(1):31–40, 2009.

[PCS93] R.W. Penney, A.C.C. Coolen, and D. Sherrington. Coupled dynamics of fast spins and slow interac-

tions in neural networks and spin systems. J. Phys. A, 26(15):3681–3695, 1993.

[PDL11] Y. Park, Y. Do, and J.M. Lopez. Slow passage through resonance. Phys. Rev. E, 84:056604, 2011.

[PDL13] Y. Park, Y. Do, and J.M. Lopez. Cooperation of intrinsic bursting and calcium oscillations under-

lying activity patterns of model pre-Botzinger complex neurons. J. Comput. Neurosci., 34(2):345–366,

2013.

[PE94] J. Paullet and B. Ermentrout. Stable rotating waves in two-dimensional discrete active media. SIAM

J. Appl. Math., 54(6):1720–1744, 1994.

[PE01a] D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal

networks: I. Traveling fronts and pulses. SIAM J. Appl. Math., 62(1):206–225, 2001.

[PE01b] D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal

networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math., 62(1):226–243, 2001.

[Peg89] R.L. Pego. Front migration in the nonlinear Cahn–Hilliard equation. Proc. R. Soc. London A,

422(1863):261–278, 1989.

[Per29] O. Perron. Uber Stabilitat und asymptotisches Verhalten der Integrale von Differentialgleichungssys-

temen. Math. Zeitschr., 29(1):129–160, 1929.

[Per69] L.M. Perko. Higher order averaging and related methods for perturbed periodic and quasi-periodic

systems. SIAM J. Appl. Math., 17(4):698–724, 1969.

[Per76] L.M. Perko. Application of singular perturbation theory to the restricted three body problem. Rocky

Mount. J. Math., 6(4):675, 1976.

[Per81] S.C. Persek. Hierarchies of iterated averages for systems of ordinary differential equations with a

small parameter. SIAM J. Math. Anal., 12(3):413–420, 1981.

[Per82] S.C. Persek. Asymptotic stability and the method of iterated averages for almost periodic systems.

SIAM J. Math. Anal., 13(5):828–841, 1982.

[Per84] S.C. Persek. Iterated averaging for periodic systems with hidden multi-scale slow times. Pacific J.

Math., 112(1):211–236, 1984.

[Per94a] S. Pergamenshchikov. Asymptotic expansions for a model with distinguished ‘fast’ and ‘slow’ vari-

ables, described by a system of singularly perturbed stochastic differential equations. Russ. Math.

Surv., 49(4):1–44, 1994.

[Per94b] M. Pernarowski. Fast subsystem bifurcations in a slowly varying Lienard system exhibiting bursting.

SIAM J. Appl. Math., 54(3):814–832, 1994.

[Per98] M. Pernarowski. Fast and slow subsystems for a continuum model of bursting activity in the pan-

creatic islet. SIAM J. Appl. Math., 58(5):1667–1687, 1998.

[Per00] M. Pernarowski. Fast subsystem bifurcations in strongly coupled heterogeneous collections of ex-

citable cells. Bull. Math. Biol., 62:101–120, 2000.

[Per01a] L. Perko. Differential Equations and Dynamical Systems. Springer, 2001.

[Per01b] M. Pernarowski. Controllability of excitable systems. Bull. Math. Biol., 63:167–184, 2001.

[Pes77] Ya.B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv.,

32(4):55–114, 1977.

[Pes04] Ya.B. Pesin. Lectures on Partial Hyperbolicity and Stable Ergodicity. EMS, 2004.

[PGS91] B. Peng, V. Gaspar, and K. Showalter. False bifurcations in chemical systems: canards. Phil. Trans.

R. Soc. Lond. A, 337:275–289, 1991.

[PH78] S.C. Persek and F.C. Hoppensteadt. Iterated averaging methods for systems of ordinary differential

equations with a small parameter. Comm. Pure Appl. Math., 31(2):133–156, 1978.

[PH93] A. Panfilov and P. Hogeweg. Spiral breakup in a modified FitzHugh–Nagumo model. Phys. Lett. A,

176(5):295–299, 1993.

[Phi80] R.G. Phillips. Reduced order modelling and control of two-time-scale discrete systems. Int. J. Contr.,

31(4):765–780, 1980.

[Phi83] R.G. Phillips. The equivalence of time-scale decomposition techniques used in the analysis and design

of linear systems. Int. J. Contr., 37(6):1239–1257, 1983.

[Pik81] A.S. Pikovsky. A dynamical model for periodic and chaotic oscillations in the Belousov–Zhabotinsky

reaction. Phys. Rev. A, 85(1):13–16, 1981.

[Pin95] P.F. Pinsky. Synchrony and clustering in an excitatory neural network model with intrinsic relaxation

kinetics. SIAM J. Appl. Math., 55(1):220–241, 1995.

Page 71: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 775

[PJC+09] M. Peil, M. Jacquot, Y.K. Chembo, L. Larger, and T. Erneux. Routes to chaos and multiple

time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E,

79(2):026208, 2009.

[PJY97] L.R. Petzhold, L.O. Jay, and J. Yen. Numerical solution of highly oscillatory ordinary differential

equations. Acta Numerica, 6:437–483, 1997.

[PK75] G.C. Papanicolaou and W. Kohler. Asymptotic analysis of deterministic and stochastic equations

with rapidly varying components. Comm. Math. Phys., 45(3):217–232, 1975.

[PK81] R. Phillips and P. Kokotovic. A singular perturbation approach to modeling and control of Markov

chains. IEEE Trans. Aut, Contr., 26(5):1087–1094, 1981.

[PK95] A.V. Panfilov and J.P. Keener. Re-entry in three-dimensional Fitzhugh-Nagumo medium with rota-

tional anisotropy. Physica D, 84(3):545–552, 1995.

[PK97] A.S. Pikovsky and J. Kurths. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett.,

78:775–778, 1997.

[PK06] N. Popovic and T.J. Kaper. Rigorous asymptotic expansions for critical wave speeds in a family of

scalar reaction–diffusion equations. J. Dyn. Diff. Eq., 18(1):103–139, 2006.

[PKC82] G. Peponides, P. Kokotovic, and J. Chow. Singular perturbations and time scales in nonlinear models

of power systems. IEEE Trans. Circ. Syst., 29(11):758–767, 1982.

[PL87] U. Parlitz and W. Lauterborn. Period-doubling cascades and devil’s staircases of the driven van der

Pol oscillator. Phys. Rev. A, 36(3):1428–1434, 1987.

[Pla81] R.E. Plant. Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biol., 11:15–32,

1981.

[PLRF97] E. Peacock-Lopez, D.B. Radov, and C.S. Flesner. Mixed-mode oscillations in a self-replicating dimer-

ization mechanism. Biophysical Chemistry, 65:171–178, 1997.

[PM00] J.F. Painter and R.E. Meyer. Turning-point connection at close quarters. SIAM J. Math. Anal.,

13(4):541–554, 2000.

[PMHC+10] P. Pierobon, J. Mine-Hattab, G. Cappello, J.-L. Viovy, and M. Cosentino Lagomarsino. Separation

of time scales in a one-dimensional directed nucleation-growth process. Phys. Rev. E, 82:061904, 2010.

[PMK91] M. Pernarowski, R.M. Miura, and J. Kevorkian. The Sherman-Rinzel-Keizer model for bursting

electrical activity in the pancreatic β-cell. In Differential Equations Models in Biology, Epidemiology and

Ecology, pages 34–53. Springer, 1991.

[PMK92] M. Pernarowski, R.M. Miura, and J. Kevorkian. Perturbation techniques for models of bursting

electrical activity in pancreatic β-cells. SIAM J. Appl. Math., 52(6):1627–1650, 1992.

[PNT94] L. Pohlmann, G. Neher, and H. Tributsch. A model for oscillating hydrogen liberation at CuInSe2in the presence of H2O2. J. Phys. Chem., 98:11007–11010, 1994.

[Poe03] C. Poetzsche. Slow and fast variables in non-autonomous difference equations. J. Difference Equ. Appl.,

9(5):473–487, 2003.

[Pon57] L.S. Pontryagin. Asymptotic properties of solutions with small parameters multiplying leading

derivatives. Izv. AN SSSR, Ser. Matematika, 21(5):605–626, 1957.

[Pop11] N. Popovic. A geometric analysis of front propagation in a family of degenerate reaction–diffusion

equations with cut-off. Z. Angew. Math. Phys., 62(3):405–437, 2011.

[Pop12] N. Popovic. A geometric analysis of front propagation in an integrable Nagumo equation with a

linear cut-off. Physica D, 241:1976–1984, 2012.

[Por74a] B. Porter. Singular perturbation methods in the design of observers and stabilising feedback con-

trollers for multivariable linear systems. Electronics Lett., 10(23):494–495, 1974.

[Por74b] B. Porter. Singular perturbation methods in the design of stabilizing feedback controllers for multi-

variable linear systems. Int. J. Contr., 20(4):689–692, 1974.

[Por76] B. Porter. Design of stabilizing feedback controllers for a class of multivariable linear systems with

slow and fast modes. Int. J. Contr., 23(1):49–54, 1976.

[Por77] B. Porter. Singular perturbation methods in the design of full-order observers for multivariable linear

systems. Int. J. Contr., 26(4):589–594, 1977.

[Pos78] T. Poston. Catastrophe Theory and Its Applications. Dover, 1978.

[PP13] P. Pfaffelhuber and L. Popovic. Scaling limits of spatial chemical reaction networks. arXiv:1302.0774v1,

pages 1–50, 2013.

[PPS09] A. Papavasiliou, G.A. Pavliotis, and A.M. Stuart. Maximum likelihood drift estimation for multiscale

diffusions. Stoch. Proc. Appl., 119(10):3173–3210, 2009.

[PPZ09] A.V. Pokrovskii, A.A. Pokrovskiy, and A. Zhezherun. A corollary of the Poincare–Bendixson theorem

and periodic canards. J. Differential Equat., 247(12):3283–3294, 2009.

[PR60] L.S. Pontryagin and L.V. Rodygin. Approximate solution of a system of ordinary differential equa-

tions involving a small parameter in the derivatives. Soviet Math. Dokl., 1:237–240, 1960.

[PR64] S.S. Pul’kin and N.H. Rozov. The asymptotic theory of relaxation oscillations in systems with one

degree of freedom. I. Calculation of the phase trajectories. Vestnik Moskov. Univ. Ser. I Mat. Meh. (in

Russian), 1964(2):70–82, 1964.

[PR74] A. Prothero and A. Robinson. On the stability and accuracy of one-step methods for solving stiff

systems of ordinary differential equations. Maths. Comput., 28:145–162, 1974.

[PR81] A.S. Pikovsky and M.I. Rabinovich. Stochastic oscillations in dissipative systems. Physica D, 2(1):

8–24, 1981.

[PR94] P.F. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3

neurons. J. Comput. Neurosci., 1(1):39–60, 1994.

[PR12] G. Papamikos and M. Robnik. WKB approach applied to 1D time-dependent nonlinear Hamiltonian

oscillators. J. Phys. A: Math. Theor., 45:015206, 2012.

[Pra05] L. Prandtl. Uber Flussigkeiten bei sehr kleiner Reibung. In Verh. III - International Math. Kongress,

pages 484–491. Teubner, 1905.

[Pri05] M. Prizzi. Averaging, Conley index continuation and recurrent dynamics in almost-periodic parabolic

equations. J. Differential Equat., 210(2):429–451, 2005.

[Pro03] M. Procesi. Exponentially small splitting and Arnold diffusion for multiple time scale systems. Rev.

Math. Phys., 15(4):339–386, 2003.

Page 72: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

776 Bibliography

[Pro05] P. Protter. Stochastic Integration and Differential Equations - Version 2.1. Springer, 2005.

[PRR+81] Y. Pomeau, J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal. Intermittent behaviour in the

Belousov–Zhabotinsky reaction. Journal de Physique Lettres, 42:271–273, 1981.

[PRSZ11] A. Pokrovskii, D. Rachinskii, V. Sobolev, and A. Zhezherun. Topological degree in analysis of canard-

type trajectories in 3-D systems. Appl. Anal., 90(7):1123–1139, 2011.

[PS70] C. Pugh and M. Shub. Linearization of normally hyperbolic diffeomorphisms and flows. Invent. Math.,

10(3):187–198, 1970.

[PS75a] B. Porter and A.T. Shenton. Singular perturbation analysis of the transfer function matrices of a

class of multivariable linear systems. Int. J. Contr., 21(4):655–660, 1975.

[PS75b] B. Porter and A.T. Shenton. Singular perturbation methods of asymptotic eigenvalue assignment in

multivariable linear systems. Int. J. Syst. Sci., 6(1):33–37, 1975.

[PS75c] C. Pugh and M. Shub. Axiom A actions. Invent. Math., 29(1):7–38, 1975.

[PS89] C. Pugh and M. Shub. Ergodic attractors. Trans. AMS, 312:1–54, 1989.

[PS01] V.A. Pliss and G.R. Sell. Perturbations of normally hyperbolic manifolds with applications to the

Navier–Stokes equations. J. Differential Equat., 169(2):396–492, 2001.

[PS02] P.E. Phillipson and P. Schuster. Bistability of harmonically forced relaxation oscillations. Internat.

J. Bifur. Chaos Appl. Sci. Engrg., 12(6):1295–1307, 2002.

[PS04a] N. Popovic and P. Szmolyan. A geometric analysis of the Lagerstrom model problem. J. Differential

Equat., 199:290–325, 2004.

[PS04b] N. Popovic and P. Symolyan. Rigorous asymptotic expansions for Lagerstrom’s model equation - a

geometric approach. Nonlinear Anal., 59(4):531–565, 2004.

[PS05a] G.A. Pavliotis and A.M. Stuart. Analysis of white noise limits for stochastic systems with two fast

relaxation times. Multiscale Model. Simul., 4(1):1–35, 2005.

[PS05b] G.A. Pavliotis and A.M. Stuart. Periodic homogenization for inertial particles. Physica D, 204(3):

161–187, 2005.

[PS06] V.A. Pliss and G.R. Sell. Averaging methods for stochastic dynamics of complex reaction networks:

description of multiscale couplings. Multiscale Model. Simul., 5(2):497–513, 2006.

[PS07a] G.A. Pavliotis and A.M. Stuart. Parameter estimation for multiscale diffusions. J. Stat. Phys.,

127(4):741–781, 2007.

[PS07b] Y. Peng and Y. Song. Existence of traveling wave solutions for a reaction–diffusion equation with

distributed delays. Nonl. Anal.: Theory, Meth. & Appl., 67(8):2415–2423, 2007.

[PS08] G.A. Pavliotis and A.M. Stuart. Multiscale Methods: Averaging and Homogenization. Springer, 2008.

[PSS92] V. Petrov, S.K. Scott, and K. Showalter. Mixed-mode oscillations in chemical systems. J. Chem. Phys.,

97(9):6191–6198, 1992.

[PSSM08] D.E. Postnov, O.V. Sosnovtseva, P. Scherbakov, and E. Mosekilde. Multimode dynamics in a network

with resource mediated coupling. Chaos, 18, 2008.

[PSV10] M.A. Peletier, G. Savare, and M. Veneroni. From diffusion to reaction via Γ-convergence. SIAM J.

Math. Anal., 42(4):1805–1825, 2010.

[PSV12] M.A. Peletier, G. Savare, and M. Veneroni. Chemical reactions as Γ-limit of diffusion. SIAM Rev.,

54(2):327–352, 2012.

[PSZ07] G.A. Pavliotis, A.M. Stuart, and K.C. Zygalakis. Homogenization for inertial particles in a random

flow. Comm. Math. Sci., 5(3):506–531, 2007.

[PT77] J. Palis and F. Takens. Topological equivalence of normally hyperbolic dynamical systems. Topology,

16(4):335–345, 1977.

[PT00] A.V. Pronin and D.V.E. Treschev. Continuous averaging in multi-frequency slow–fast systems. Reg.

Chaotic Dyn., 5(2):157–170, 2000.

[PT13] R. Prohens and A.E. Teruel. Canard trajectories in 3D piecewise linear systems. Discr. Cont. Dyn.

Syst. A, 33(10):4595–4611, 2013.

[PTK+11] M. Pradas, D. Tseluiko, S. Kalliadasis, D.T. Papageorgiou, and G.A. Pavliotis. Noise induced state

transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. Phys. Rev.

Lett., 106(6):060602, 2011.

[PTVF07] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 3rd Edition: The Art

of Scientific Computing. CUP, 2007.

[PTW05] M. Percu, R. Temam, and D. Wirosoetisno. Renormalization group method applied to the primitive

equations. J. Differential Equat., 208(1):215–257, 2005.

[Pug10] C. Pugh. Real Mathematical Analysis. Springer, 2010.

[Puh13] A.A. Puhalskii. Large deviations of coupled diffusions with time scale separation. arXiv:1306.5446v1,

pages 1–74, 2013.

[PV01] E. Pardoux and Yu. Veretennikov. On the Poisson equation and diffusion approximation. I. Ann.

Probab., 29(3):1061–1085, 2001.

[PVK05] F. Plenge, H. Varela, and K. Krischer. Asymmetric target patterns in one-dimensional oscillatory

media with genuine nonlocal coupling. Phys. Rev. Lett., 94, 2005.

[PW00] D.B. Percival and A.T. Walden. Wavelet Methods for Time Series Analysis. CUP, 2000.

[PWPK10] S. Pillay, M.J. Ward, A. Peirce, and T. Kolokolnikov. An asymptotic analysis of the mean first

passage time for narrow escape problems: Part I Two-dimensional domains. Multiscale Mod. Simul.,

8(3):803–835, 2010.

[PZ92] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge University Press,

1992.

[PZ03] D.E. Pelinovsky and V. Zharnitsky. Averaging of dispersion-managed solitons: existence and stabil-

ity. SIAM J. Appl. Math., 63(3):745–776, 2003.

[PZ08] A. Pokrovskii and A. Zhezherun. Topological degree in analysis of chaotic behavior in singularly

perturbed systems. Chaos, 18(2):023130, 2008.

[QG92] M.T. Qureshi and Z. Gajic. A new version of the Chang transformation. IEEE Trans. Aut. Contr.,

37(6):800–801, 1992.

[QGNR97] D. Quinn, B. Gladman, P. Nicholson, and R. Rand. Relaxation oscillations in tidally evolving satel-

lites. Celestial Mech. Dynam. Astronom., 67(2):111–130, 1997.

Page 73: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 777

[RA00a] S. Rajesh and G. Ananthakrishna. Effect of slow manifold structure on relaxation oscillations and

one-dimensional map in a model for plastic instability. Physica A, 270:182–189, 2000.

[RA00b] S. Rajesh and G. Ananthakrishna. Incomplete approach to homoclinicity in a model with bent-slow

manifold geometry. Physica D, 140:193–212, 2000.

[RA03] C.V. Rao and A.P. Arkin. Stochastic chemical kinetics and the quasi-steady-state assumption: ap-

plication to the Gillespie algorithm. J. Chem. Phys., 118(11):4999–5010, 2003.

[RA05] R. Raghavan and G. Ananthakrishna. Long tailed maps as a representation of mixed mode oscillatory

systems. Physica D, 211:74–87, 2005.

[Rab57] A.L. Rabenstein. Asymptotic solutions of uiv + λ2(zu′′ + αu′ + βu) = 0 for large |λ|. Arch. Rat.

Mech. Anal., 1(1):418–435, 1957.

[Rad05] J.D.M. Rademacher. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic

orbit. J. Differential Equat., 218:390–443, 2005.

[Rad13] J.D.M. Rademacher. First and second order semistrong interaction in reaction–diffusion systems.

SIAM J. Appl. Dyn. Syst., 12(1):175–203, 2013.

[Rak00] D.A. Rakhlin. Enhanced diffusion in smoothly modulated superlattices. Phy. Rev. E, 63(1):011112,

2000.

[Ran94] R.H. Rand. Topics in Nonlinear Dynamics with Computer Algebra. Gordon and Breach, 1994.

[Rat06] J.G. Ratcliffe. Foundations of Hyperbolic Manifolds. Springer, 2006.

[Rau12] J. Rauch. Hyperbolic Partial Differential Equations and Geometric Optics. AMS, 2012.

[Raz78] V.D. Razevig. Reduction of stochastic differential equations with small parameters and stochastic

integrals. Int. J. Contr., 28(5):707–720, 1978.

[RB88] J. Rinzel and S.M. Baer. Threshold for repetitive activity for a slow stimulus ramp: a memory effect

and its dependence on fluctuations. Biophys. J., 54(3):551–555, 1988.

[RBT10] M.J. Rempe, J. Best, and D. Terman. A mathematical model of the sleep/wake cycle. J. Math. Biol.,

60:615–644, 2010.

[RC78] R.D. Russell and J. Christiansen. Adaptive mesh selection strategies for solving boundary value

problems. SIAM J. Numer. Anal., 15(1):59–80, 1978.

[RCG12] H.G. Rotstein, S. Coombes, and A.M. Gheorghe. Canard-like explosion of limit cycles in two-

dimensional piecewise-linear models of FitzHugh–Nagumo type. SIAM J. Appl. Dyn. Syst., 11(1):

135–180, 2012.

[RCR08] V. Rajagopalan, S. Chakraborty, and A. Ray. Estimation of slowly varying parameters in nonlinear

systems via symbolic dynamic filtering. Signal Processing, 88:339–348, 2008.

[RD13] J. Ren and J. Duan. A parameter estimation method based on random slow manifolds. arXiv:1303.4600,

pages 1–16, 2013.

[RDdRvdK04] M. Rietkerk, S.C. Dekker, P. de Ruiter, and J. van de Koppel. Self-organized patchiness and catas-

trophic shifts in ecosystems. Science, 305(2):1926–1929, 2004.

[RDJ12] J. Ren, J. Duan, and C.K.R.T. Jones. Approximation of random slow manifolds and settling of

inertial particles under uncertainty. arXiv:1212.4216v1, pages 1–26, 2012.

[RDKL11] J. Rankin, M. Desroches, B. Krauskopf, and M. Lowenberg. Canard cycles in aircraft ground dy-

namics. Nonlin. Dyn., 66(4):681–688, 2011.

[RE89] J. Rinzel and B. Ermentrout. Analysis of neural excitability and oscillations. In C. Koch and I. Segev,

editors, Methods of Neural Modeling: From Synapses to Networks, pages 135–169. MIT Press, 1989.

[REG11] A. Garcıa Cantu Ros, J.-S. Mc Ewen, and P. Gaspard. Effect of ultrafast diffusion on adsorption,

desorption, and reaction processes over heterogeneous surfaces. Phys. Rev. E, 83:021604, 2011.

[Rei71] E.L. Reiss. On multivariable asymptotic expansions. SIAM Rev., 13(2):189–196, 1971.

[Rei80] E.L. Reiss. A new asymptotic method for jump phenomena. SIAM J. Appl. Math., 39(3):440–455, 1980.

[Rei99a] S. Reich. Multiple time-scales in classical and quantum-classical molecular dynamics. J. Comput.

Phys., 151:49–73, 1999.

[Rei99b] S. Reich. Preservation of adiabatic invariants under symplectic discretization. Appl. Numer. Math.,

29:45–56, 1999.

[Rei00] S. Reich. Smoothed Langevin dynamics of highly oscillatory systems. Physica D, 138:210–224, 2000.

[Res92] S.I. Resnick. Adventures in Stochastic Processes. Birkhauser, 1992.

[RESG06] C. Roussel, T. Erneux, S.N. Schiffmann, and D. Gall. Modulation of neuronal excitability by intra-

cellular calcium buffering: from spiking to bursting. Cell Calcium, 39(5):455–466, 2006.

[RF91a] M.R. Roussel and S.J. Fraser. Accurate steady-state approximations: implications for kinetics ex-

periments and mechanism. J. Phys. Chem., 95(22):8762–8770, 1991.

[RF91b] M.R. Roussel and S.J. Fraser. Geometry of steady-state approximation: perturbation and accelerated

convergence methods. J. Chem. Phys., 95:8762–8770, 1991.

[RF91c] M.R. Roussel and S.J. Fraser. On the geometry of transient relaxation. J. Chem. Phys., 94:7106, 1991.

[RF92] J. Rinzel and P. Frankel. Activity patterns of a slow synapse network predicted by explicitly aver-

aging spike dynamics. Neural Comput., 4(4):534–545, 1992.

[RF01] M.R. Roussel and S.J. Fraser. Invariant manifold methods for metabolic model reduction. Chaos,

11(1):196–206, 2001.

[RG04] S. Rinaldi and A. Gragnani. Destabilizing factors in slow–fast systems. Ecol. Model., 180:445–460,

2004.

[RG12] S. Revzen and J.M. Guckenheimer. Finding the dimension of slow dynamics in a rhythmic system.

J. R. Soc. Interface, 9:957–971, 2012.

[RG13] A. Roberts and P. Glendinning. Canard-like phenomena in piecewise smooth planar systems.

arXiv:1311.5192, pages 1–22, 2013.

[RGG00] C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu. The FitzHugh–Nagumo Model - Bifurcation and Dynam-

ics. Kluwer, 2000.

[RGZL08] O. Radulescu, A.N. Gorban, A. Zinovyev, and A. Lilienbaum. Robust simplifications of multiscale

biochemical networks. BMC Syst. Biol., 2(1):86, 2008.

[RH80] R.H. Rand and P.J. Holmes. Bifurcation of periodic motions in two weakly coupled van der Pol

oscillators. Int. J. Non-Linear Mech., 15(4):387–399, 1980.

Page 74: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

778 Bibliography

[RH85] R.M. Rose and J.L. Hindmarsh. A model of a thalamic neuron. Proc. Roy. Soc. London B, 225:161–193,

1985.

[RH89a] R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron I. The three-

dimensional model. Proc. Roy. Soc. London B, 237:267–288, 1989.

[RH89b] R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron II. The stability

and state diagrams. Proc. Roy. Soc. London B, 237:289–312, 1989.

[RH89c] R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron III. The seven-

dimensional model. Proc. Roy. Soc. London B, 237:313–334, 1989.

[RH12] M. Rafei and W.T. Van Horssen. Solving systems of nonlinear difference equations by the multiple

scales perturbation method. Nonlinear Dyn., 69:1509–1516, 2012.

[RH13] J. Rinzel and G. Huguet. Nonlinear dynamics of neuronal excitability, oscillations, and coincidence

detection. Comm. Pure Appl. Math., 66(9):1464–1494, 2013.

[RHD11] M. Raghib, N.A. Hill, and U. Dieckmann. A multiscale maximum entropy moment closure for locally

regulated space-time point process models of population dynamics. J. Math. Biol., 62:605–653, 2011.

[RHMN09] J.E. Rubin, J. Hayes, J. Mendenhall, and C. Del Negro. Calcium-activated nonspecific cation cur-

rent and synaptic depression promote network-dependent burst oscillations. Proc. Natl. Acad. Sci.,

106(8):2939–2944, 2009.

[Ria08] R. Riaza. Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, 2008.

[Ric11] M.P. Richardson. New observations may inform seizure models: very fast and very slow oscillations.

Prog. Biophys. Molec. Biol., 105:5–13, 2011.

[Rin75] J. Rinzel. Spatial stability of traveling wave solutions of a nerve conduction equation. Biophys. J.,

15(10):975–988, 1975.

[Rin77] J. Rinzel. Repetitive activity and Hopf bifurcation under point-stimulation for a simple FitzHugh–

Nagumo nerve conduction model. J. Math. Biol., 5(4):363–382, 1977.

[Rin84] C.A. Ringhofer. On collocation schemes for quasilinear singularly perturbed boundary value prob-

lems. SIAM J. Numer. Anal., 21:864–882, 1984.

[Rin85] J. Rinzel. Bursting oscillations in an excitable membrane model. In Ordinary and Partial Differential

Equations, pages 304–316. Springer, 1985.

[Rin86] J. Rinzel. A formal classification of bursting mechanisms in excitable systems. Proc. Int. Congress

Math., Berkeley, pages 1578–1593, 1986.

[Rin87] J. Rinzel. A formal classification of bursting mechanisms in excitable systems. In Mathematical Topics

in Population Biology, Morphogenesis and Neurosciences, pages 267–281. Springer, 1987.

[Rin94] S. Rinaldi. Laura and Petrarch: an intriguing case of cyclical love dynamics. SIAM J. Appl. Math.,

58(4):1205–1221, 1994.

[Rin09] S. Rinaldi. Synchrony in slow–fast metacommunities. Int. J. Bif. Chaos, 19(7):2447–2453, 2009.

[Ris96] H. Risken. The Fokker–Planck Equation. Springer, 1996.

[R.J72] R.J. Field, E. Koros and R.M. Noyes. Oscillations in chemical systems II. Thorough analysis of

temporal oscillations in the Ce − BrO3-malonic acid system. J. Am. Chem. Soc., 94:8649–8664, 1972.

[RJM95] J. Rubin, C.K.R.T. Jones, and M. Maxey. Settling and asymptotic motion of aerosol particles in a

cellular flow field. J. Nonlinear Sci., 5:337–358, 1995.

[RK73] J. Rinzel and J.B. Keller. Traveling wave solutions of a nerve conduction equation. Biophys. J.,

13(12):1313–1337, 1973.

[RK83] J. Rinzel and J.P. Keener. Hopf bifurcation to repetitive activity in nerve. SIAM J. Appl. Math.,

43(4):907–922, 1983.

[RK86] B. Riedle and P. Kokotovic. Integral manifolds of slow adaptation. IEEE Trans. Aut. Contr., 31(4):

316–324, 1986.

[RK99] M. Rachwalska and A.L. Kawczynski. New types of mixed-mode oscillations in the Belousov–

Zhabotinsky reaction in continuously stirred tank reactors. J. Chem. Phys. A, 103:3455–3457, 1999.

[RK01] M. Rachwalska and A.L. Kawczynski. Period-adding bifurcations in mixed-mode oscillations in

the Belousov–Zhabotinsky reaction at various residence times in a CTSR. J. Chem. Phys. A, 105:

7885–7888, 2001.

[RK02] V. Rottschafer and T.J. Kaper. Blowup in the nonlinear Schrodinger equation near critical dimen-

sion. J. Math. Anal. Appl., 268:517–549, 2002.

[RK03] V. Rottschafer and T.J. Kaper. Geometric theory for multi-bump, self-similar, blowup solutions of

the cubic nonlinear Schrodinger equation. Nonlinearity, 16:929–961, 2003.

[RK06] H.G. Rotstein and R. Kuske. Localized and asynchronous patterns via canards in coupled calcium

oscillators. Physica D, 215:46–61, 2006.

[RKS13] E. Reznik, T. Kaper, and D. Segre. The dynamics of hybrid metabolic-genetic oscillators. Chaos,

23(1):013132, 2013.

[RKZE03a] H.G. Rotstein, N. Kopell, A.M. Zhabotinsky, and I.R. Epstein. A canard mechanism for localization

in systems of globally coupled oscillators. SIAM J. Appl. Math., 63(6):1998–2019, 2003.

[RKZE03b] H.G. Rotstein, N. Kopell, A.M. Zhabotinsky, and I.R. Epstein. Canard phenomenon and local-

ization of oscillations in the Belousov–Zhabotinsky reaction with global feedback. J. Chem. Phys.,

119(17):8824–8832, 2003.

[RL86] J. Rinzel and Y.S. Lee. On different mechanisms for membrane potential bursting. In Nonlinear Os-

cillations in Biology and Chemistry, pages 19–33. Springer, 1986.

[RL87] J. Rinzel and Y.S. Lee. Dissection of a model for neuronal parabolic bursting. J. Math. Biol.,

25(6):653–675, 1987.

[RL88] S. Rajasekar and M. Lakshmanan. Period-doubling bifurcations, chaos, phase-locking and devil’s

staircase in a Bonhoeffer-van der Pol oscillator. Physica D, 32:146–152, 1988.

[RL99] H.-G. Roos and T. Linß. Sufficient conditions for uniform convergence on layer-adapted grids. Com-

puting, 63(1):27–45, 1999.

[RM63] M.L. Rosenzweig and R.H. MacArthur. Graphical representation and stability conditions of

predator–prey interactions. American Naturalist, 97:209–223, 1963.

[RM80] J. Rinzel and R.N. Miller. Numerical calculation of stable and unstable periodic solutions to the

Hodgkin–Huxley equations. Math. Biosci., 49(1):27–59, 1980.

Page 75: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 779

[RM92] S. Rinaldi and S. Muratori. Slow-fast limit cycles in predator–prey models. Ecol. Model., 61:287–308,

1992.

[RM00] A.V. Rao and K.D. Mease. Eigenvector approximate dichotomic basis method for solving hyper-

sensitive optimal control problems. Optim. Control Appl. Meth., 21:1–19, 2000.

[RMSaSL12] V.M. Rozenbaum, Yu.A. Makhnovskii, I.V. Shapochkina S.-Y. Sheu, D.-Y. Yamg and S.H. Lin.

Adiabatically slow and adiabatically fast driven ratchets. Phys. Rev. E, 85:041116, 2012.

[RMW99] C. Rhodes, M. Morari, and S. Wiggins. Identification of low order manifolds: validating the algo-

rithm of Maas and Pope. Chaos, 9(1):108–123, 1999.

[Rob83] C. Robinson. Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J.

Math. Anal., 14(5):847–860, 1983.

[Rob86] S.M. Roberts. An approach to singular perturbation problems insoluble by asymptotic methods. J.

Optimization Theory and Applications, 48(2):325–339, 1986.

[Rob01] J.C. Robinson. Infinite-Dimensional Dynamical Systems. CUP, 2001.

[Rob03] Derek J.S. Robinson. An Introduction to Abstract Algebra. Walter de Gruyter, 2003.

[Rob08] A.J. Roberts. Normal form transforms separate slow and fast modes in stochastic dynamical systems.

Physica A, 387:12–38, 2008.

[Rob09] A.J. Roberts. Model dynamics across multiple length and time scales on a spatial multigrid. Multiscale

Model. Simul., 7(4):1525–1548, 2009.

[Rob13] R.C. Robinson. An Introduction to Dynamical Systems: Continuous and Discrete. AMS, 2013.

[Roo94] H.-G. Roos. Ten ways to generate the Il’in and related schemes. J. Comput. Appl. Math., 53(1):43–59,

1994.

[Roo98] H.-G. Roos. Layer-adapted grids for singular perturbation problems. Z. Angew. Math. Mech., 78(5):

291–309, 1998.

[Ros86] B. Rossetto. Trajectoires lentes des systems dynamiques lents-rapides. In Analysis and Optimization of

Systems, Lecture Notes in Contr. Inform. Sci., pages 680–695. Springer, 1986.

[Ros89] B. Rossetto. Geometrical structure of attractors of slow–fast dynamical systems: the double scroll

chaotic oscillator. In Differential Equations, Lecture Notes in Pure and Appl. Math., pages 621–628.

Dekker, 1989.

[Ros93] B. Rossetto. Chua’s circuit as a slow–fast autonomous dynamical system. J. Circuits Systems Comput.,

3(2):483–496, 1993.

[Ros06] S. Ross. A First Course in Probability. Pearson Prentice Hall, 2006.

[Rou98] R. Roussarie. Bifurcations of Planar Vector Fields and Hilbert’s Sixteenth Problem. Springer, 1998.

[ROWK06] H.G. Rotstein, T. Oppermann, J.A. White, and N. Kopell. The dynamic structure underlying sub-

threshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate

cells. J. Comput. Neurosci., 21:271–292, 2006.

[Roz62] N.H. Rozov. Asymptotic calculation of nearly discontinuous solutions of a second-order system of

differential equations. Dokl. Akad. Nauk SSSR (in Russian), 145:38–40, 1962.

[Roz64] N.H. Rozov. On the asymptotic theory of relaxation oscillations in systems with one degree of free-

dom. II. Calculation of the period of the limit cycle. Vestnik Moskov. Univ. Ser. I Mat. Meh. (in Russian),

1964(3):56–65, 1964.

[RP12] I. Ratas and K. Pyragas. Pulse propagation and failure in the discrete FitzHugh–Nagumo model

subject to high-frequency stimulation. Phys. Rev. E, 86:046211, 2012.

[RPVG07] Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer. Application of the ICE-PIC method

for the dimension reduction of chemical kinetics coupled with transport. Proceed. Combust. Inst., 31:

473–481, 2007.

[RR92] Y. Ren and R.D. Russell. Moving mesh techniques based upon equidistribution, and their stability.

SIAM J. Sci. Stat. Comput., 13(6):1265–1286, 1992.

[RR94] M.E. Rush and J. Rinzel. Analysis of bursting in a thalamic neuron model. Biol. Cybern., 71(4):

281–291, 1994.

[RR95] M.E. Rush and J. Rinzel. The potassium A-current, low firing rates and rebound excitation in

Hodgkin–Huxley models. Bull. Math. Biol., 57(6):899–929, 1995.

[RR00] P.J. Rabier and W.C. Rheinboldt. Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint.

SIAM, 2000.

[RR04] M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Springer, 2004.

[RRAA87] P. Richetti, J.C. Roux, F. Argoul, and A. Arneodo. From quasiperiodicity to chaos in the Belousov–

Zhabotinskii reaction. II. Modeling and theory. J. Chem. Phys., 86(6):3339–3355, 1987.

[RRBV81] J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal. Experimental observations of complex dynamical

behaviour during a chemical reaction. Physica D, 2(2):395–403, 1981.

[RRCL00] S. Ramdani, B. Rossetto, L.O. Chua, and R. Lozi. Slow manifolds of some chaotic systems with

applications to laser systems. Int. J. Bif. Chaos, 10(12):2729–2744, 2000.

[RRE13] J.J. Rubin, J.E. Rubin, and G.B. Ermentrout. Analysis of synchronization in a slowly changing

environment: how slow coupling becomes fast weak coupling. Phys. Rev. Lett., 110(20):204101, 2013.

[RS75a] P. Reddy and P. Sannuti. Optimal control of a coupled-core nuclear reactor by a singular perturba-

tion method. IEEE Trans- Aut. Contr., 20(6):766–769, 1975.

[RS75b] S. Rosenblat and J. Shepherd. On the asymptotic solution of the Lagerstrom model equation. SIAM

J. Appl. Math., 29:110–120, 1975.

[RS81] J.-C. Roux and H.L. Swinney. Topology of chaos in a chemical reaction. In C. Vidal and A. Pacault,

editors, Nonlinear Phenomena in Chemical Dynamics, pages 38–43. Springer, 1981.

[RS84] J. Rinzel and I.B. Schwartz. One variable map prediction of the Belousov–Zhabotinskii mixed mode

oscillations. J. Chem. Phys., 80(11):5610–5615, 1984.

[RS93] P.F. Rowast and A.I. Selverston. Modeling the gastric mill central pattern generator of the lobster

with a relaxation-oscillator network. J. Neurophysiol., 70(3):1030–1053, 1993.

[RS96] J.-P. Ramis and R. Schaffke. Gevrey separation of fast and slow variables. Nonlinearity, 9:353–384,

1996.

[RS99] C. Reinecke and G. Sweers. A positive solution on RN to a system of elliptic equations of FitzHugh–

Nagumo type. J. Differential Equat., 153(2):292–312, 1999.

Page 76: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

780 Bibliography

[RS00] S. Rinaldi and M. Scheffer. Geometric analysis of ecological models with slow and fast processes.

Ecosystems, 3:507–521, 2000.

[RS03] D. Rachinskii and K. Schneider. Delayed loss of stability in systems with degenerate linear parts.

Zeitschr. Anal. Anwend., 22(2):433–454, 2003.

[RSK89] J. Rubinstein, P. Sternberg, and J.B. Keller. Reaction-diffusion processes and evolution to harmonic

maps. SIAM J. Appl. Math., 49(6):1722–1733, 1989.

[RSS83] J.-C. Roux, R.H. Simoyi, and H.L. Swinney. Observation of a strange attractor. Physica D, 8(1):

257–266, 1983.

[RSS11] E. Reznik, D. Segre, and W.E. Sherwood. The quasi-steady state assumption in an enzymatically

open system. arXiv:1103.1200v1, pages 1–28, 2011.

[RST96] H.-G. Roos, M. Stynes, and L. Tobiska. Numerical Methods for Singularly perturbed Differential Equations:

Convection-Diffusion and Flow Problems. Springer, 1996.

[RT82a] J. Rinzel and D. Terman. Propagation phenomena in a bistable reaction–diffusion system. SIAM J.

Appl. Math., 42(5):1111–1137, 1982.

[RT82b] J. Rinzel and W.C. Troy. Bursting in a simplified Oregonator flow system model. J. Chem. Phys.,

76(4):1775–1789, 1982.

[RT00] J.E. Rubin and D. Terman. Analysis of clustered firing patterns in synaptically coupled networks of

oscillators. J. Math. Biol., 41:6, 2000.

[RT02a] J.E. Rubin and D. Terman. Geometric singular perturbation analysis of neuronal dynamics. In

B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 93–146. Elsevier, 2002.

[RT02b] J.E. Rubin and D. Terman. Synchronized activity and loss of synchrony among heterogeneous con-

ditional oscillators. SIAM J. Appl. Dyn. Syst., 1:1, 2002.

[RT12] J.E. Rubin and D. Terman. Explicit maps to predict activation order in multi-phase rhythms of a

coupled cell network. J. Math. Neurosci., 2:4, 2012.

[RTK02] O. Runborg, C. Theodoropoulos, and I.G. Kevrekidis. Effective bifurcation analysis: a time-stepper-

based approach. Nonlinearity, 15(2):491–511, 2002.

[RU03] H.-G. Roos and Z. Uzelac. The SDFEM for a convection-diffusion problem with two small parameters.

Comput. Meth. Appl. Math., 3(3):443–458, 2003.

[Rub77] L.A. Rubenfeld. The passage of weakly coupled nonlinear oscillators through internal resonance.

Stud. Appl. Math., 57:77–92, 1977.

[Rub78] L.A. Rubenfeld. On a derivative-expansion technique and some comments on multiple scaling in the

asymptotic approximation of solutions of certain differential equations. SIAM Rev., 20:79–105, 1978.

[Rub06] J. Rubin. Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation

oscillators or square-wave bursters. Phys. Rev. E, 74:021917, 2006.

[Rud76] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.

[Rud91] W. Rudin. Functional Analysis. McGraw-Hill, 1991.

[Rul02] N.F. Rulkov. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E,

65(4):041922, 2002.

[Rus77] R.D. Russell. A comparison of collocation and finite differences for two-point boundary value prob-

lems. SIAM J. Numer. Anal., 14(1):19–39, 1977.

[Rus79] R.D. Russell. Mesh selection methods. In Codes for Boundary-Value Problems in Ordinary Differential Equa-

tions, volume 74 of Lecture Notes in Computer Science, pages 228–242. Springer, 1979.

[RV98] J.-M. Roquejoffre and J.-P. Vila. Stability of ZND detonation waves in the Majda combustion model.

Asymp. Anal., 18(3):329–348, 1998.

[RVSA06] M.I. Rabinovich, P. Varona, A.I. Selverston, and H.D. Abarbanel. Dynamical principles in neuro-

science. Rev. Mod. Phys., 78(4):1213–1265, 2006.

[RW77] L.A. Rubenfeld and B. Willner. Uniform asymptotic solutions for linear second order ordinary dif-

ferential equations with turning points: formal theory. SIAM J. Appl. Math., 32(1):21–38, 1977.

[RW88] J.R. Rohlicek and A.S. Willsky. Multiple time scale decomposition of discrete time Markov chains.

Syst. Contr. Lett., 11(4):309–314, 1988.

[RW95a] L.G. Reyna and M.J. Ward. Metastable internal layer dynamics for the viscous Cahn–Hilliard equa-

tion. Meth. Appl. Anal., 2:285–306, 1995.

[RW95b] L.G. Reyna and M.J. Ward. On the exponentially slow motion of a viscous shock. Comm. Pure Appl.

Math., 48(2):79–120, 1995.

[RW01] V. Rottschafer and C.E. Wayne. Existence and stability of traveling fronts in the extended Fisher-

Kolmogorov equation. J. Differential Equat., 176:532–560, 2001.

[RW05] X. Ren and J. Wei. Nucleation in the FitzHugh–Nagumo system: interface-spike solutions. J. Differ-

ential Equat., 209(2):266–301, 2005.

[RW07] J. Rubin and M. Wechselberger. Giant squid - hidden canard: the 3D geometry of the Hodgin-Huxley

model. Biological Cybernetics, 97(1), 2007.

[RW08] J. Rubin and M. Wechselberger. The selection of mixed-mode oscillations in a hodgkin-huxley model

with multiple timescales. Chaos, 18, 2008.

[RW12] H.G. Rotstein and H. Wu. Swing, release, and escape mechanisms contribute to the generation of

phase-locked cluster patterns in a globally coupled FitzHugh–Nagumo model. Phys. Rev. E, 86:066207,

2012.

[RWJWZ13] A. Roberts, E. Widiasih, C.K.R.T. Jones, M. Wechselberger, and M. Zaks. Mixed mode oscillations

in a conceptual climate model. arXiv:1311.5182, pages 1–26, 2013.

[RWK08] H.G. Rotstein, M. Wechselberger, and N. Kopell. Canard induced mixed-mode oscillations in a me-

dial entorhinal cortex layer II stellate cell model. SIAM J. Applied Dynamical Systems, 7(4):1582–1611,

2008.

[RWV11] A. Rasmussen, J. Wyller and J.O. Vik. Relaxation oscillations in spruce-budworm interactions. Non-

linear Anal. Real World Appl., 12:304–319, 2011.

[RX04] S. Ruan and D. Xiao. Stability of steady states and existence of travelling waves in a vector-disease

model. Proc. R. Soc. Edinburgh A, 134(5):991–1011, 2004.

[RY12] B. Ryals and L.-S. Young. Horseshoes of periodically kicked van der Pol oscillators. Chaos, 22:043140,

2012.

Page 77: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 781

[Ryb87] K.P. Rybakowski. The Homotopy Index and Partial Differential Equations. Springer, 1987.

[SA89] M. Schell and F.N. Albahadily. Mixed-mode oscillations in an electrochemical system. II. A periodic-

chaotic sequence. J. Chem. Phys., 90:822–828, 1989.

[Sab87] A. Saberi. Output-feedback control with almost-disturbance-decoupling property - a singular per-

turbation approach. Int. J. Contr., 45(5):1705–1722, 1987.

[Sac69] R. Sacker. A perturbation theorem for invariant manifolds and Holder continuity. J. Math. Mech.,

18:705–762, 1969.

[Sak90] K. Sakamoto. Invariant manifolds in singular perturbation problems for ordinary differential equa-

tions. Proc. Royal Soc. Ed., 116:45–78, 1990.

[Sal85] D. Salamon. Connected simple systems and the Conley index of isolated invariant sets. Trans. AMS,

291:1–41, 1985.

[Sam91] S.N. Samborski. Rivers from the point of view of the qualitative theory. In E. Benoıt, editor, Dynamic

Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 168–180. Springer, 1991.

[San74] P. Sannuti. Asymptotic series solution of singularly perturbed optimal control problems. Automatica,

10(2):183–194, 1974.

[San75] P. Sannuti. Asymptotic expansions of singularly perturbed quasi-linear optimal systems. SIAM J.

Contr., 13(3):572–592, 1975.

[San77] P. Sannuti. On the controllability of singularly perturbed systems. IEEE Trans. Aut. Contr., 22(4):622–

624, 1977.

[San78] P. Sannuti. On the controllability of some singularly perturbed nonlinear systems. J. Math. Anal.

Appl., 64(3):579–591, 1978.

[San79] J.A. Sanders. On the passage through resonance. SIAM J. Math. Anal., 10(6):1220–1243, 1979.

[San80] J.A. Sanders. Asymptotic approximations and extension of time-scales. SIAM J. Math. Anal.,

11(4):758–770, 1980.

[San83a] J.A. Sanders. On the fundamental theorem of averaging. SIAM J. Math. Anal., 14(1):1–10, 1983.

[San83b] P. Sannuti. Direct singular perturbation analysis of high-gain and cheap control problems. Automatica,

19(1):41–51, 1983.

[San95] B. Sandstede. Constructing dynamical systems having homoclinic bifurcation points of codimension

two. J. Dyn. Diff. Eq., 9(2):269–288, 1995.

[San98] B. Sandstede. Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application

to the FitzHugh–Nagumo equation. SIAM J. Math. Anal., 29(1):183–207, 1998.

[San01] B. Sandstede. Stability of travelling waves. In B. Fiedler, editor, Handbook of Dynamical Systems,

volume 2, pages 983–1055. Elsevier, 2001.

[Sar78] W. Sarlet. On a common derivation of the averaging method and the two-timescale method. Celestial

Mech., 17(3):299–311, 1978.

[Sau80] P.T. Saunders. An Introduction to Catastrophe Theory. CUP, 1980.

[SB82] V.R. Saksena and T. Basar. A multimodel approach to stochastic team problems. Automatica,

18(6):713–720, 1982.

[SB85] P.R. Sethna and K.R. Meyer A.K. Bajaj. On the method of averaging, integral manifolds and systems

with symmetry. SIAM J. Appl. Math., 45(3):343–359, 1985.

[SB97] C. Schutte and F.A. Bornemann. Homogenization approach to smoothed molecular dynamics. Nonl.

Anal., 30:1805–1814, 1997.

[SB99] C. Schutte and F.A. Bornemann. On the singular limit of the quantum-classical molecular dynamics

model. SIAM J. Appl. Math., 59(4):1208–1224, 1999.

[SB03] R. Suckley and V. Biktashev. Comparison of asymptotics of heart and nerve excitability. Phys. Rev.

E, 68:011902, 2003.

[SB04] B.F. Smith and P.E. Børstad. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differ-

ential Equations. CUP, 2004.

[SB08] K. Sriram and S. Bernard. Complex dynamics in the Oregonator model with linear delayed feedback.

Chaos, 18(2):023126, 2008.

[SB11] R.D. Simitev and V.N. Biktashev. Asymptotics of conduction velocity restitution in models of elec-

trical excitation in the heart. Bull. Math. Biol., 73(1):72–115, 2011.

[SBB+09] M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkhin, S.R. Carpenter, V. Dakos, H. Held, E.H. van

Nes, M. Rietkerk, and G. Sugihara. Early-warning signals for critical transitions. Nature, 461:53–59,

2009.

[SBJM00] B. Sandstede, S. Balasuriya, C.K.R.T. Jones, and P. Miller. Melnikov theory for finite-time vector

fields. Nonlinearity, 13(4):1357, 2000.

[SBO01] W.M. Schaffer, T.V. Bronnikova, and L.F. Olsen. Nonlinear dynamics of the peroxidase-oxidase reac-

tion. II. Compatibility of an extended model with previously reported model-data correspondences.

J. Phys. Chem., 105:5331–5340, 2001.

[SC81] V.R. Saksena and J.B. Cruz. Nash strategies in decentralized control of multiparameter singularly

perturbed large scale systems. Large Scale Syst., 2:219–234, 1981.

[SC82] V.R. Saksena and J.B. Cruz. A multimodel approach to stochastic Nash games. Automatica, 18(3):

295–305, 1982.

[SC83] M.A. Salman and J.B. Cruz. Team-optimal closed-loop Stackelberg strategies for systems with slow

and fast modes. Int. J. Contr., 37(6):1401–1416, 1983.

[SC84] V.R. Saksena and J.B. Cruz. Robust Nash strategies for a class of non-linear singularly perturbed

problems. Int. J. Contr., 39(2):293–310, 1984.

[SC86] J.A. Sanders and R. Cushman. Limit cycles in the Josephson equation. SIAM J. Math. Anal., 17(3):495–

511, 1986.

[SC03] M. Scheffer and S.R. Carpenter. Catastrophic regime shifts in ecosystems: linking theory to obser-

vation. TRENDS in Ecol. and Evol., 18(12):648–656, 2003.

[SCC05] A. Shilnikov, R.L. Calabrese, and G. Cymbalyuk. Mechanism of bistability: tonic spiking and burst-

ing in a neuron model. Phys. Rev. E, 71(5):056214, 2005.

[SCCA02] B. Song, C. Castillo-Chavez, and J.P. Aparicio. Tuberculosis models with fast and slow dynamics:

the role of close and casual contacts. Math. Biosci., 180(1):187–205, 2002.

Page 78: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

782 Bibliography

[SCF+01] M. Scheffer, S.R. Carpenter, J.A. Foley, C. Folke, and B. Walker. Catastrophic shifts in ecosystems.

Nature, 413:591–596, 2001.

[Sch80] Z. Schuss. Singular perturbation methods in stochastic differential equations of mathematical

physics. SIAM Rev., 22(2):119–155, 1980.

[Sch85a] S. Schecter. Persistent unstable equilibria and closed orbits of a singularly perturbed equation. J.

Differential Equat., 60:131–141, 1985.

[Sch85b] C. Schmeiser. Finite deformations of thin beams, asymptotic analysis by singular perturbation meth-

ods. IMA J. Appl. Math., 34(2):155–164, 1985.

[Sch88] S. Schecter. Stable manifolds in the method of averaging. Trans. Amer. Math. Soc., 308(1):159–176,

1988.

[Sch89] C. Schmeiser. On strongly reverse biased semiconductor diodes. SIAM J. Appl. Math., 49(6):1734–1748,

1989.

[Sch95a] G. Schneider. Validity and limitation of the Newell-Whitehead equation. Math. Nachr., 176:249–263,

1995.

[Sch95b] C.G. Schroer. First order adiabatic approximation for a class of classical slow–fast systems with

ergodic fast dynamics. In Hamiltonian Systems with Three or More Degrees of Freedom, pages 563–567.

Kluwer, 1995.

[Sch96] G. Schneider. The validity of generalized Ginzburg–Landau equations. Math. Meth. Appl. Sci.,

19(9):717–736, 1996.

[Sch98] G. Schneider. Justification of modulation equations for hyperbolic systems via normal forms. Nonl.

Diff. Eq. Appl. NoDEA, 5(1):69–82, 1998.

[Sch01] G. Schneider. Bifurcation theory for dissipative systems on unbounded cylindrical domains - an

introduction to the mathematical theory of modulation equations. ZAMM Z. Angew. Math. Mech., 81(8):

507–522, 2001.

[Sch02] S. Schecter. Undercompressive shock waves and the Dafermos regularization. Nonlinearity, 15(4):

1361–1377, 2002.

[Sch04] S. Schecter. Existence of Dafermos profiles for singular shocks. J. Differential Equat., 205(1):185–210,

2004.

[Sch06] S. Schecter. Eigenvalues of self-similar solutions of the Dafermos regularization of a system of con-

servation laws via geometric singular perturbation theory. J. Dyn. Diff. Eq., 18(1):53–101, 2006.

[Sch08a] S. Schecter. Exchange lemmas 1: Deng’s lemma. J. Differential Equat., 245(2):392–410, 2008.

[Sch08b] S. Schecter. Exchange lemmas 2: general exchange lemma. J. Differential Equat., 245(2):411–441, 2008.

[Sch09a] M. Scheffer. Critical Transitions in Nature and Society. Princeton University Press, 2009.

[Sch09b] Z. Schuss. Theory and Applications of Stochastic Processes: An Analytical Approach. Springer, 2009.

[Sch10] I.V. Schurov. Ducks on the torus: existence and uniqueness. J. Dynamical and Control Sys., 16(2):

267–300, 2010.

[Sch11] I.V. Schurov. Duck farming on the two-torus: multiple canard cycles in generic slow–fast systems.

Discr. Cont. Dyn. Syst. Suppl., pages 1289–1298, 2011.

[Sco94] S.K. Scott. Oscillations, waves, and chaos in chemical kinetics. Oxford University Press, 1994.

[SCRR07] A. Shpiro, R. Curtu, J. Rinzel, and N. Rubin. Dynamical characteristics common to neural compe-

tition models. J. Neurophysiol., 97:462–473, 2007.

[SD93] S. Sen and K.B. Datta. Stability bounds of singularity perturbed systems. IEEE Trans. Aut. Contr.,

38(2):302–304, 1993.

[SD99] P. Shi and V. Dragan. Asymptotic H∞ control of singularly perturbed systems with parametric

uncertainties. IEEE Trans. Aut. Contr., 44(9):1738–1742, 1999.

[SD03] B. Sicardy and V. Dubois. Co-orbital motion with slowly varying parameters. Celestial Mech. Dynam.

Astronom., 86(4):321–350, 2003.

[SDT91] C. Sueur and G. Dauphin-Tanguy. Bond graph approach to multi-time scale systems analysis. J.

Frank. Inst., 328(5):1005–1026, 1991.

[Ser13] O.S. Serea. Characterization of the optimal trajectories for the averaged dynamics associated to

singularly perturbed control systems. J. Differential Equat., 255:4226–4243, 2013.

[Set95] P.R. Sethna. On averaged and normal form equations. Nonlinear Dyn., 7:1–10, 1995.

[Sey94] R. Seydel. Practical Bifurcation and Stability Analysis. Springer, 1994.

[SF84] J. Shinar and N. Farber. Horizontal variable-speed interception game solved by forced singular per-

turbation technique. J. Optim. Theor. Appl., 42(4):603–636, 1984.

[SF07] C. Sourdis and P.C. Fife. Existence of heteroclinic orbits for a corner layer problem in anisotropic

interfaces. Adv. Differential Equat., 12(6):623–668, 2007.

[SFH+01] S.S. Sazhin, G. Feng, M.R. Heikal, I. Goldfarb, V. Sol’dshtein, and G. Kuzmenko. Thermal ignition

analysis of a monodisperse spray with radiation. Combustion and Flame, 124(4):684–701, 2001.

[SFMH05] R. Straube, D. Flockerzi, S.C. Muller, and M.J. Hauser. Reduction of chemical reaction networks

using quasi-integrals. J. Phys. Chem. A, 109(3):441–450, 2005.

[SG79] L.F. Shampine and C.W. Gear. A user’s view of solving stiff ordinary differential equations. SIAM

Rev., 21(1):1–17, 1979.

[SG00] H. Schlichting and K. Gersten. Boundary-Layer Theory. Springer, 2000.

[SG03] K. Sriram and M.S. Gopinathan. Effects of delayed linear electrical perturbation of the Belousov–

Zhabotinsky reaction: a case of complex mixed mode oscillations in a batch reactor. React. Kinet.

Catal. Lett., 79(2):341–349, 2003.

[SG10] W.E. Sherwood and J. Guckenheimer. Dissecting the phase response of a model bursting neuron.

SIAM J. Appl. Dyn. Sys., 9(3):659–703, 2010.

[SG13] L. Sacerdote and M.T. Giraudo. Stochastic integrate and fire models: a review on mathematical

methods and their applications. In Stochastic Biomathematical Models, pages 99–148. Springer, 2013.

[SGH77] R.A. Schmitz, K.R. Graziani, and J.L. Hudson. Experimental evidence of chaotic states in the

Belousov–Zhabotinskii reaction. J. Chem. Phys., 67(6):3040–3044, 1977.

[SGH01] G. Schmid, I. Goychuk, and P. Hanggi. Stochastic resonance as a collective property of ion channel

assemblies. Europhys. Lett., 56(1):22, 2001.

Page 79: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 783

[SGK03] C.I. Siettos, M.D. Graham, and I.G. Kevrekidis. Coarse Brownian dynamics for nematic liquid

crystals: bifurcation, projective integration, and control via stochastic simulation. J. Chem. Phys.,

118(22):10149–10156, 2003.

[SGL93] C.G. Steinmetz, T. Geest, and R. Larter. Universality in the peroxidase-oxidase reaction: period

doublings, chaos, period three, and unstable limit cycles. J. Phys. Chem., 97:5649–5653, 1993.

[SGS92] W.C. Su, Z. Gajic, and X.M. Shen. The exact slow–fast decomposition of the algebraic Riccati

equation of singularly perturbed systems. IEEE Trans. Aut. Contr., 37(9):1456–1459, 1992.

[SH87] R. Seydel and V. Hlavaceka. Role of continuation in engineering analysis. Chem. Eng. Sci., 42(6):

1281–1295, 1987.

[SH96] K.R. Schenk-Hoppe. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator. Nonlinear Dyn.,

11:255–274, 1996.

[SH98] K.R. Schenk-Hoppe. Random attractors - general properties, existence and applications to stochastic

bifurcation theory. Discr. Cont. Dyn. Syst. A, 4(1):99–130, 1998.

[SH08] A. Surana and G. Haller. Ghost manifolds in slow–fast systems, with applications to unsteady fluid

flow separation. Physica D, 237(10):1507–1529, 2008.

[SH13] J. Shen and M. Han. Bifurcations of canard limit cycles in several singularly perturbed generalized

polynomial Lienard systems. Discrete Contin. Dyn. Syst., 33(7):3085–3108, 2013.

[Sha61] A.N. Sharkovskii. The reducibility of a continuous function of a real variable and the structure of

the stationary points of the corresponding iteration process. Dokl. Akad.Nauk SSSR, 139:1067–1070,

1961.

[Sha64a] A.N. Sharkovskii. Co-existence of cycles of a continuous map of the line into itself. Ukrainskii Matem-

aticheskii Zhurnal, 16(1):61–71, 1964. English translation: Int. J. Bif. Chaos 5(5), pp. 1263–1273,

1995.

[Sha64b] A.N. Sharkovskii. Fixed points and the center of a continuousmapping of the line into itself. Dopovidi

Akad. Nauk Ukr. RSR, 1964:865–868, 1964.

[Sha65] A.N. Sharkovskii. On cycles and structure of a continuous mapping. Ukrainskii Matematicheskii Zhurnal,

17(3):104–111, 1965.

[Sha66] A.N. Sharkovskii. The set of convergence of one-dimensional iterations. Dopovidi Akad. Nauk Ukr. RSR,

1966:866–870, 1966.

[Sha94] R. Shankar. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66(1):129–192,

1994.

[Sha04] Z.H. Shao. Robust stability of two-time-scale systems with nonlinear uncertainties. IEEE Trans. Aut.

Contr., 49(2):258–261, 2004.

[Shc03] E. Shchepakina. Black swans and canards in self-ignition problem. Nonl. Anal. Real World Appl.,

4(1):45–50, 2003.

[She08] W.E. Sherwood. Phase response in networks of bursting neurons: modeling central pattern generators. PhD

thesis, Cornell University, Ithaca, USA, 2008.

[Shi65] L.P. Shilnikov. A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl.,

6:163–166, 1965.

[Shi73] M.A. Shishkova. Analysis of a system of differential equations with a small parameter at the higher

derivatives. Akademiia Nauk SSSR, Doklady, 209:576–579, 1973.

[Shi83] J. Shinar. On applications of singular perturbation techniques in nonlinear optimal control. Auto-

matica, 19(2):203–211, 1983.

[Shi91] G.I. Shishkin. Grid approximation of singularly perturbed boundary value problem for quasi-linear

parabolic equations in the case of complete degeneracy in spatial variables. Russ. J. Numer. Anal. Math.

Mod., 6(3):243–262, 1991.

[Shi97] G.I. Shishkin. On finite difference fitted schemes for singularly perturbed boundary value problems

with a parabolic boundary layer. J. Math. Anal. Appl., 208(1):181–204, 1997.

[Shi05] G.I. Shishkin. Robust novel high-order accurate numerical methods for singularly perturbed

convection–diffusion problems 1. Math. Mod. Anal., 10(4):393–412, 2005.

[Shi12] A. Shilnikov. Complete dynamical analysis of a neuron model. Nonlinear Dyn., 68:305–328, 2012.

[SHK89] S. Sastry, J. Hauser, and P. Kokotovic. Zero dynamics of regularly perturbed systems may be sin-

gularly perturbed. Syst. Contr. Lett., 13(4):299–314, 1989.

[SHPC09] C. Soria-Hoyo, F. Pontiga, and A. Castellanos. A PIC based procedure for the integration of multiple

time scale problems in gas discharge physics. J. Comput. Phys., 228(4):1017–1029, 2009.

[SHX08] Y. Shen, Z. Hou, and H. Xin. Transition to burst synchronization in coupled neuron networks. Phys.

Rev. E, 77:031920, 2008.

[Sib62a] Y. Sibuya. Asymptotic solutions of a system of linear ordinary differential equations containing a

parameter. Funkcial. Ekvac., 4:83–113, 1962.

[Sib62b] Y. Sibuya. Formal solutions of a linear ordinary differential equation of the n-th order at a turning

point. Funkcial. Ekvac., 4:115–139, 1962.

[Sib63a] Y. Sibuya. Asymptotic solutions of initial value problems of ordinary differential equations with a

small parameter in the derivative, I. Arch. Rat. Mech. Anal., 14:304–311, 1963.

[Sib63b] Y. Sibuya. Simplification of a linear ordinary differential equation of the n-th order at a turning

point. Arch. Rat. Mech. Anal., 13:206–221, 1963.

[Sib81] Y. Sibuya. A theorem concerning uniform simplification at a transition point and the problem of

resonance. SIAM J. Math. Anal., 12(5):653–668, 1981.

[Sib00] Y. Sibuya. The Gevrey asymptotics in the case of singular perturbations. J. Differential Equat.,

165:255–314, 2000.

[SIB01] J. Stark, P. Iannelli, and S. Baigent. A nonlinear dynamics perspective of moment closure for stochas-

tic processes. Nonl. Anal., 47:753–764, 2001.

[Sie13] J. Sieber. Longtime behaviour of the coupled wave equations for semiconductor lasers.

arXiv:1308.2060, pages 1–33, 2013.

[Sij85] J. Sijbrand. Properties of center manifolds. Trans. Amer. Math. Soc., 289:431–469, 1985.

[Sil04] W.T. Silfvast. Laser Fundamentals. CUP, 2004.

Page 80: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

784 Bibliography

[Sim83] B. Simon. Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: Asymptotic

expansions. Ann. IHP (A) Phys. Theor., 38(3):295–308, 1983.

[Sim84] B. Simon. Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann. Math., 120:89–118, 1984.

[Sin82] R.N.P. Singh. The linear-quadratic-Gaussian problem for singularly perturbed systems. Int. J. Syst.

Sci., 13:92–100, 1982.

[SJLS05] S.N. Simic, K.H. Johansson, J. Lygeros, and S. Sastry. Towards a geometric theory of hybrid systems.

Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 12(5):649–687, 2005.

[SK69a] P. Sannuti and P. Kokotovic. Near-optimum design of linear systems by a singular perturbation

method. IEEE Trans. Aut. Contr., 14(1):15–22, 1969.

[SK69b] P. Sannuti and P. Kokotovic. Singular perturbation method for near optimum design of high-order

non-linear systems. Automatica, 5(6):773–779, 1969.

[SK84] A. Saberi and H. Khalil. Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE

Trans. Aut. Contr., 29(6):542–550, 1984.

[SK85a] A. Saberi and H. Khalil. Stabilization and regulation of nonlinear singularly perturbed systems -

composite control. IEEE Trans. Aut. Contr., 30(8):739–747, 1985.

[SK85b] W.M. Schaffer and M. Kot. Nearly one dimensional dynamics in an epidemic. J. Theor. Biol., 112:

403–427, 1985.

[SK93a] G.M. Shroff and H.B. Keller. Stabilization of unstable procedures: a recursive projection method.

SIAM J. Numer. Anal., 30:1099–1120, 1993.

[SK93b] D. Somers and N. Kopell. Rapid synchronization through fast threshold modulation. Biol. Cybern.,

68(5):393–407, 1993.

[SK95a] D. Somers and N. Kopell. Waves and synchrony in networks of oscillators of relaxation and non-

relaxation type. Physica D, 89(1):169–183, 1995.

[SK95b] P.E. Strizhak and A.L. Kawczynski. Regularities in complex transient oscillations in the Belousov–

Zhabotinsky reaction in a batch reactor. J. Phys. Chem., 99:10830–10833, 1995.

[SK97] T.I. Seidman and L.V. Kalachev. A one-dimensional reaction/diffusion system with a fast reaction.

J. Math. Anal. Appl., 209(2):392–414, 1997.

[SK07] J. Sieber and B. Krauskopf. Control-based continuation of periodic orbits with a time-delayed dif-

ference scheme. Int. J. Bif. Chaos, 17(8):2579–2593, 2007.

[SK08] A. Shilnikov and M. Kolomiets. Methods of the qualitative theory for the Hindmarsh-Rose model:

a case study - a tutorial. Int. J. Bif. Chaos, 18(8):2141–2168, 2008.

[SK10] J. Sieber and P. Kowalczyk. Small-scale instabilities in dynamical systems with sliding. Physica D,

239(1):44–57, 2010.

[SK11a] E. Shchepakina and O. Korotkova. Condition for canard explosion in a semiconductor optical am-

plifier. J. Opt. Soc. Am. B, 28(8):1988–1993, 2011.

[SK11b] D.J.W. Simpson and R. Kuske. Mixed-mode oscillations in a stochastic, piecewise-linear system.

Physica D, 240(14):1189–1198, 2011.

[SK13] E. Shchepakina and O. Korotkova. Canard explosion in chemical and optical systems. Discr. Cont.

Dyn. Syst. B, 18(2):495–512, 2013.

[Ske82] R.D. Skeel. A theoretical framework for proving accuracy results for deferred corrections. SIAM J.

Numer. Anal., 19(1):171–196, 1982.

[Ski81] L.A. Skinner. Note on the Lagerstrom singular perturbation models. SIAM J. Appl. Math., 41(2):

362–364, 1981.

[Ski87] L.A. Skinner. Uniform solution of boundary layer problems exhibiting resonance. SIAM J. Appl. Math.,

47(2):225–231, 1987.

[Ski94] L.A. Skinner. Matched expansion solutions of the first-order turning point problem. SIAM J. Math.

Anal., 25(5):1402–1411, 1994.

[Ski11] L.A. Skinner. Singular Perturbation Theory. Springer, 2011.

[SKK87] M.W. Spong, K. Khorasani, and P.V. Kokotovic. An integral manifold approach to the feedback

control of flexible joint robots. IEEE J. Robot. Autom., 3(4):291–300, 1987.

[SKR04] G. Samaey, I.G. Kevrekidis, and D. Roose. Damping factors for the gap-tooth scheme. In Multiscale

Modelling and Simulation, volume 39 of Lecture Notes Comput. Sci.Eng., pages 93–102. Springer, 2004.

[SKR06] G. Samaey, I.G. Kevrekidis, and D. Roose. Patch dynamics with buffers for homogenization prob-

lems. J. Comput. Phys., 213(1):264–287, 2006.

[SKR07] G. Samaey, I.G. Kevrekidis, and D. Roose. Patch dynamics: macroscopic simulation of multiscale

systems. PAMM, 7(1):1025803–1025804, 2007.

[SKR08] I. Sainz, A.B. Klimov, and L. Roa. Quantum phase transitions in an effective Hamiltonian: fast and

slow systems. J. Phys. A, 41:355301, 2008.

[Skr12] Y. Skrynnikov. Solving initial value problem by matching asymptotic expansions. SIAM J. Appl. Math.,

72(1):405–416, 2012.

[SL91] C.G. Steinmetz and R. Larter. The quasiperiodic route to chaos in a model of the peroxidase-oxidase

reaction. J. Phys. Chem., 94(2):1388–1396, 1991.

[SL13] A. Ture Savadkoohi and C.-H. Lamarque. Dynamics of coupled Dahl-type and nonsmooth systems

at different scales of time. Int. J. Bif. Chaos, 23(7):1350114, 2013.

[SLdL08] M. Storace, D. Linaro, and E. de Lange. The Hindmarsh-Rose neuron model: bifurcation analysis

and piecewise-linear approximations. Chaos, 18:033128, 2008.

[SLW99] A.L. Sanchez, A. Linan, and F.A. Williams. Chain-branching explosions in mixing layers. SIAM J.

Appl. Math., 59(4):1335–1355, 1999.

[SM96] P.E. Strizhak and M. Menzinger. Slow passage through a supercritical Hopf bifurcation: time-delayed

response in the Belousov–Zhabotinsky reaction in a batch reactor. J. Chem. Phys., 105:10905–10910,

1996.

[SM01] S. Schecter and D. Marchesin. Geometric singular perturbation analysis of oxidation heat pulses for

two-phase flow in porous media. Bull. Braz. Math. Soc., 32(3):237–270, 2001.

[SM03] E. Suli and D. Mayers. An Introduction to Numerical Analysis. CUP, 2003.

[SM08] I. Siekmann and H. Malchow. Local collapses in the Truscott–Brindley model. Math. Model. Nat. Phe-

nom., 3(4):114–130, 2008.

Page 81: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 785

[SM11] T. Schafer and R.O. Moore. A path integral method for coarse-graining noise in stochastic differential

equations with multiple time scales. Physica D, 240:89–97, 2011.

[SM13] D. Soudry and R. Meir. The neuron’s response at extended timescales. arXiv:1301.2631, pages 1–5,

2013.

[Sma63] S. Smale. Diffeomorphisms with many periodic points. In S.S. Cairns, editor, Differential and Combi-

natorial Topology, pages 63–80. Princeton University Press, 1963.

[Sma67] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 289:747–817, 1967.

[Sma00a] S. Smale. Finding a horseshoe on the beaches of Rio. Math. Intelligencer, 20:39–44, 2000.

[Sma00b] S. Smale. Finding a horseshoe on the beaches of Rio. In R. Abraham and Y. Ueda, editors, The

Chaos-Avant-Garde, pages 7–22. World Scientific, 2000.

[Sma00c] S. Smale. On how I got started in Dynamical Systems 1959–1962. In R. Abraham and Y. Ueda,

editors, The Chaos-Avant-Garde, pages 1–6. World Scientific, 2000.

[Smi75] D.R. Smith. The multivariable method in singular perturbation analysis. SIAM Rev., 17(2):221–273,

1975.

[Smi85] D.R. Smith. Singular-Perturbation Theory: An Introduction with Applications. CUP, 1985.

[Smi02] G.V. Smirnov. Introduction to the Theory of Differential Inclusions. AMS, 2002.

[Smo94] J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1994.

[SMSG07] M. Sieber, H. Malchow, and L. Schimansky-Geier. Constructive effects of environmental noise in an

excitable prey–predator plankton system with infected prey. Ecol. Complex., 4(4):223–233, 2007.

[SN03] A. Shilnikov and F.R. Nikolai. Origin of chaos in a two-dimensional map modeling spiking-bursting

neural activity. Int. J. Bif. Chaos, 13(11):3325–3340, 2003.

[SN13] D.L. Stein and C.M. Newman. Rugged landscapes and timescale distributions in complex systems.

In Emergence, Complexity, and Computation. Springer, 2013. to appear.

[SNBE78] K. Showalter, R.M. Noyes, and K. Bar-Eli. A modified oregonator model exhibiting complicated

limit cycle behaviour in a flow system. J. Chem. Phys., 69:2514–2524, 1978.

[SO81] S. Schmidt and P. Ortoleva. Electric field effects on propagating BZ waves: predictions of an Oreg-

onator and new pulse supporting models. J. Chem. Phys., 74:4488–4500, 1981.

[SO87] P.M. Sharkey and J. O’Reilly. Exact design manifold control of a class of nonlinear singularly per-

turbed systems. IEEE Trans. Aut. Contr., 32(10):933–935, 1987.

[SO88] P.M. Sharkey and J. O’Reilly. Composite control of non-linear singularly perturbed systems: a

geometric approach. Int. J. Contr., 48(6):2491–2506, 1988.

[SO97a] A. Stevens and H.G. Othmer. Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced

random walks. SIAM J. Appl. Math., 57(4):1044–1081, 1997.

[SO97b] M. Stynes and E. O’Riordan. A uniformly convergent Galerkin method on a Shishkin mesh for a

convection–diffusion problem. J. Math. Anal. Appl., 214(1):36–54, 1997.

[SOAM93] A.A. Sharp, M.B. O’Neil, L.F. Abbott, and E. Marder. Dynamic clamp: computer-generated con-

ductances in real neurons. J. Neurophysiol., 69(3):992–995, 1993.

[Sob13] V. Sobolev. Canard cascades. Discr. Cont. Dyn. Syst., 18(2):513–521, 2013.

[SOK84] V.R. Saksena, J. O’Reilly, and P.V. Kokotovic. Singular perturbations and time-scale methods in

control theory: survey 1976–1983. Automatica, 20(3):273–293, 1984.

[SOLS08] J.V. Stern, H.M. Osinga, A. LeBeau, and A. Sherman. Resetting behavior in a model of bursting in

secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bull. Math. Biol., 70(1):68–88,

2008.

[Son93] H.M. Soner. Singular perturbations in manufacturing. SIAM J. Contr. Optim., 31:132–146, 1993.

[Son98] E.D. Sontag. Mathematical Control Theory. Springer, 2nd edition, 1998.

[Son04] E.D. Sontag. Some new directions in control theory inspired by systems biology. Syst. Biol., 1(1):9–18,

2004.

[Sou13] M. Souza. Multiscale analysis for a vector-borne epidemic model. J. Math. Biol., pages 1–14, 2013.

accepted, to appear.

[SOW+97] A. Scheeline, D.L. Olson, E.P. Williksen, G.A. Horras, M.L. Klein, and R. Larter. The peroxidase-

oxidase oscillator and its constituent chemistries. Chem. Rev., 97:739–756, 1997.

[Sow01] R.B. Sowers. On the tangent flow of a stochastic differential equation with fast drift. Trans. Amer.

Math. Soc., 353(4):1321–1334, 2001.

[Sow02] R.B. Sowers. Stochastic averaging with a flattened Hamiltonian: a Markov process on a stratified

space (a whiskered sphere). Trans. Amer. Math. Soc., 354(3):853–900, 2002.

[Sow08] R.B. Sowers. Random perturbations of canards. J. Theor. Probab., 21:824–889, 2008.

[SP96] P. Soravia and E. Panagiotis. Phase-field theory for FitzHugh–Nagumo-type systems. SIAM J. Math.

Anal., 27(5):1341–1359, 1996.

[SP10] I. Shlykova and A. Ponosov. Singular perturbation analysis and gene regulatory networks with delay.

Nonlinear Analysis, 72:3786–3812, 2010.

[Spa66] E.H. Spanier. Algebraic Topology. McGraw-Hill, 1966.

[Spa82] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, 1982.

[SPC92] B. Siciliano, J.V.R. Prasad, and A.J. Calise. Output feedback two-time scale control of multilink

flexible arms. J. Dyn. Syst. Measurem. Contr., 114:70–77, 1992.

[Spi99] M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish, 1999. Volumes 1–5.

[Spi06] M. Spivak. Calculus. CUP, 2006.

[Spi13a] K. Spiliopoulos. Fluctuation analysis and short time asymptotics for multiple scales diffusion pro-

cesses. arXiv:1306:1499v1, pages 1–18, 2013.

[Spi13b] K. Spiliopoulos. Large deviations and importance sampling for systems of slow–fast motion. Appl.

Math. Optim., 67(1):123–161, 2013.

[SPKP13] M. Schmuck, M. Pradas, S. Kalliadasis, and G.A. Pavliotis. A new stochastic mode reduction strategy

for dissipative systems. arXiv:1305.4135v1, pages 1–5, 2013.

[SPM04] S. Schecter, B.J. Plohr, and D. Marchesin. Computation of Riemann solutions using the Dafermos

regularization and continuation. Discr. Cont. Dyn. Syst., 10:965–986, 2004.

[SPT05] A. Samoilenko, M. Pinto and S. Trofimchuk. Krylov-Bogolyubov averaging of asymptotically au-

tonomous differential equations. Proc. Amer. Math. Soc., 133:145–154, 2005.

Page 82: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

786 Bibliography

[Spo00a] H. Spohn. The critical manifold of the Lorentz-Dirac equation. Europhys. Lett., 50(3):287, 2000.

[Spo00b] B. Sportisse. An analysis of operator splitting techniques in the stiff case. J. Comput. Phys.,

161(1):140–168, 2000.

[SR73] P. Sannuti and P. Reddy. Asymptotic series solution of optimal systems with small time delay. IEEE

Trans. Aut. Contr., 18(3):250–259, 1973.

[SR82] D.W. Storti and R.H. Rand. Dynamics of two strongly coupled van der Pol oscillators. Int. J. Non-

Linear Mech., 17(3):143–152, 1982.

[SR86] D.W. Storti and R.H. Rand. Dynamics of two strongly coupled relaxation oscillators. SIAM J. Appl.

Math., 46(1):56–67, 1986.

[SR88] H. Sira-Ramirez. Sliding regimes on slow manifolds of systems with fast actuators. Internat. J. Systems

Sci., 19(6):875–887, 1988.

[SR91] A. Sherman and J. Rinzel. Model for synchronization of pancreatic beta-cells by gap junction cou-

pling. Biophys. J., 59(3):547–559, 1991.

[SR93] C.L. Stokes and J. Rinzel. Diffusion of extracellular K+ can synchronize bursting oscillations in a

model islet of Langerhans. Biophys. J., 65(2):597–602, 1993.

[SR97a] L.F. Shampine and M.W. Reichelt. The MatLab ODE suite. SIAM J. Sci. Comput., 18(1):1–22, 1997.

[SR97b] M. Stynes and H.-G. Roos. The midpoint upwind scheme. Appl. Numer. Math., 23(3):361–374, 1997.

[SR03] A. Shilnikov and N.F. Rulkov. Origin of chaos in a two-dimensional map modeling spiking-bursting

neural activity. Int. J. Bif. Chaos, 13(11):3325–3340, 2003.

[SR04] A. Shilnikov and N.F. Rulkov. Subthreshold oscillations in a map-based neuron model. Phys. Lett. A,

328(2):177–184, 2004.

[SRK88] A. Sherman, J. Rinzel, and J. Keizer. Emergence of organized bursting in clusters of pancreatic

beta-cells by channel sharing. Biophys. J., 54(3):411–425, 1988.

[SRK05] G. Samaey, D. Roose, and I.G. Kevrekidis. The gap-tooth scheme for homogenization problems.

Multiscale Model. Simul., 4(1):278–306, 2005.

[SRS93] P. Smolen, J. Rinzel, and A. Sherman. Why pancreatic islets burst but single beta cells do not. The

heterogeneity hypothesis. Biophys. J., 64(6):1668–1680, 1993.

[SRT04] J. Su, J. Rubin, and D. Terman. Effects of noise on elliptic bursters. Nonlinearity, 17:133–157, 2004.

[SRV95] M.N. Stolyarov, V.A. Romanov, and E.I. Volkov. Out-of-phase mixed-mode oscillations of two

strongly coupled identical relaxation oscillators. Phys. Rev. E, 54(1):163–169, 1995.

[SS83] G.P. Syrcos and P. Sannuti. Singular perturbation modelling of continuous and discrete physical

systems. Int. J. Contr., 37(5):1007–1022, 1983.

[SS87] A. Saberi and P. Sannuti. Cheap and singular controls for linear quadratic regulators. IEEE Trans.

Aut. Contr., 32(3):208–219, 1987.

[SS89] L.A. Segel and M. Slemrod. The quasi-steady-state assumption: a case study in perturbation. SIAM

Rev., 31(3):446–477, 1989.

[SS95] G. Sun and M. Stynes. Finite-element methods for singularly perturbed high-order elliptic two-point

boundary value problems. I: reaction–diffusion-type problems. IMA J. Numer. Anal., 15:117–139, 1995.

[SS01] E. Shchepakina and V. Sobolev. Integral manifolds, canards and black swans. Nonl. Anal. Theor. Meth.

Appl., 44(7):897–908, 2001.

[SS04a] B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems.

Discr. Cont. Dyn. Syst., 10:941–964, 2004.

[SS04b] S. Schecter and P. Szmolyan. Composite waves in the Dafermos regularization. J. Dyn. Diff. Eq.,

16(3):847–867, 2004.

[SS04c] B.K. Spears and A.J. Szeri. Topology and resonances in a quasiperiodically forced oscillator. Physica

D, 197(1):69–85, 2004.

[SS05a] B. Sandstede and A. Scheel. Absolute instabilities of standing pulses. Nonlinearity, 18:331–378, 2005.

[SS05b] E. Shchepakina and V. Sobolev. Black swans and canards in laser and combustion models. In Singular

Perturbations and Hysteresis, pages 207–256. SIAM, 2005.

[SS08a] J.M. Sanz-Serna. Mollified impulse methods for highly oscillatory differential equations. SIAM J.

Numer. Anal., 46(2):1040–1059, 2008.

[SS08b] B. Schmalfuss and K.R. Schneider. Invariant manifolds for random dynamical systems with slow and

fast variables. J. Dyn. Diff. Eq., 20(1):133–164, 2008.

[SS08c] L.B. Shaw and I.B. Schwartz. Fluctuating epidemics on adaptive networks. Phys. Rev. E, 77:(066101),

2008.

[SS09] S. Schecter and P. Szmolyan. Persistence of rarefactions under Dafermos regularization: blow-up and

an exchange lemma for gain-of-stability turning points. SIAM J. Applied Dynamical Systems, 8(3):822–

853, 2009.

[SS10] S. Schecter and C. Sourdis. Heteroclinic orbits in slow–fast Hamiltonian systems with slow manifold

bifurcations. J. Dyn. Diff. Equat., 22:629–655, 2010.

[SS11a] A.M. Samoilenko and O. Stanzhytskyi. Qualitative and Asymptotic Analysis of Differential Equations with

Random Perturbations. World Scientific, 2011.

[SS11b] M. Sarich and C. Schutte. Approximating selected non-dominant timescales by Markov state models.

Comm. Math. Sci., 10(3):1001–1013, 2011.

[SS13a] R.I. Saye and J.A. Sethian. Multiscale modeling of membrane rearrangement, drainage, and rupture

in evolving foams. Science, 340:720–724, 2013.

[SS13b] R. Singh and S. Sinha. Spatiotemporal order, disorder, and propagating defects in homogeneous

system of relaxation oscillators. Phys. Rev. E, 87:012907, 2013.

[SSB+87] W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J.R. Tredicce, and L.M. Narducci. Experimental

observation of a delayed bifurcation at the threshold of an argon laser. Optics Commun., 63(5):344–

348, 1987.

[SSH06a] A. Singer, Z. Schuss, and D. Holcman. Narrow escape, part II: The circular disk. J. Stat. Phys.,

122(3):465–489, 2006.

[SSH06b] A. Singer, Z. Schuss, and D. Holcman. Narrow escape, part III: Non-smooth domains and Riemann

surfaces. J. Stat. Phys., 122(3):491–509, 2006.

Page 83: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 787

[SSH07] Z. Schuss, A. Singer, and D. Holcman. The narrow escape problem for diffusion in cellular mi-

crodomains. Proc. Natl. Acad. Sci. USA, 104(41):16098–16103, 2007.

[SSH08] A. Singer, Z. Schuss, and D. Holcman. Narrow escape and leakage of brownian particles. Phys. Rev.

E, 78(5):051111, 2008.

[SSHE06] A. Singer, Z. Schuss, D. Holcman, and R.S. Eisenberg. Narrow escape, part I. J. Stat. Phys.,

122(3):437–463, 2006.

[SSI+11] M. Sekikawa, K. Shimizu, N. Inaba, H. Kita, T. Endo, K. Fujimoto, T. Yoshinaga, and K. Aihara.

Sudden change from chaos to oscillation death in the Bonhoeffer–van der Pol oscillator under weak

periodic perturbation. Phys. Rev. E, 84:056209, 2011.

[SSL+09] I. Surovtsova, N. Simus, T. Lorenz, A. Konig, S. Sahle, and U. Kummer. Accessible methods for the

dynamic time-scale decomposition of biochemical systems. Bioinformatics, 25(21):2816–2823, 2009.

[SSP95] E. Sivan, L. Segel, and H. Parnas. Modulated excitability: a new way to obtain bursting neurons.

Biol. Cybernet., 72(5):455–461, 1995.

[SSS03] K.R. Schneider, E.A. Shchepakina, and V.A. Sobolev. New type of travelling wave solutions. Math.

Meth. Appl. Sci., 26(16):1349–1361, 2003.

[SSSI12] K. Shimizu, Y. Saito, M. Sekikawa, and N. Inaba. Complex mixed-mode oscillations in a Bonhoeffer–

van der Pol oscillator under weak periodic perturbation. Physica D, 241:1518–1526, 2012.

[SST05] A. Shilnikov, L. Shilnikov, and D. Turaev. Blue-sky catastrophe in singularly perturbed systems.

Moscow Math. Journal, 5(1):269–282, 2005.

[SSV06] L.F. Shampine, B.P. Sommeijer, and J.G. Verwer. IRKC: an IMEX solver for stiff diffusion-reaction

PDEs. J. Comput. Appl. Math., 196(2):485–497, 2006.

[ST96] J. Sotomayor and M.A. Teixeira. Regularization of discontinuous vector fields. In International Con-

ference on Differential Equations (Lisboa), pages 207–223. World Scientific, 1996.

[ST97] H. Suzuki and O. Toshiyuki. On the spectra of pulses in a nearly integrable system. SIAM J. Appl.

Math., 57(2):485–500, 1997.

[ST01] C. Soto-Trevino. A geometric method for periodic orbits in singularly-perturbed systems. In

C.K.R.T. Jones, editor, Multiple Time Scale Dynamical Systems, volume 122 of The IMA Volumes in Math-

ematics and its Applications, pages 141–202. Springer, 2001.

[ST03] M. Stynes and L. Tobiska. The SDFEM for a convection-diffusion problem with a boundary layer:

optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal., 41(5):1620–1642, 2003.

[Ste73] G.W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.

[Ste04] D.L. Stein. Critical behavior of the Kramers escape rate in asymmetric classical field theories. J.

Stat. Phys., 114(5):1537–1556, 2004.

[STE05] R. Sharp, Y.-H. Tsai, and B. Engquist. Multiple time scale numerical methods for the inverted

pendulum problem. In Multiscale Methods in Science and Engineering, pages 241–261. Springer, 2005.

[Ste07] M. Steinhauser. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications. Springer,

2007.

[Sti98a] M. Stiefenhofer. Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol.,

36(6):593–609, 1998.

[Sti98b] M. Stiefenhofer. Singular perturbation with Hopf points in the fast dynamics. Z. Angew. Math. Phys.,

49(4):602–629, 1998.

[Sti98c] M. Stiefenhofer. Singular perturbation with limit points in the fast dynamics. Z. Angew. Math. Phys.,

49(5):730–758, 1998.

[STK96] C. Soto-Trevino and T.J. Kaper. Higher-order Melnikov theory for adiabatic systems. J. Math. Phys.,

37:6220–6250, 1996.

[STKW96] C. Soto-Trevino, N. Kopell, and D. Watson. Parabolic bursting revisited. J. Math. Biol., 35(1):

114–128, 1996.

[Sto49] H. Stommel. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8:

24–29, 1949.

[Sto61] H. Stommel. Thermohaline convection with two stable regimes of flow. Tellus, 13:224–230, 1961.

[STR93] P. Smolen, D. Terman, and J. Rinzel. Properties of a bursting model with two slow inhibitory

variables. SIAM J. Appl. Math., 53(3):861–892, 1993.

[Str00] S.H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 2000.

[Str01] S.H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001.

[Str08] W.A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons, 2008.

[Str09] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2009.

[Sty05] M. Stynes. Steady-state convection-diffusion problems. Acta Numerica, 14:445–508, 2005.

[Su93] J. Su. Delayed oscillation phenomena in the FitzHugh–Nagumo equation. J. Differential Equat.,

105(1):180–215, 1993.

[Su96a] J. Su. Delayed bifurcation properties in the FitzHugh–Nagumo equation with periodic forcing. Dif-

feren. Integral Equat., 9(3):527–539, 1996.

[Su96b] J. Su. Persistent unstable periodic motions, I. J. Math. Anal. Appl., 198(3):796–825, 1996.

[Su97] J. Su. Effects of periodic forcing on delayed bifurcations. J. Dyn. Differen. Equat., 9(4):561–625, 1997.

[Su01] J. Su. The phenomenon of delayed bifurcation and its analysis. In C.K.R.T. Jones, editor, Mul-

tiple Time Scale Dynamical Systems, volume 122 of The IMA Volumes in Mathematics and its Applications,

pages 203–214. Springer, 2001.

[Su12] T. Su. On the accuracy of conservation of adiabatic invariants in slow–fast Hamiltonian systems.

Reg. Chaotic Dyn., 17(1):54–62, 2012.

[Sub96] N.N. Subbotina. Asymptotic properties of minimax solutions of Isaacs-Bellman equations in differ-

ential games with fast and slow motions. J. Appl. Math. Mech., 60(6):883–890, 1996.

[Sug95] M. Sugiura. Metastable behaviors of diffusion processes with small parameter. J. Math. Soc. Japan,

47(4):755–788, 1995.

[Suz81] M. Suzuki. Composite controls for singularly perturbed systems. IEEE Trans. Aut. Contr., 26(2):

505–507, 1981.

[SV96] R. Spigler and M. Vianello. WKB-type approximations for second-order differential equations in

C∗-algebras. Proc. Amer. Math. Soc., 124(6):1763–1771, 1996.

Page 84: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

788 Bibliography

[SVM07] J.A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems. Springer,

2007.

[SW79] T. Steihaug and A. Wolfbrandt. An attempt to avoid exact Jacobian and nonlinear equations in the

numerical solution of stiff differential equations. Math. Comput., 33:521–534, 1979.

[SW83] P. Sannuti and H. Wason. A singular perturbation canonical form of invertible systems: determina-

tion of multivariate root-loci. Int. J. Contr., 37(6):1259–1286, 1983.

[SW85] P. Sannuti and H. Wason. Multiple time-scale decomposition in cheap control problems - singular

control. IEEE Trans. Aut. Contr., 30(7):633–644, 1985.

[SW86] C. Schmeiser and R. Weiss. Asymptotic analysis of singular singularly perturbed boundary value

problems. SIAM J. Math. Anal., 17(3):560–579, 1986.

[SW00a] K.R. Schneider and T. Wilhelm. Model reduction by extended quasi-steady-state approximation. J.

Math. Biol., 40(5):443–450, 2000.

[SW00b] P.R. Shorten and D.J. Wall. A Hodgkin–Huxley model exhibiting bursting oscillations. Bull. Math.

Biol., 62(4):695–715, 2000.

[SW00c] X. Sun and M.J. Ward. Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation

in one spatial dimension. Stud. Appl. Math., 105(3):203–234, 2000.

[SW01] P. Szmolyan and M. Wechselberger. Canards in R3. J. Differential Equat., 177:419–453, 2001.

[SW04] P. Szmolyan and M. Wechselberger. Relaxation oscillations in R3. J. Differential Equat., 200:69–104,

2004.

[Swa83] R. Swanson. The spectral characterization of normal hyperbolicity. Proc. Amer. Math. Soc., 89(3):

503–509, 1983.

[SWC89] K. Strehmel, R. Weiner, and H. Claus. Stability analysis of linearly implicit one-step interpolation

methods for stiff retarded differential equations. SIAM J. Numer. Anal., 26(5):1158–1174, 1989.

[SWHH04] C. Schutte, J. Walter, C. Hartmann, and W. Huisinga. An averaging principle for fast degrees of

freedom exhibiting long-term correlations. Multiscale Model. Simul., 2(3):501–526, 2004.

[SWR05] X. Sun, M.J. Ward, and R. Russell. The slow dynamics of two-spike solutions for the Gray-Scott

and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst.,

4(4):904–953, 2005.

[SWW05] B.D. Sleeman, M.J. Ward, and J.C. Wei. The existence and stability of spike patterns in a chemotaxis

model. SIAM J. Appl. Math., 65(3):790–817, 2005.

[SX12] S. Schecter and G. Xu. Morse theory for Lagrange multipliers and adiabatic limits. arXiv:1211.3028v1,

pages 1–42, 2012.

[SY04] T. Sari and K. Yadi. On Pontryagin–Rodygin’s theorem for convergence of solutions of slow and fast

systems. Electron. J. Differential Equat., 139:1–17, 2004.

[SY10] F.J. Solis and C. Yebra. Modeling the pursuit in natural systems: a relaxed oscillation approach.

Math. Comput. Modelling, 52(7):956–961, 2010.

[SZ02] J. Shatah and C. Zeng. Periodic solutions for Hamiltonian systems under strong constraining forces.

J. Differential Equat., 186(2):572–585, 2002.

[SZ04] H.L. Smith and X.-Q. Zhao. Traveling waves in a bio-reactor model. Nonl. Anal. Real World Appl.,

5(5):895–909, 2004.

[SZB96] S.J. Stuart, R. Zhou, and B.J. Berne. Molecular dynamics with multiple time scales: the selection

of efficient reference system propagators. J. Chem. Phys., 105:1426–1436, 1996.

[Szm89a] P. Szmolyan. A singular perturbation analysis of the transient semiconductor-device equations. SIAM

J. Appl. Math., 49(4):1122–1135, 1989.

[Szm89b] P. Szmolyan. Traveling waves in GaAs semiconductors. Physica D, 39(2):393–404, 1989.

[Szm91] P. Szmolyan. Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J.

Differential Equat., 92:252–281, 1991.

[Szm92] P. Szmolyan. Analysis of a singularly perturbed traveling-wave problem. SIAM J. Appl. Math.,

52(2):485–493, 1992.

[Tak76] F. Takens. Constrained equations; a study of implicit differential equations and their discontinuous

solutions. In P. Hilton, editor, Structural Stability, the Theory of Catastrophes, and Applications in the Sciences,

volume 525 of Lecture Notes in Mathematics, pages 143–234. Springer, 1976.

[Tal99] P. Talkner. Stochastic resonance in the semiadiabatic limit. New J. Phys., 1(1):4, 1999.

[TAORS10] K.T. Tsaneva-Atanasova, H.M. Osinga, T. Riess, and A. Sherman. Full system bifurcation analysis

of endocrine bursting models. J. Theor. Biol., 264(4):1133–1146, 2010.

[Tar09] L. Tartar. The General Theory of Homogenization - A Personal Introduction. Springer, 2009.

[TAWJ08] D. Terman, S. Ahn, X. Wang, and W. Just. Reducing neuronal networks to discrete dynamics. Physica

D, 237(3):324–338, 2008.

[TAZBS06] K.T. Tsaneva-Atanasova, C.L. Zimliki, R. Bertram, and A. Sherman. Diffusion of calcium and

metabolites in pancreatic islets: killing oscillations with a pitchfork. Biophys. J., 90(10):3434–3446,

2006.

[TB91a] M. Tuckerman and B.J. Berne. Stochastic molecular dynamics in systems with multiple time scales

and memory friction. J. Chem. Phys., 95:4389, 1991.

[TB91b] M. Tuckerman and B.J. Berne. Molecular dynamics in systems with multiple time scales: systems

with stiff and soft degrees of freedom and with short and long range forces. J. Chem. Phys., 95:8362,

1991.

[TB11] N. Toporikova and R.J. Butera. Two types of independent bursting mechanisms in inspiratory neu-

rons: an integrative model. J. Comput. Neurosci., 30(3):515–528, 2011.

[TBM91] M. Tuckerman, B.J. Berne, and G.J. Martyna. Molecular dynamics algorithm for multiple time

scales: systems with long range forces. J. Chem. Phys., 94:6811, 1991.

[TBM94] M. Tuckerman, B.J. Berne, and G.J. Martyna. Reversible multiple time scale molecular dynamics.

J. Chem. Phys., 97(3):1990–2001, 1994.

[TBR91] M. Tuckerman, B.J. Berne, and A. Rossi. Molecular dynamics algorithm for multiple time scales:

systems with disparate masses. J. Chem. Phys., 94:1465, 1991.

[TCE86] J.L. Tennyson, J.R. Cary, and D.F. Escande. Change of the adiabatic invariant due to separatrix

crossing. Phys. Rev. Lett., 56(20):2117–2120, 1986.

Page 85: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 789

[TCN03] J.J. Tyson, K.C. Chen, and B. Novak. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory

and signaling pathways in the cell. Current Opinion in Cell Biology, 15:221–231, 2003.

[TdC11] D.J. Tonon and T. de Carvalho. Generic bifurcations of planar Filippov systems via geometric sin-

gular perturbations. Bull. Belg. Math. Soc., 18(5):861–881, 2011.

[TdS12] M.A. Teixeira and P.R. da Silva. Regularization and singular perturbation techniques for non-smooth

systems. Physica D, 241(22):1948–1955, 2012.

[Tem90] R. Temam. Inertial manifolds and multigrid methods. SIAM J. Math. Anal., 21(1):154–178, 1990.

[Tem97] R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, 1997.

[Ter91] D. Terman. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl.

Math., 51(5):1418–1450, 1991.

[Ter92] D. Terman. The transition from bursting to continuous spiking in excitable membrane models. J.

Nonlinear Sci., 2(2):135–182, 1992.

[Tes12] G. Teschl. Ordinary Differential Equations and Dynamical Systems. AMS, 2012.

[TG08] J.H. Tien and J. Guckenheimer. Parameter estimation for bursting neural model. J. Comput. Neurosci.,

24:358–373, 2008.

[TG09] M. Thomson and J. Gunawardena. Unlimited multistability in multisite phosphorylation systems.

Nature, 460:274–277, 2009.

[TGS12] P. Thomas, R. Grima, and A.V. Straube. Rigorous elimination of fast stochastic variables from the

linear noise approximation using projection operators. Phys. Rev. E, 86:041110, 2012.

[TGT95] D.N.C. Tse, R.G. Gallager, and J.N. Tsitsiklis. Statistical multiplexing of multiple time-scale Markov

streams. IEEE J. Selected Areas in Comm., 13(6):1028–1038, 1995.

[Tia03] H. Tian. Asymptotic expansion for the solution of singularly perturbed delay differential equations.

J. Math. Anal. Appl., 281(2):678–696, 2003.

[Tik52] A.N. Tikhonov. Systems of differential equations containing small parameters in the derivatives.

Mat. Sbornik N. S., 31:575–586, 1952.

[Tin94] S.-K. Tin. On the dynamics of tangent spaces near normally hyperbolic manifolds and singularly perturbed boundary

value problems. PhD thesis - Brown University, 1994.

[Tin95] S.-K. Tin. Transversality of double-pulse homoclinic orbits in the inviscid Lorenz-Krishnamurthy

system. Physica D, 83(4):383–408, 1995.

[TIO77] K. Tomita, A. Ito, and T. Ohta. Simplified model for Belousov–Zhabotinsky reaction. J. Theor. Biol.,

68(1):459–481, 1977.

[TK88] J.J. Tyson and J.P. Keener. Singular perturbation theory of traveling waves in excitable media (a

review). Physica D, 32(3):327–361, 1988.

[TKD13] J. Touboul, M. Krupa, and M. Desroches. Noise-induced canard and mixed-mode oscillations in large

stochastic networks with multiple timescales. arXiv:1302:7159v1, pages 1–22, 2013.

[TKJ94] S.-K. Tin, N. Kopell, and C.K.R.T. Jones. Invariant manifolds and singularly perturbed boundary

value problems. SIAM J. Numer. Anal., 31(6):1558–1576, 1994.

[TL97] D. Terman and E. Lee. Partial synchronization in a network of neural oscillators. SIAM J. Appl. Math.,

57(1):252–293, 1997.

[TL13] S. Tang and J. Liang. Global qualitative analysis of a non-smooth Gause predator–prey model with

a refuge. Nonlinear Anal., 76:165–180, 2013.

[TLRB11] D. Terman, E. Lee, J. Rinzel, and T. Bem. Stability of anti-phase and in-phase locking by electrical

coupling but not fast inhibition alone. SIAM J. Appl. Dyn. Syst., 10(3):1127–1153, 2011.

[TM88] M.C. Torrent and M. San Miguel. Stochastic-dynamics characterization of delayed laser threshold

instability with swept control parameter. Phys. Rev. A, 38(1):245–251, 1988.

[TMB90] M. Tuckerman, G.J. Martyna, and B.J. Berne. Molecular dynamics algorithm for condensed systems

with multiple time scales. J. Chem. Phys., 93:1287, 1990.

[TMN03] A.R. Teel, L. Moreau, and D. Nesic. A unified framework for input-to-state stability in systems with

two time scales. IEEE Trans. Aut. Contr., 48(9):1526–1544, 2003.

[TN94] M. Taniguchi and Y. Nishiura. Instability of planar interfaces in reaction–diffusion systems. SIAM

J. Math. Anal., 25(1):99–134, 1994.

[TOM10] M. Tao, H. Owhadi, and J.E. Marsden. Nonintrusive and structure preserving multiscale integra-

tion of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging.

Multiscale Model. Simul., 8(4):1269–1324, 2010.

[TOM11] M. Tao, H. Owhadi, and J.E. Marsden. From efficient symplectic exponentiation of matrices to

symplectic integration of high-dimensional Hamiltonian systems with slowly varying quadratic stiff

potentials. Appl. Math. Res. Express, 2:242–280, 2011.

[TOP96] E.B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects in solids. Phil. Mag.,

73(6):1529–1563, 1996.

[TP94a] M.E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. I. Basic integration

techniques. J. Chem. Phys., 101:1302–1315, 1994.

[TP94b] M.E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. II. Multiple time scale

techniques. J. Chem. Phys., 101:1316–1329, 1994.

[TQK00] C. Theodoropoulos, Y.H. Qian, and I.G. Kevrekidis. “Coarse” stability and bifurcation analysis

using time-steppers: a reaction–diffusion example. Proc. Natl. Acad. Sci., 97(18):9840–9843, 2000.

[TR98] H.C. Tuckwell and R. Rodriguez. Analytical and simulation results for stochastic Fitzhugh-Nagumo

neurons and neural networks. J. Comput. Neurosci., 5(1):91–113, 1998.

[Tra94] P. Tracqui. Mixed-mode oscillation genealogy in a compartmental model of bone mineral metabolism.

J. Nonlinear Science, 4:69–103, 1994.

[Tre96] D. Treschev. An averaging method for Hamiltonian systems, exponentially close to integrable ones.

J. Nonlinear Sci., 6(1):6–14, 1996.

[Tre97] D. Treschev. The method of continuous averaging in the problem of separation of fast and slow

motions. Reg. Chaotic Dyn., 2(3):9–20, 1997.

[Tre04] D. Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity,

17(5):1803, 2004.

Page 86: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

790 Bibliography

[Tre07] V.A. Trenogin. The development and applications of the asymptotic method of Lyusternik and

Vishik. Russ. Math. Surv., 25(4):119, 2007.

[Tro76] W.C. Troy. Bifurcation phenomena in FitzHugh’s nerve conduction equations. J. Math. Anal. Appl.,

54(3):678–690, 1976.

[Tro78] W.C. Troy. The bifurcation of periodic solutions in the Hodgkin–Huxley equations. Quart. Appl. Math.,

36:73–83, 1978.

[Tro85] W.C. Troy. Mathematical analysis of the oregonator model of the Belousov-Zhabotinskii reaction. In

R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 145–170.

Wiley-Interscience, 1985.

[TS77] D. Teneketzis and N. Sandell. Linear regulator design for stochastic systems by a multiple time-scales

method. IEEE Trans. Aut. Contr., 22(4):615–621, 1977.

[TS95] H.C. Tseng and D.D. Siljak. A learning scheme for dynamic neural networks: equilibrium manifold

and connective stability. Neural Networks, 8(6):853–864, 1995.

[TS97] C.J. Tomlin and S.S. Sastry. Bounded tracking for non-minimum phase nonlinear systems with fast

zero dynamics. Int. J. Contr., 68(4):819–848, 1997.

[TS10] J.M.T. Thompson and J. Sieber. Predicting climate tipping points. In B. Launder and M. Thompson,

editors, Geo-Engineering Climate Change: Environmental Necessity or Pandora’s Box, pages 50–83. CUP, 2010.

[TS11a] J.M.T. Thompson and J. Sieber. Climate tipping as a noisy bifurcation: a predictive technique. IMA

J. Appl. Math., 76(1):27–46, 2011.

[TS11b] J.M.T. Thompson and J. Sieber. Predicting climate tipping as a noisy bifurcation: a review. Int. J.

Bif. Chaos, 21(2):399–423, 2011.

[TS11c] J.-C. Tsai and J. Sneyd. Traveling waves in the buffered FitzHugh–Nagumo model. SIAM J. Appl.

Math., 71(5):1606–1636, 2011.

[Tsa12] J.-C. Tsai. Do calcium buffers always slow down the propagation of calcium waves? J. Math. Biol.,

pages 1–46, 2012. to appear.

[TSG11] P. Thomas, A.V. Straube, and R. Grima. Limitations of the stochastic quasi-steady-state approxi-

mation in open biochemical reaction networks. J. Chem. Phys., 135(18):181103, 2011.

[TSO96] Y. Tang, J.L. Stephenson, and H.G. Othmer. Simplification and analysis of models of calcium dy-

namics based on IP3-sensitive calcium channel kinetics. Biophys. J., 70:246–263, 1996.

[TTB12] W. Teka, J. Tabak, and R. Bertram. The relationship between two fast/slow analysis techniques for

bursting oscillations. Chaos, 22:043117, 2012.

[TTFB07] J. Tabak, N. Toporikova, M.E. Freeman, and R. Bertram. Low dose of dopamine may stimulate

prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci., 22:211–222, 2007.

[TTV+11] W. Teka, J. Tabak, T. Vo, M. Wechselberger, and R. Bertram. The dynamics underlying pseudo-

plateau bursting in a pituitary cell model. J. Math. Neurosci., 1(12):1–23, 2011.

[Tuc99] W. Tucker. The Lorenz attractor exists. C.R. Acad. Sci. Paris, 328:1197–1202, 1999.

[Tur91] T. Turanyi. Rate sensitivity analysis of a model of the Briggs-Rauscher reaction. React. Kinet. Lett.,

45:235–241, 1991.

[Tuw03] J.M. Tuwankotta. Widely separated frequencies in coupled oscillators with energy-preserving

quadratic nonlinearity. Physica D, 182(1):125–149, 2003.

[TW95] D. Terman and D.L. Wang. Global competition and local cooperation in a network of neural oscil-

lators. Physica D, 81:148–176, 1995.

[Tys81] J.J. Tyson. On scaling the oregonator equations. In C. Vidal and A. Pacault, editors, Nonlinear

Phenonema in Chemical Dynamics, pages 222–227. Springer, 1981.

[Tys84] J.J. Tyson. Relaxation oscillations in the revised Oregonator. J. Chem. Phys., 80(12):6079–6082, 1984.

[Tys85] J.J. Tyson. A quantitative account of oscillations, bistability, and traveling waves in the Belousov–

Zhabotinskii reaction. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical

Systems, pages 93–144. Wiley-Interscience, 1985.

[TZ11] B. Texier and K. Zumbrun. Nash-Moser iteration and singular perturbations. Annales de l’Institut Henri

Poincare (C) Non Linear Analysis, 28(4):499–527, 2011.

[TZKS12] J.-C. Tsai, W. Zhang, V. Kirk, and J. Sneyd. Traveling waves in a simplified model of calcium

dynamics. SIAM J. Appl. Dyn. Syst., 11(4):1149–1199, 2012.

[ULFN04] N. Ulanovsky, L. Las, D. Farkas, and I. Nelken. Multiple time scales of adaptation in auditory cortex

neurons. J. Neurosci., 24(46):10440–10453, 2004.

[Vak10] A.F. Vakakis. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear

lattice with a local essentially nonlinear attachment. Nonlinear Dyn., 61:443–463, 2010.

[VAKA00] V. Vukojevic, S. Anic, and L. Kolar-Anic. Investigation of dynamic behaviour of the Bray–Liebhafsky

reaction in the CSTR. Determination of bifurcation points. J. Phys. Chem. A, 104:10731–10739, 2000.

[Van08] J. Vanneste. Asymptotics of a slow manifold. SIAM J. Appl. Dyn. Sys., 7(4):1163–1190, 2008.

[Var76] A.N. Varchenko. Newton polyhedra and estimation of oscillating integrals. Functional Anal., 10(3):

175–196, 1976.

[Var84] S.R.S. Varadhan. Large Deviations and Applications. SIAM, 1984.

[VAR07] J. Vigo-Aguiar and H. Ramos. A family of A-stable Runge–Kutta collocation methods of higher

order for initial-value problems. IMA J. Numer. Anal., 27(4):798–817, 2007.

[Var08] S.R.S. Varadhan. Large deviations. Ann. Probab., 36(2):397–419, 2008.

[Vas63] A.B. Vasilieva. Asymptotic behaviour of solutions of certain problems for ordinary non-linear dif-

ferential equations with a small parameter multiplying the highest derivatives. Russian Math. Surveys,

18:13–84, 1963.

[Vas76] A.B. Vasilieva. The development of the theory of ordinary differential equations with a small param-

eter multiplying the highest derivative during the period 1966–1976. Russian Math. Surveys, 31(6):109–

131, 1976.

[Vas94] A.B. Vasilieva. On the development of singular perturbation theory at Moscow State University and

elsewhere. SIAM Rev., 36(3):440–452, 1994.

[VB07] F. Verhulst and T. Bakri. The dynamics of slow manifolds. J. Indones. Math. Soc., 13:73–90, 2007.

[VBK95] A.B. Vasil’eva, V.F. Butuzov, and L.V. Kalachev. The Boundary Function Method for Singular Perturbation

Problems. SIAM, 1995.

Page 87: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 791

[VBTW10] T. Vo, R. Bertram, J. Tabak, and M. Wechselberger. Mixed mode oscillations as a mechanism for

pseudo-plateau bursting. J. Comput. Neurosci., 28(3):443–458, 2010.

[VBTW13] T. Vo, R. Bertram, J. Tabak, and M. Wechselberger. Multiple geometric viewpoints of mixed mode

dynamics associated with pseudo-plateau bursting. SIAM J. Appl. Dyn. Syst., 12(2):789–830, 2013.

[VBW12] T. Vo, R. Bertram, and M. Wechselberger. Bifurcations of canard-induced mixed mode oscillations

in a pituitary Lactotroph model. Discr. Cont. Dyn. Syst., 32(8):2879–2912, 2012.

[VC93] A.F. Vakakis and C. Cetinkaya. Mode localization in a class of multidegree-of-freedom nonlinear

systems with cyclic symmetry. SIAM J. Appl. Math., 53(1):265–282, 1993.

[VC01] M.I. Vishik and V.V. Chepyzhov. Averaging of trajectory attractors of evolution equations with

rapidly oscillating terms. Sbornik Math., 192(1):11, 2001.

[VCCD06] N.P. Vora, M.-N. Contou-Carrere, and P. Daoutidis. Model reduction of multiple time scale pro-

cesses in non-standard singularly perturbed form. In Model Reduction and Coarse-Graining Approaches for

Multiscale Phenomena, pages 99–113. Springer, 2006.

[VCG+06] M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, and H.N. Najm. An automatic procedure for the

simplification of chemical kinetic mechanisms based on CSP. Combustion and Flame, 146(1):29–51,

2006.

[vD64] M. van Dyke. Perturbation Methods in Fluid Mechanics. Academic Press, 1964.

[VD86] A.B. Vasilieva and M.G. Dmitriev. Singular perturbations in optimal control problems. J. Math. Sci.,

34(3):1579–1629, 1986.

[VD13] F. Veerman and A. Doelman. Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM

J. Appl. Dyn. Syst., 12(1):28–60, 2013.

[vdB87] I. van den Berg. Nonstandard Asymptotic Analysis, volume 1249 of Lecture Notes in Mathematics. Springer,

1987.

[vdB91] I.P. van den Berg. Macroscopic rivers. In E. Benoıt, editor, Dynamic Bifurcations, volume 1493 of

Lecture Notes in Mathematics, pages 190–209. Springer, 1991.

[vdP20] B. van der Pol. A theory of the amplitude of free and forced triode vibrations. Radio Review, 1:

701–710, 1920.

[vdP26] B. van der Pol. On relaxation oscillations. Philosophical Magazine, 7:978–992, 1926.

[vdP34] B. van der Pol. The nonlinear theory of electric oscillations. Proc. IRE, 22:1051–1086, 1934.

[vdPD05] H. van der Ploeg and A. Doelman. Stability of spatially periodic pulse patterns in a class of singularly

perturbed reaction–diffusion equations. Indiana Univ. Math. J., 54(5):1219–1301, 2005.

[vdPvdM27] B. van der Pol and J. van der Mark. Frequency demultiplication. Nature, 120:363–364, 1927.

[vdPvdM28] B. van der Pol and J. van der Mark. The heartbeat considered as a relaxation oscillation, and an

electrical model of the heart. Phil. Mag. Suppl., 6:763–775, 1928.

[vdSDWE03] G. van der Sande, J. Danckaert, I. Weretennicoff, and T. Erneux. Rate equations for vertical-cavity

surface-emitting lasers. Phys. Rev. A, 67(1):013809, 2003.

[VE03] E. Vanden-Eijnden. Numerical techniques for multiscale dynamical systems with stochastic effects.

Comm. Math. Sci., 1:385–391, 2003.

[Vel97] V. Veliov. A generalization of the Tikhonov theorem for singularly perturbed differential inclusions.

J. Dyn. Control Sys., 3(3):291–319, 1997.

[Ver76] J.G. Verwer. S-stability properties for generalized Runge–Kutta methods. Numer. Math., 27(4):

359–370, 1976.

[Ver94] R. Verfurth. A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl.

Math., 50:67–83, 1994.

[Ver96] R. Verfurth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-

Teubner, 1996.

[Ver05a] F. Verhulst. Invariant manifolds in dissipative dynamical systems. Acta Appl. Math., 87(1):229–244,

2005.

[Ver05b] F. Verhulst. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale

Dynamics. Springer, 2005.

[Ver05c] F. Verhulst. Quenching of self-excited vibrations. J. Eng. Mech., 53(3):349–358, 2005.

[Ver06] F. Verhulst. Nonlinear Differential Equations and Dynamical Systems. Springer, 2006.

[Ver07a] F. Verhulst. Periodic solutions and slow manifolds. Int. J. Bif. Chaos, 17(8):2533–2540, 2007.

[Ver07b] F. Verhulst. Singular perturbation methods for slow–fast dynamics. Nonlinear Dyn., 50:747–753, 2007.

[Ver09] J.G. Verwer. Runge–Kutta methods and viscous wave equations. Numer. Math., 112(3):485–507, 2009.

[VF12] A. Vidal and J.-P. Francoise. Canard cycles in global dynamics. Int. J. Bif. Chaos, 22(2):1250026,

2012.

[VFD+12] A.J. Veraart, E.J. Faassen, V. Dakos, E.H. van Nes, M. Lurling, and M. Scheffer. Recovery rates

reflect distance to a tipping point in a living system. Nature, 481:357–359, 2012.

[VGCN05] M. Valorani, D.A. Goussis, F. Creta, and H.N. Najm. Higher order corrections in the approximation

of low-dimensional manifolds and the construction of simplified problems with the CSP method. J.

Comp. Phys., 209(2):754–786, 2005.

[vGKS05] S. van Gils, M. Krupa, and P. Szmolyan. Asymptotic expansions using blow-up. ZAMP, 56:369–397,

2005.

[VGVC07] M. Venkadesan, J. Guckenheimer, and F.J. Valero-Cuevas. Manipulating the edge of instability. J.

Biomech., 40:1653–1661, 2007.

[vGZMFS01] F. van Goor, D. Zivadinovic, A.J. Martinez-Fuentes, and S.S. Stojilkovic. Dependence of pitu-

itary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. J. Biol. Chem.,

276:33840–33846, 2001.

[VH08] P. Varkonyi and P. Holmes. On synchronization and traveling waves in chains of relaxation oscillators

with an application to Lamprey CPG. SIAM J. Appl. Dyn. Syst., 7(3):766–794, 2008.

[vHDK08] P. van Heijster, A. Doelman, and T.J. Kaper. Pulse dynamics in a three-component system: stability

and bifurcations. Physica D, 237(24):3335–3368, 2008.

[vHDK+11] P. van Heijster, A. Doelman, T.J. Kaper, Y. Nishiura, and K.-I. Ueda. Pinned fronts in heterogeneous

media of jump type. Nonlinearity, 24:127–157, 2011.

Page 88: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

792 Bibliography

[vHDKP10] P. van Heijster, A. Doelman, T.J. Kaper, and K. Promislow. Front interactions in a three-component

system. SIAM J. Appl. Dyn. Syst., 9(2):292–332, 2010.

[vHS11] P. van Heijster and B. Sandstede. Planar radial spots in a three-component FitzHugh–Nagumo sys-

tem. J. Nonlinear Sci., 21:705–745, 2011.

[Vid85] M. Vidyasagar. Robust stabilization of singularly perturbed systems. Syst. Contr. Lett., 5(6):413–418,

1985.

[Vig97] A. Vigodner. Limits of singularly perturbed control problems with statistical dynamics of fast mo-

tions. SIAM J. Contr. Optim., 35(1):1–28, 1997.

[Vis93] M.I. Vishik. Asymptotic Behaviour of Solutions of Evolutionary Equations. CUP, 1993.

[Vis94] A. Visintin. Differential Models of Hysteresis. Springer, 1994.

[Vit79] M. Vitins. Error bounds in the method of averaging based on properties of average motion. SIAM J.

Math. Anal., 10:331–336, 1979.

[vK07] N.G. van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, 2007.

[VM06] I.B. Vivancos and A.A. Minzoni. Chaotic behaviour in a singularly perturbed system. Nonlinearity,

19:1535–1551, 2006.

[VMMM09] N. Vaissmoradi, A. Malek, and S.H. Momeni-Masuleh. Error analysis and applications of the Fourier–

Galerkin Runge–Kutta schemes for high-order stiff PDEs. J. Comput. Appl. Math., 231(1):124–133,

2009.

[VMS00] S. Varela, C. Masoller, and A.C. Sicardi. Numerical simulations of the effect of noise on a delayed

pitchfork bifurcation. Physica A, 283(1):228–232, 2000.

[VNAZ12] A. Vasiliev, A. Neishtadt, A. Artemyev, and L. Zelenyi. Jump of the adiabatic invariant at a sepa-

ratrix crossing: degenerate cases. Physica D, 241:566–573, 2012.

[VNM06] D.L. Vainchstein, A.I. Neishtadt, and I. Mezic. On passage through resonances in volume-preserving

systems. Chaos, 16(4):043123, 2006.

[vNS07] E.H. van Nes and M. Scheffer. Slow recovery from perturbations as generic indicator of a nearby

catastrophic shift. Am. Nat., 169(6):738–747, 2007.

[Vor08] N.V. Voropaeva. Decomposition of problems of optimal control and estimation for discrete systems

with fast and slow variables. Automat. Remote Contr., 69(6):920–928, 2008.

[Vor12] A. Voros. Zeta-regularization for exact-WKB resolution of a general 1D Schrodinger equation. J.

Phys. A: Math. Theor., 45:374007, 2012.

[VP81] C. Vidal and A. Pacault. Nonlinear Phenomena in Chemical Systems. Springer, 1981.

[VP09] M. Valorani and S. Paolucci. The G-scheme: a framework for multi-scale adaptive model reduction.

J. Comp. Phys., 228(13):4665–4701, 2009.

[VRBR80] C. Vidal, J.-C. Roux, S. Bachelart, and A. Rossi. Experimental study of the transition to turbulence

in the Belousov–Zhabotinskii reaction. Annals of the New York Academy of Sciences, 357(1):377–396, 1980.

[Vri98] G. De Vries. Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci.,

8(3):281–316, 1998.

[Vri01] G. De Vries. Bursting as an emergent phenomenon in coupled chaotic maps. Phys. Rev. E,

64(5):051914, 2001.

[vS87] S.J. van Strien. Normal hyperbolicity and linearisability. Invent. Math., 87(2):377–384, 1987.

[VS00] G. De Vries and A. Sherman. Channel sharing in pancreatic-β-cells revisited: enhancement of emer-

gent bursting by noise. J. Theor. Biol., 207(4):513–530, 2000.

[VS01] G. De Vries and A. Sherman. From spikers to bursters via coupling: help from heterogeneity. Bull.

Math. Biol., 63(2):371–391, 2001.

[vS03] W. van Saarloos. Front propagation into unstable states. Physics Reports, 386:29–222, 2003.

[VS06] N.V. Voropaeva and V.A. Sobolev. Decomposition of a linear-quadratic optimal control problem with

fast and slow variables. Automat. Remote Contr., 67(8):1185–1193, 2006.

[VSH96] V. Vukojevic, P.G. Sørensen, and F. Hynne. Predictive value of a model of the Briggs–Rauscher

reaction fitted to quenching experiments. J. Phys. Chem., 100:17175–17185, 1996.

[VTBW13] T. Vo, J. Tabak, R. Bertram, and M. Wechselberger. A geometric understanding how fast activating

potassium channels promote bursting in pituitary cells. J. Comp. Neurosci., 2013. to appear.

[vV78] M. van Veldhuizen. Higher order methods for a singularly perturbed problem. Numer. Math.,

30(3):267–279, 1978.

[vV81] M. van Veldhuizen. D-stability. SIAM J. Numer. Anal., 20:45–64, 1981.

[vV83] M. van Veldhuizen. On D-stability and B-stability. Numer. Math., 42(3):349–357, 1983.

[VV09] F. Veerman and F. Verhulst. Quasiperiodic phenomena in the van der Pol–Mathieu equation. J. Sound

Vibr., 326(1):314–320, 2009.

[vVK95] T.G.J. van Venrooij and M.T.M. Koper. Bursting and mixed-mode oscillations during the hydrogen

peroxide reduction on a platinum electrode. Electrochimica Acta, 40(11):1689–1696, 1995.

[VVV94] A.I. Volpert, V. Volpert, and V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Amer. Math.

Soc., 1994.

[VWM+05] J.G. Venegas, T. Winkler, G. Musch, M.F. Vidal Melo, D. Layfield, N. Tgavalekos, A.J. Fischman,

R.J. Callahan, G. Bellani, and R.S. Harris. Self-organized patchiness in asthma as a prelude to

catastrophic shifts. Nature, 434:777–782, 2005.

[Wai11] G. Wainrib. Noise-controlled dynamics through the averaging principle for stochastic slow–fast sys-

tems. Phys. Rev. E, 84:051113, 2011.

[Wal86] G. Wallet. Entree-sortie dans un tourbillon. Ann. Inst. Fourier, 36:157–184, 1986.

[Wal90a] G. Wallet. Singularite analytique et perturbation singuliere en dimension 2. Bull. Soc. Math. France,

122:185–208, 1990.

[Wal90b] G. Wallet. Surstabilite pour une equation differentielle analytique en dimension 1. Ann. Inst. Fourier,

120:557–595, 1990.

[Wal01] D.F. Walnut. An Introduction to Wavelet Analysis. Birkhauser, 2001.

[Wal07a] A.H. Wallace. Algebraic Topology: Homology and Cohomology. Dover, 2007.

[Wal07b] A.H. Wallace. An Introduction to Algebraic Topology. Dover, 2007.

[WALC11] S. Wieczorek, P. Ashwin, C.M. Luke, and P.M. Cox. Excitability in ramped systems: the compost-

bomb instability. Proc. R. Soc. A, 467:1243–1269, 2011.

Page 89: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 793

[Wan92] Z.-Q. Wang. On the existence of multiple, single-peaked solutions for a semilinear Neumann problem.

Arch. Rational Mech. Anal., 120:375–399, 1992.

[Wan93] X.J. Wang. Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a

chaotic saddle. Physica D, 62:263–274, 1993.

[Wan98] X.J. Wang. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J.

Neurophysiol., 79(3):1549–1566, 1998.

[War94] M.J. Ward. Metastable patterns, layer collapses, and coarsening for a one-dimensional Ginzburg–

Landau equation. Stud. Appl. Math., 91(1):51–93, 1994.

[War96] M.J. Ward. Metastable bubble solutions for the Allen–Cahn equation with mass conservation. SIAM

J. Appl. Math., 56(5):1247–1279, 1996.

[War05] M.J. Ward. Spikes for singularly perturbed reaction–diffusion systems and Carrier’s Problem. In

C. Hua and R. Wong, editors, Differential Equations and Asymptotic Theory in Mathematical Physics,

pages 100–188. World Scientific, 2005.

[War06] M.J. Ward. Asymptotic methods for reaction–diffusion systems: past and present. Bull. Math. Biol.,

68:1151–1167, 2006.

[Was85] W. Wasow. Linear Turning Point Theory. Springer, 1985.

[Was02] W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover, 2002.

[Wat71] A.M. Watts. A singular perturbation problem with a turning point. Bull. Austral. Nath. Soc., 5:61–73,

1971.

[Wat05] F. Watbled. On singular perturbations for differential inclusions on the infinite interval. J. Math.

Anal. Appl., 310:362–378, 2005.

[WB98] H.Y. Wu and S.M. Baer. Analysis of an excitable dendritic spine with an activity-dependent stem

conductance. J. Math. Biol., 36(6):569–592, 1998.

[WB04] K. Wierschem and R. Bertram. Complex bursting in pancreatic islets: a potential glycolytic mech-

anism. J. Theor. Biol., 228(4):513–521, 2004.

[WB13] M.A. Webber and P.C. Bressloff. The effects of noise on binocular rivalry waves: a stochastic neural

field model. J. Stat. Mech., 2013:P03001, 2013.

[WB87a] D. Wycoff and N.L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation.

Phys. A, 146:175–200, 1987.

[WB87b] D. Wycoff and N.L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation

with a weak magnetic field. Phys. A, 146:201–218, 1987.

[WB87c] D. Wycoff and N.L. Balazs. Separation of fast and slow variables for a linear system by the method

of multiple time scales. Phys. A, 146:219–241, 1987.

[WBPK00] J.A. White, M.I. Banks, R.A. Pearce, and N.J. Kopell. Networks of interneurons with fast and slow

γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm.

Proc. Natl. Acad. Sci. USA, 97(14):8128–8133, 2000.

[WC73] H. Wilson and J. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic

nervous tissue. Biol. Cybern., 13(2):55–80, 1973.

[WCAK80] J.R. Winkelman, J.H. Chow, J.J. Allemong, and P.V. Kokotovic. Multi-time-scale analysis of a power

system. Automatica, 16:35–43, 1980.

[WCB+81] J.R. Winkelman, J.H. Chow, B.C. Bowler, B. Avramovic, and P.V. Kokotovic. An analysis of inter-

area dynamics of multi-machine systems. IEEE Trans. Power Appar. Syst., 2:754–763, 1981.

[WCM94] R. Wright, J. Cash, and G. Moore. Mesh selection for stiff two-point boundary value problems.

Numer. Algorithms, 7:205–224, 1994.

[WD07] W. Wang and J. Duan. Homogenized dynamics of stochastic partial differential equations with

dynamical boundary conditions. Comm. Math. Phys., 275:163–186, 2007.

[WD09] W. Wang and J. Duan. Reductions and deviations for stochastic partial differential equations under

fast dynamical boundary conditions. Stoch. Anal. Appl., 27(3):431–459, 2009.

[WDD07] W. Wang, D. Cao, and J. Duan. Effective macroscopic dynamics of stochastic partial differential

equations in perforated domains. SIAM J. Math. Anal., 38:1508–1527, 2007.

[Wec98] M. Wechselberger. Singularly perturbed folds and canards in R3. PhD thesis, Vienna University of Tech-

nology, Vienna, Austria, 1998.

[Wec02] M. Wechselberger. Extending Melnikov-theory to invariant manifolds on non-compact domains.

Dynamical Systems, 17(3):215–233, 2002.

[Wec05] M. Wechselberger. Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J.

Appl. Dyn. Syst., 4(1):101–139, 2005.

[Wec12] M. Wechselberger. A propos de canards (apropos canards). Trans. Amer. Math. Soc., 364:3289–3309,

2012.

[WED+13] L. Weicker, T. Erneux, O. D’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger. Slow-fast

dynamics of a time-delayed electro-optic oscillator. Phil. Trans. R. Soc. A, 371(1999):20120459, 2013.

[Wei84] R. Weiss. An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary

value problems. Math. Comp., 42:537–557, 1984.

[Wei12] S. Weinberg. Lectures on Quantum Mechanics. CUP, 2012.

[WEJ+12] L. Weicker, T. Erneux, M. Jacquot, Y. Chembo, and L. Larger. Crenelated fast oscillatory outputs

of a two-delay electro-optic oscillator. Phys. Rev. E, 85:026206, 2012.

[Wel76] J.C. Wells. Invariant manifolds of non-linear operators. Pac. J. Math., 62(1):285–293, 1976.

[Wen26] G. Wentzel. Eine Verallgemeinerung der Quantenbedingungen fur die Zwecke der Wellenmechanik.

Zeitschrift fur Physik, 38(6):518–529, 1926.

[Wes39] A.J. Wesselink. Stellar variability and relaxation oscillations. Astrophys. J., 89:659–668, 1939.

[WF70] A.D. Wentzell and M.I. Freidlin. On small random perturbations of dynamical systems. Russ. Marth.

Surv., 25:1–55, 1970.

[WF73] A.D. Wentzell and M.I. Freidlin. Some problems concerning stability under small random perturba-

tions. Theory Probab. Appl., 17(2):269–283, 1973.

[WGR95] X.J. Wang, D. Golomb, and J. Rinzel. Emergent spindle oscillations and intermittent burst firing in

a thalamic model: specific neuronal mechanisms. Proc. Natl. Acad. Sci. USA, 92(12):5577–5581, 1995.

Page 90: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

794 Bibliography

[WH01] Z. Wang and H. Hu. Dimensional reduction for nonlinear time-delayed systems composed of stiff and

soft substructures. Nonlinear Dyn., 25(4):317–331, 2001.

[Whi36] H. Whitney. Differentiable manifolds. Ann. Math., 37(3):645–680, 1936.

[WHK93] M.J. Ward, W.D. Heshaw, and J.B. Keller. Summing logarithmic expansions for singularly perturbed

eigenvalue problems. SIAM J. Appl. Math., 53(3):799–828, 1993.

[Wid67] O.B. Widlund. A note on unconditionally stable linear multistep methods. BIT Numer. Math., 7(1):

65–70, 1967.

[Wie85] K. Wiesenfeld. Noisy precursors of nonlinear instabilities. J. Stat. Phys., 38(5):1071–1097, 1985.

[Wie09] S. Wieczorek. Stochastic bifurcation in noise-driven lasers and Hopf oscillators. Phys. Rev. E,

79(3):036209, 2009.

[Wig88] S. Wiggins. On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic

orbits and normally hyperbolic invariant tori in a class of ordinary differential equations. SIAM J.

Appl. Math., 48(2):262–285, 1988.

[Wig94] S. Wiggins. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, 1994.

[Wig03] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York, NY, 2nd

edition, 2003.

[Wil75] K.G. Wilson. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod.

Phys., 47(4):773–840, 1975.

[Wil81] M. Williams. Another look at Ackerberg–O’Malley resonance. SIAM J. Appl. Math., 41(2):288–293,

1981.

[Wil83] K.G. Wilson. The renormalization group and critical phenomena. Rev. Mod. Phys., 55(3):583–600,

1983.

[Wil91] D. Williams. Probability with Martingales. CUP, 1991.

[Wil06] J.P. Wilber. Invariant manifolds describing the dynamics of a hyperbolic–parabolic equation from

nonlinear viscoelasticity. Dynamical Systems, 21(4):465–489, 2006.

[Win84] A.T. Winfree. The prehistory of the Belousov–Zhabotinskii reaction. J. Chem. Educ., 61:661–663,

1984.

[WK73] R. Wilde and P. Kokotovic. Optimal open-and closed-loop control of singularly perturbed linear

systems. IEEE Trans. Aut. Contr., 18(6):616–626, 1973.

[WK74] K.G. Wilson and J. Kogut. The renormalization group and the ε expansion. Phys. Rep., 12(2):75–199,

1974.

[WK93] M.J. Ward and J.B. Keller. Strong localized perturbations of eigenvalue problems. SIAM J. Appl.

Math., 53(3):770–798, 1993.

[WK96] C.J. Wilson and Y. Kawaguchi. The origins of two-state spontaneous membrane potential fluctua-

tions of neostriatal spiny neurons. J. Neurosci., 16(7):2397–2410, 1996.

[WK01] M.W. Walser and C.H. Keitel. Geometric and algebraic approach to classical dynamics of a particle

with spin. Lett. Math. Phys., 55(1):63–70, 2001.

[WK05] S. Wieczorek and B. Krauskopf. Bifurcations of n-homoclinic orbits in optically injected lasers.

Nonlinearity, 18:1095–1125, 2005.

[WKB97] S. Weibel, T.J. Kaper, and J. Baillieul. Global dynamics of a rapidly forced cart and pendulum.

Nonlinear Dyn., 13(2):131–170, 1997.

[WKvdB12] Y.-F. Wang, M. Khan, and H.A. van den Berg. Interaction of fast and slow dynamics in endocrine

control systems with an application to β-cell dynamics. Math. Biosci., 235(1):8–18, 2012.

[WLL+12] Y. Wu, W. Lu, W. Lin, G. Leng, and J. Feng. Bifurcations of emergent bursting in a neuronal

network. PLoS ONE, 7(6):e38402, 2012.

[Wlo05] J. Wlodarczyk. Simple Hironaka resolution in characteristic zero. J. Amer. Math. Soc., 18(4):779–822,

2005.

[WLW08] Z. Wang, W. Lin, and G. Wang. Differentiability and its asymptotic analysis for nonlinear singularly

perturbed boundary value problem. Nonlinear Anal., 69(7):2236–2250, 2008.

[WM06] B.P. Wood and J.R. Miller. Linked selected and neutral loci in heterogeneous environments. J. Math.

Biol., 53(6):939–975, 2006.

[WMH+02] M.J. Ward, D. McInerney, P. Houston, D. Gavaghan, and P. Maini. The dynamics and pinning of a

spike for a reaction–diffusion system. SIAM J. Appl. Math., 62(4):1297–1328, 2002.

[Woj97] P. Wojtaszczyk. A Mathematical Introduction to Wavelets, volume 37 of LMS Student Texts. CUP, 1997.

[Wol77] D.J. Wollkind. Singular perturbation techniques: a comparison of the method of matched asymptotic

expansions with that of multiple scales. SIAM Rev., 19(3):502–516, 1977.

[Wol94] G. Wolansky. On the slow evolution of quasi-stationary shock waves. J. Dyn. Diff. Eq., 6(2):247–276,

1994.

[Woo93] S.L. Woodruff. The use of an invariance condition in the solution of multiple-scale singular pertur-

bation problems: ordinary differential equations. Stud. Appl. Math., 90(3):225–248, 1993.

[Woo95] S.L. Woodruff. A uniformly valid asymptotic solution to a matrix system of ordinary differential

equations and a proof of its validity. Stud. Appl. Math., 94(4):393–413, 1995.

[WORD03] S.J. Watson, F. Otto, B.Y. Rubinstein, and S.H. Davis. Coarsening dynamics of the convective

Cahn–Hilliard equation. Physica D, 178(3):127–148, 2003.

[WP74] A.E.R. Woodcock and T. Poston. A Geometrical Study of the Elementary Catastrophes, volume 373 of Lecture

Notes in Mathematics. Springer, 1974.

[WP10] M. Wechselberger and G.J. Pettet. Folds, canards and shocks in advection–reaction–diffusion models.

Nonlinearity, 23(8):1949–1969, 2010.

[WPJ11] K. Wang, J. Peng, and D. Jin. A new development for the Tikhonov theorem in nonlinear singular

perturbation systems. Nonl. Anal., 74:2869–2879, 2011.

[WR76] B. Willner and L.A. Rubenfeld. Uniform asymptotic solution for a linear ordinary differential equa-

tion with one μ-th order turning point: analytic theory. Comm. Pure Appl. Math., 29(4):343–367, 1976.

[WR95] M.J. Ward and L.G. Reyna. Internal layers, small eigenvalues, and the sensitivity of metastable

motion. SIAM J. Appl. Math., 55(2):425–445, 1995.

[WR02] S. Wirkus and R. Rand. The dynamics of two coupled van der Pol oscillators with delay coupling.

Nonlinear Dyn., 30(3):205–221, 2002.

Page 91: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 795

[WR12] W. Wang and A.J. Roberts. Average and deviation for slow–fast stochastic partial differential equa-

tions. J. Differential Equat., 253(5):1265–1286, 2012.

[WR13] W. Wang and A.J. Roberts. Slow manifold and averaging for slow–fast stochastic differential system.

J. Math. Anal. Appl., 398(2):822–839, 2013.

[WRD12] W. Wang, A.J. Roberts, and J. Duan. Large deviations and approximations for slow–fast stochastic

reaction–diffusion equations. J. Differential Equat., 12:3501–3522, 2012.

[WS72] H.A. Watts and L. Shampine. A-stable block implicit one-step methods. BIT Numer. Math., 12(2):

252–266, 1972.

[WS00] D. Wirosoetisno and T.G. Shepherd. Averaging, slaving and balance dynamics in a simple atmo-

spheric model. Physica D, 141:37–53, 2000.

[WS01] H. Wang and Y. Song. Regularization methods for solving differential-algebraic equations. Appl. Math.

Comput., 119(2):283–296, 2001.

[WS06a] J. Walter and C. Schutte. Conditional averaging for diffusive fast–slow systems: a sketch for deriva-

tion. In Analysis, Modeling and Simulation of Multiscale Problems, pages 647–682. Springer, 2006.

[WS06b] L. Wang and E.D. Sontag. Almost global convergence in singular perturbations of strongly monotone

systems. Lect. Notes Contr. Inf. Sci., 341:415, 2006.

[WS08] L. Wang and E.D. Sontag. Singularly perturbed monotone systems and an application to double

phosphorylation cycles. J. Nonlinear Sci., 18(5):527–550, 2008.

[WS11] J. Wojcik and A. Shilnikov. Voltage interval mappings for activity transitions in neuron models for

elliptic bursters. Physica D, 240(14):1164–1180, 2011.

[WS12] Z.-L. Wang and X.-R. Shi. Chaos bursting synchronization of mismatched Hindmarsh–Rose systems

via a single adaptive feedback controller. Nonlinear Dyn., 67:1817–1823, 2012.

[WSB04] T. Wellens, V. Shatokhin, and A. Buchleitner. Stochastic resonance. Reports on Progress in Physics,

67:45–105, 2004.

[WSGR11] J. Wang, J. Su, H. Perez Gonzalez, and J. Rubin. A reliability study of square wave bursting beta-

cells with noise. Discr. Cont. Dyn. Syst. B, 16:569–588, 2011.

[WW03] M.J. Ward and J. Wei. Hopf bifurcation and oscillatory instabilities of spike solutions for the one-

dimensional Gierer–Meinhardt model. J. Nonlinear Sci., 13(2):209–264, 2003.

[WW05] J. Wei and M. Winter. Clustered spots in the FitzHugh–Nagumo system. J. Differential Equat.,

213(1):121–145, 2005.

[WW07] K. Wang and W. Wang. Propagation of HBV with spatial dependence. Math. Biosci., 210(1):78–95,

2007.

[WW09a] M. Wechselberger and W. Weckesser. Bifurcations of mixed-mode oscillations in a stellate cell model.

Physica D, 238:1598–1614, 2009.

[WW09b] M. Wechselberger and W. Weckesser. Homoclinic clusters and chaos associated with a folded node

in a stellate cell model. Discr. Cont. Dyn. Syst. S, 2(4):829–850, 2009.

[WWL11] L. Wang, Y. Wu, and T. Li. Exponential stability of large-amplitude traveling fronts for quasi-linear

relaxation systems with diffusion. Physica D, 240(11):971–983, 2011.

[WX13] X. Wang and Q. Xu. Spiky and transition layer steady states of chemotaxis systems via global

bifurcation and Helly’s compactness theorem. J. Math. Biol., 66(6):1241–1266, 2013.

[WY01] Q. Wang and L.-S. Young. Strange attractors with one direction of instability. Commun. Math. Phys.,

218:1–97, 2001.

[WY02] Q. Wang and L.-S. Young. From invariant curves to strange attractors. Commun. Math. Phys., 225:

275–304, 2002.

[WZ05] Y. Wu and X. Zhao. The existence and stability of travelling waves with transition layers for some

singular cross-diffusion systems. Physica D, 200(3):325–358, 2005.

[WZY06] J.W. Wang, Q. Zhang, and G. Yin. Two-time-scale hybrid filters: near optimality. SIAM J. Contr.

Optim., 45:298–319, 2006.

[XC03] J. Xu and K.W. Chung. Effects of time delayed position feedback on a van der Pol–Duffing oscillator.

Physica D, 180(1):17–39, 2003.

[XCKA08] Y. Xie, L. Chen, Y.M. Kang, and K. Aihara. Controlling the onset of Hopf bifurcation in the

Hodgkin–Huxley model. Phys. Rev. E, 77(6):061921, 2008.

[XDX11] Y. Xu, J. Duan, and W. Xu. An averaging principle for stochastic dynamical systems with Levy

noise. Physica D, 240(17):1395–1401, 2011.

[XH00] J.X. Xin and J.M. Hyman. Stability, relaxation, and oscillation of biodegradation fronts. SIAM J.

Appl. Math., 61(2):472–505, 2000.

[XHZ05a] F. Xie, M. Han, and W. Zhang. Canard phenomena in oscillations of a surface oxidation reaction. J.

Nonlinear Sci., 15(6):363–386, 2005.

[XHZ05b] F. Xie, M. Han, and W. Zhang. Singular homoclinic bifurcations in a planar fast–slow system. J.

Dyn. Contr. Syst., 11(3):433–448, 2005.

[XHZ06a] F. Xie, M. Han, and W. Zhang. Existence of canard manifolds in a class of singularly perturbed

systems. Nonlinear Anal., 64(3):457–470, 2006.

[XHZ06b] F. Xie, M. Han, and W. Zhang. The persistence of canards in 3-D singularly perturbed systems with

two fast variables. Asymp. Anal., 47(1):95–106, 2006.

[Xie12] F. Xie. On a class of singular boundary value problems with singular perturbation. J. Differential

Equat., 252:2370–2387, 2012.

[Yad13] K. Yadi. Averaging on slow and fast cycles of a three time scale system. J. Math. Anal. Appl.,

pages 1–26, 2013. accepted, to appear.

[Yam93] M. Yamada. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semicon-

ductor lasers. IEEE J. Quant. Electr., 29:1330–1336, 1993.

[Yan87] E. Yanagida. Branching of double pulse solutions from single pulse solutions in nerve axon equation.

J. Differential Equat., 66:243–262, 1987.

[Yan88] E. Yanagida. Existence of periodic travelling wave solutions of reaction–diffusion systems with fast–

slow dynamics. J. Differential Equat., 76:115–134, 1988.

[Yan89] E. Yanagida. Stability of travelling front solutions of the FitzHugh–Nagumo equations. Math. Comput.

Modelling, 12(3):289–301, 1989.

Page 92: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

796 Bibliography

[YD03] G. Yin and S. Dey. Weak convergence of hybrid filtering problems involving nearly completely de-

composable hidden Markov chains. SIAM J. Contr. Optim., 41(6):1820–1842, 2003.

[YE06] J.Z. Yang and W. E. Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and

rods: derivation of continuum models from atomistic models. Phys. Rev. B, 74(18):184110, 2006.

[Yin01] G. Yin. On limit results for a class of singularly perturbed switching diffusions. J. Theor. Prob.,

14(3):673–697, 2001.

[YK73] R. Yackel and P. Kokotovic. A boundary layer method for the matrix Riccati equation. IEEE Trans.

Aut. Contr., 18:17–24, 1973.

[YK99] G. Yin and M. Kniazeva. Singularly perturbed multidimensional switching diffusions with fast and

slow switchings. J. Math. Anal. Appl., 229(2):605–630, 1999.

[YK05] G. Yin and V. Krishnamurthy. Least mean square algorithms with Markov regime-switching limit.

IEEE Trans. Aut. Contr., 50(5):577–593, 2005.

[YKL06] N. Yu, R. Kuske, and Y.X. Li. Stochastic phase dynamics: multiscale behavior and coherence mea-

sures. Phys. Rev. E, 73(5):056205, 2006.

[YKL08] N. Yu, R. Kuske, and Y.X. Li. Stochastic phase dynamics and noise-induced mixed-mode oscillations

in coupled oscillators. Chaos, 18:015112, 2008.

[YKU77] K.-K. Young, P. Kokotovic, and V. Utkin. A singular perturbation analysis of high-gain feedback

systems. IEEE Trans. Aut. Contr., 22(6):931–938, 1977.

[YL11] Z. Yang and Q. Lu. Bifurcation mechanisms of electrical bursting with different-time-scale slow

variables. Int. J. Bif. Chaos, 21(5):1407–1425, 2011.

[YLK13] N. Yu, Y.X. Li, and R. Kuske. A computational study of spike time reliability in two cases of

threshold dynamics. J. Math. Neurosci., 3:11, 2013.

[You02] L.-S. Young. What are SRB measures, and which dynamical systems have them? L. Stat. Phys.,

108(5):733–754, 2002.

[YPMD08] P. Yanguas, J.F. Palacian, J.F. Meyer, and H.S. Dumas. Periodic solutions in Hamiltonian systems,

averaging, and the lunar problem. SIAM J. Appl. Dyn. Syst., 7(2):311–340, 2008.

[YTE01] A.C. Yew, D.H. Terman, and G.B. Ermentrout. Propagating activity patterns in thalamic neuronal

networks. SIAM J. Appl. Math., 61(5):1578–1604, 2001.

[YTHL11] P. Yordanov, S. Tyanova, M.-T. Hutt, and A. Lesne. Asymmetric transition and time-scale separation

in interlinked positive feedback loops. Int. J. Bif. Chaos, 21(7):1895–1905, 2011.

[Yvi13] R. Yvinec. Adiabatic reduction of models of stochastic gene expression with bursting.

arXiv:1301.1293v1, pages 1–24, 2013.

[YW10] S. Yanchuk and M. Wolfrum. A multiple time scale approach to the stability of external cavity modes

in the Lang–Kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Sys., 9(2):519–535,

2010.

[YWDZ12] Z. Yang, Q. Wang, M.-F. Danca, and J. Zhang. Complex dynamics of compound bursting with burst

episode composed of different bursts. Nonlinear Dyn., 70:2003–2013, 2012.

[YY77] K. Yokota and I. Yamazaki. Analysis and computer simulation of aerobic oxidation of reduced nicoti-

namide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry, 16(9):1913–1920,

1977.

[YY04] G. Yin and H. Yang. Two-time-scale jump-diffusion models with Markovian switching regimes. Stoch.

Stoch. Rep., 76(2):77–99, 2004.

[YYYZ02] H. Yang, G. Yin, K. Yin, and Q. Zhang. Control of singularly perturbed Markov chains: a numerical

study. ANZIAM J., 45:49–74, 2002.

[YZ94] G. Yin and Q. Zhang. Near optimality of stochastic control in systems with unknown parameter

processes. Appl. Math. Optim., 29(3):263–284, 1994.

[YZ97] G. Yin and Q. Zhang. Control of dynamic systems under the influence of singularly perturbed Markov

chains. J. Math. Anal. Appl., 216(1):343–367, 1997.

[YZ98] G.G. Yin and Q. Zhang. Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach.

Springer, 1998.

[YZ00] G. Yin and Q. Zhang. Singularly perturbed discrete-time Markov chains. SIAM J. Appl. Math.,

61(3):834–854, 2000.

[YZ02a] G. Yin and H. Zhang. Countable-state-space Markov chains with two time scales and applications

to queueing systems. Adv. Appl. Prob., 34(3):662–688, 2002.

[YZ02b] G. Yin and Q. Zhang. Hybrid singular systems of differential equations. Science China F, 45(4):

241–258, 2002.

[YZ03] G. Yin and Q. Zhang. Discrete-time singularly perturbed Markov chains. In Stochastic Modeling and

Optimization, pages 1–42. Springer, 2003.

[YZ04a] L. Yang and X. Zeng. Stability of singular Hopf bifurcations. J. Differential Equat., 206(1):30–54, 2004.

[YZ04b] G. Yin and Q. Zhang. Two-time-scale Markov chains and applications to quasi-birth-death queues.

SIAM J. Appl. Math., 65(2):567–586, 2004.

[YZ05] G.G. Yin and Q. Zhang. Discrete-time Markov Chains: Two-Time-Scale Methods and Applications. Springer,

2005.

[YZ07] G. Yin and Q. Zhang. Singularly perturbed Markov chains: limit results and applications. Ann. Appl.

Prob., 17(1):207–229, 2007.

[YZ08] G. Yin and Q. Zhang. Discrete-time Markov chains with two-time scales and a countable state space:

limit results and queueing applications. Stochastics, 80(4):339–369, 2008.

[YZ10] G.G. Yin and C. Zhu. Hybrid Switching Diffusions: Properties and Applications. Springer, 2010.

[YZB00a] G. Yin, Q. Zhang, and G. Badowski. Asymptotic properties of a singularly perturbed Markov chain

with inclusion of transient states. Ann. Appl. Math., 10(2):549–572, 2000.

[YZB00b] G. Yin, Q. Zhang, and G. Badowski. Occupation measures of singularly perturbed Markov chains

with absorbing states. Acta Math. Sinica, 16(1):161–180, 2000.

[YZB00c] G. Yin, Q. Zhang, and G. Badowski. Singularly perturbed Markov chains: convergence and aggre-

gation. J. Multivar. Anal., 72(2):208–229, 2000.

[Z11] M. Zaks. On chaotic subthreshold oscillations in a simple neuronal model. Math. Model. Nat. Phenom.,

6(1):149–162, 2011.

Page 93: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Bibliography 797

[ZD11] A. Zagaris and A. Doelman. Emergence of steady and oscillatory localized structures in a

phytoplankton-nutrient model. Nonlinearity, 24(12):3437–3486, 2011.

[ZDTS09] A. Zagaris, A. Doelman, N.N. Pham Thi, and B.P. Sommeijer. Blooming in a non-local, coupled

phytoplankton-nutrient model. SIAM J. Appl. Math., 69(4):1174–1204, 2009.

[ZE10] E.P. Zemskov and I.R. Epstein. Wave propagation in a FitzHugh–Nagumo-type model with modified

excitability. Phys. Rev. E, 82:026207, 2010.

[Zee77] E.C. Zeeman. Catastrophe Theory: Selected Papers, 1972–1977. Addison-Wesley, 1977.

[Zel13] S. Zelik. Inertial manifolds and finite-dimensional reduction for dissipative PDEs. arXiv:1303.4457v1,

pages 1–60, 2013.

[ZFM+97] M.G. Zimmermann, S.O. Firle, M.A. Matiello, M. Hildebrand, M. Eiswirth, M. Bar, A.K. Bangia, and

I.G. Kevrekidis. Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction–

diffusion model. Physica D, 110(1):92–104, 1997.

[ZGB+03] M. Zhang, P. Goforth, R. Bertram, A. Sherman, and L. Satin. The Ca2+ dynamics of isolated mouse

β-cells and islets: implications for mathematical models. Biophys. J., 84(5):2852–2870, 2003.

[ZGKK09] A. Zagaris, C.W. Gear, T.J. Kaper, and I.G. Kevrikidis. Analysis of the accuracy and convergence

of equation-free projection to a slow manifold. ESAIM: Math. Model. Numer. Anal., 43(4):754–784, 2009.

[ZGO13] Q. Zhang, J. Gong, and C.H. Oh. Intrinsic dynamical fluctuation assisted symmetry breaking in

adiabatic following. Phys. Rev. Lett., 110:130402, 2013.

[Zha64] A.M. Zhabotinsky. Periodic processes of malonic acid oxidation in a liquid phase (in Russian).

Biofizika, 9:306–311, 1964.

[Zha85] A.M. Zhabotinsky. The early period of systematic studies of oscillations and waves in chemical

systems. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems,

pages 1–6. Wiley-Interscience, 1985.

[Zha95] Q. Zhang. Risk-sensitive production planning of stochastic manufacturing systems: a singular per-

turbation approach. SIAM J. Contr. Optim., 33(2):498–527, 1995.

[Zha96] Q. Zhang. Finite state Markovian decision processes with weak and strong interactions. Stochastics,

59(3):283–304, 1996.

[Zha08] Z. Zhao. Solitary waves of the generalized KdV equation with distributed delays. J. Math. Anal. Appl.,

344(1):32–41, 2008.

[ZJ07] J. Zinn-Justin. Phase Transitions and Renormalization Group. OUP, 2007.

[ZJJ04] J. Zinn-Justin and U.D. Jentschura. Multi-instantons and exact results I: conjectures, WKB expan-

sions, and instanton interactions. Ann. Phys., 313:197–267, 2004.

[ZKK04a] A. Zagaris, H.G. Kaper, and T.J. Kaper. Analysis of the computational singular perturbation method

for chemical kinetics. J. Nonlinear Sci., 14:59–91, 2004.

[ZKK04b] A. Zagaris, H.G. Kaper, and T.J. Kaper. Fast and slow dynamics for the computational singular

perturbation method. Multiscale Model. Simul., 2(4):613–638, 2004.

[ZKK05] A. Zagaris, H.G. Kaper, and T.J. Kaper. Two perspectives on reduction of ordinary differential

equations. Math. Nachr., 278(12):1629–1642, 2005.

[ZKSW11] W. Zhang, V. Kirk, J. Sneyd, and M. Wechselberger. Changes in the criticality of Hopf bifurcations

due to certain model reduction techniques in systems with multiple timescales. J. Math. Neurosci., 1:9,

2011.

[ZMdB89] H. Zeghlache, P. Mandel, and C. Van den Broeck. Influence of noise on delayed bifurcations. Phys.

Rev. A, 40:286–294, 1989.

[ZNK13] A. Zakharova, Z. Nikoloski, and A. Koseka. Dimensionality reduction of bistable biological systems.

Bull. Math. Biol., 75:373–392, 2013.

[Zol87] H. Zoldek. Bifurcations of certain family of planar vector fields tangent to axes. J. Differential Equat.,

67(1):1–55, 1987.

[ZP08] J. Zhang and Y. Peng. Travelling waves of the diffusive Nicholson’s blowflies equation with strong

generic delay kernel and non-local effect. Nonl. Anal.: Theor. Meth. Appl., 68(5):1263–1270, 2008.

[ZREK03] A.M. Zhabotinsky, H.G: Rotstein, I.R. Epstein, and N. Kopell. A canard mechanism for localization

in systems of globally coupled oscillators. SIAM J. Appl. Math., 63(6):1998–2019, 2003.

[ZS84] A.K. Zvonkin and M.A. Shubin. Non-standard analysis and singular perturbations of ordinary dif-

ferential equations. Russ. Math. Surveys, 39(2):69–131, 1984.

[ZT88] E.C. Zachmanoglu and D.W. Thoe. Introduction to Partial Differential Equations with Applications. Dover,

1988.

[ZVG+12] A. Zagaris, C. Vanderkerckhove, C.W. Gear, T.J. Kaper, and I.G. Kevrekidis. Stability and stabi-

lization of the constrained runs schemes for equation-free projection to a slow manifold. Discr. Cont.

Dyn. Syst. A, 32(8):2759–2803, 2012.

[ZW10a] Y.G. Zheng and Z.H. Wang. Delayed Hopf bifurcation in time-delayed slow–fast systems. Science

China - Technological Sciences, 53(3):656–663, 2010.

[ZW10b] Y.G. Zheng and Z.H. Wang. The impact of delayed feedback on the pulsating oscillations of class-B

lasers. Int. J. Non-Linear Mech., 45(7):727–733, 2010.

[ZW12a] Y.G. Zheng and Z.H. Wang. Relaxation oscillation and attractive basins of a two-neuron Hopfield

network with slow and fast variables. Nonlinear Dyn., 70:1231–1240, 2012.

[ZW12b] Y.G. Zheng and Z.H. Wang. Time-delay effect on the bursting of the synchronized state of coupled

Hindmarsh-Rose neurons. Chaos, 22:043127, 2012.

[ZY96] Q. Zhang and G.G. Yin. A central limit theorem for singularly perturbed nonstationary finite state

Markov chains. Ann. Appl. Prob., 6(2):650–670, 1996.

[ZY99] Q. Zhang and G.G. Yin. On nearly optimal controls of hybrid LQG problems. IEEE Trans. Aut. Contr.,

44(12):2271–2282, 1999.

[ZY04] Q. Zhang and G.G. Yin. Exponential bounds for discrete-time singularly perturbed Markov chains.

J. Math. Anal. Appl., 293(2):645–662, 2004.

[ZY05] S. Zhu and P. Yu. Computation of the normal forms for general M-DOF systems using multiple time

scales. I. Autonomous systems. Commun. Nonlinear Sci. Numer. Simul., 10:869–905, 2005.

[ZY06] S. Zhu and P. Yu. Computation of the normal forms for general M-DOF systems using multiple time

scales. II. Non-autonomous systems. Commun. Nonlinear Sci. Numer. Simul., 11:45–81, 2006.

Page 94: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

798 Bibliography

[ZYB97] Q. Zhang, G.G. Yin, and E.K. Boukas. Controlled Markov chains with weak and strong interactions:

asymptotic optimality and applications to manufacturing. J. Optim. Theor. Appl., 94(1):169–194, 1997.

[ZYL05] Q. Zhang, G.G. Yin, and R.H. Liu. A near-optimal selling rule for a two-time-scale market model.

Multiscale Model. Simul., 4(1):172–193, 2005.

[ZYM07] Q. Zhang, G.G. Yin, and J.B. Moore. Two-time-scale approximation for Wonham filters. IEEE Trans.

Inf. Theor., 53(5):1706–1715, 2007.

Page 95: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

Index

A-stable, 301, 302absolutely continuous

conditional measure, 459measure, 459

absolutely stable, 301absorbing state, 510Ackerberg–O’Malley resonance, 69action, 646

functional, 514action-angle coordinates, 273, 316,

646active node, 698Adams–Bashforth method, 299adaptive

dynamics, evolution, 680mesh, 308network, 697self-organized criticality, 700

adiabaticinvariant, 648theorem, 695

adjoint operator, 481adjoint representation, 333admissible control, 606admissible time change

hysteresis operator, 635advection–reaction–diffusion, 572affine coordinates, 174Airy equation, 107Allee effect, 559alpha limit set, 527amplitude, 278

equation, 279, 283, 286equation, PDEs, 614

analytic continuation, 363

angle, 646annealed network, 697appreciable hyperreal, 640approximate identity, 580approximation

geometrical optics, 262physical optics, 262zeroth-order, 102

ARD, 572Arrhenius–Eyring–Kramers law,

517Arzela–Ascoli, 610asymptotic

expansion, 15expansion, Gevrey, 269matching, 240, 243, 248matching condition, 245moment of falling, 364moment of jumping, 364phase, 340rate foliation, 46sequence, 15sequence, logarithmic, 107series, 16, 92

asymptoticallyflat (Gevrey), 269flat (Poincare), 269

asymptoticsPoincare, 270via blowup, fold, 262

atlas, 28attracting normally hyperbolic, 55attractor, 436

Axiom A, 460Lorenz, 468

© Springer International Publishing Switzerland 2015C. Kuehn, Multiple Time Scale Dynamics, Applied MathematicalSciences 191, DOI 10.1007/978-3-319-12316-5

799

Page 96: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

800 INDEX

maximal, 436strange, 436

attractor–repeller pair, 527autocatalator, 674auxiliary canard, 420average, 542average connectivity, 699averaged equation, 266averaging, 265

fast subsystem, 267theorem, 266

Axiom A attractor, 460

B-tipping, 655Bezout’s lemma, 379backward

differentiation formula, 302, 626Kolmogorov equation, 481, 517

Banachcontraction mapping theorem, 35manifold, 588space, 37

Barkley model, 684basin of attraction, 514BDF, 302, 626Belousov–Zhabotinskii reaction, 398,

673Bernoulli shift, 438Berstein-type inequality, 488beyond all orders, 15, 248bi-infinite sequences, 438bifurcation, 53

critical transition, 656cusp, 63diagram, singular, 409dynamic, 63fold, 62Hopf, 63, 361, 404pitchfork, 265, 386saddle node of limit cycles, 213saddle-node, 62transcritical, 63

bilinear oscillator, 607block diagram, 665blowdown, 187blowup

asymptotics, fold, 262directional, 168directional, repeated, 170directional, rescaled, 168example, polar, R2, 161method, 160planar fold, 180polar, R2, 160polar, Rn, 162polar, rescaled, 164polar, weighted, 173quasihomogeneous, 173repeated, construction of, 165transcritical point, 231weighted, directional, 176, 177

Boltzmann constant, 497Bornholdt–Rohlf model, 698boundary

condition, separated, 303function, 257function method, 255layer, 693manifold, 149map, 536

boundary value problem, 303two-point, 303, 393two-point, fast–slow, 149two-point, linear, 76, 94

box, 546Brownian motion, 478, 497, 506

scaling law, 482bundle

normal bundle, 23plane bundle, 561tangent bundle, 23transversal bundle, 30

Burgers’ equation, 563burst

initiation, 416termination, 416

bursting, 398elliptic, 417fold-homoclinic, 416square-wave, 416subHopf–foldcycle, 417

BZ reaction, 673

Page 97: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 801

C-slow exit/entrance point, 543canard, 200

auxiliary, 420, 423cycle, 212delayed Hopf, 361explosion, 212, 315, 418, 643faux, 215, 218in R

3, node, saddle, 219jump-back, 211jump-forward, 212maximal, 200, 355, 419point, 200, 418, 632secondary, 226, 228, 420secondary, turning point, 228singular, 215, 401singular cycle, 211turning point, Gevrey, 273vrai, 218with head, 212without head, 211

candidate, 64, 462, 655canonical

adaptive dynamics, 680transformation, 646

cap, 547carrier density, 590carrier wave, 613celestial mechanics, 685cell problem, 598center

folded, 218manifold, 49

chain recurrent, 542chaotic, 435, 456, 458characteristic polynomial, 300

first, 299second, 299

characteristics, 563chart, 28

classical, 220fold point, 181rescaling, 220

Chern number, 561classical chart, 220close vector fields, 28cocycle property, 506

coevolutionary network, 697coherence resonance, 479cohomological Conley index, 531collapse time, 365collocation, 307

conditions, 307points, 307

compact perturbation, 591complete orbit, 437complex

fast–slow system, 271phase, 365

composite expansion, 246, 520computational singular perturbation

condition, 334fast fiber, 340method, 331one-step method, 332, 334two-step method, 332, 334

conditionasymptotic matching, 245

conditional measure, 458conditioning, 308

constant, 310ill, 308well, 308

cone, 440condition, 440, 454

conjugatetopologically, 438

Conley index, 531connecting homomorphism, 536connecting orbit, 528connection

matrix, 538problem, 149

conservation law, 562constrained ODE, 620continuation, 312

natural, 314problem, 313property, Conley index, 532related by, 526

contraction mapping theorem, 35control

admissible, 606

Page 98: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

802 INDEX

curve, 272theory, 88

convex hull, 373coordinates

affine, 174chart, 28homogeneous, 174

corner layer, 255corrector problem, 598correlation, 504

function, 503cost, 516covariance ellipsoid, 485critical

set, 12, 229set, for 1D map, 457transition, 654, 655

critical manifold, 12, 54normally hyperbolic, 48random, 509S-shaped, 188tame branch, 388

CSP, 331condition, 334fast fiber, 340one-step method, 334two-step method, 334

CU-system, 653curvature, 233cusp point, 63, 167, 469

DAE, 11, 620linear, 623

Dafermos regularization, 568Dahlquist

barrier theorem, 301test equation, 300

damped harmonic oscillator, 274delay

equation, 602fold, 360

delay equation, 586delayed Hopf bifurcation, 361, 407delta-distribution, 580Descartes, folium, 376desingularization, 167

diffeomorphism, 29differential

-algebraic equation, 11, 620form, 129, 646form, basic, 130form, projective, 130inclusion, 605

differentiation index, 620diffusion

matrix, 472, 481, 514process, 480term, 480

Diophantine equation, 379direct sum, 23directional blowup, 168

transition maps, 183discontinuous vector field, 628disordered series, 104distinguished limit, 251domain

of validity, 244sectorial domain, 269

dominant balance, 251, 393Dorodnitsyn’s formula, 111double limit, 494double-well potential, 512Drazin inverse, 623drift, 480drop curve, 463drop point, 109duck, 200, 212Duffing equation, 275Duhamel’s principle, 484, 487, 594dynamic bifurcation, 63Dynkin’s equation, 518

early-warning sign, 654ecology, 679edge of a network, 696eigenspace

center, 48stable, 48unstable, 48

eigenvaluenontrivial, 47operator, 554

Page 99: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 803

problem, operator, 554singular, 207trivial, 47, 555

eikonal equation, 261ellipsoid, 485elliptic

bursting, 417operator, 595

entrance point, slow, 541envelope, 613

equation, 614epsilon-embedding method, 624equation-free, 344equicontinuity, 610error

equidistribution, 308global, 296HMM, 320local truncation, 296, 320

essential spectrum, 555Estrin–Kubin model, 667Euclidean norm, 4Euler method

explicit, 296implicit, 299modified, 298

Euler–Lagrange equations, 515Euler–Maruyama, 318, 478Evans function, 555, 557evolution operator, 309evolutionary dynamics, 680exchange lemma, 129

C0-version, 129C1-version, 129differential form version, 130MFDE, 577strong version, 148with exponentially small error,

148exchange of stability, 231excitable system, 684, 700excitation, 691existential transfer, 639exit

guide, slow, 543point, immediate, 544

point, slow, 541set, 530time, 481, 514

expansioncomposite, 246in 1D maps, 457inner, 241outer, 241post-Newtonian, 602small noise, 493

explicit method, 298, 299exponential dichotomy, 556extended domain of validity, 244extended system, 117exterior product, 130Eyring–Kramers law, 517

family of cones, 440fast

flow, 12, 47rotating phase, 273subspace, 345subsystem, 12, 54time, 8variable, 8vector field, 12wave, 142, 351

fast–slowdifferential inclusion, 607Markov chain, 511random differential equation, 507system, 8system, complex, 271vector field, 8

faux canard, 215, 218feasible control, 606feedback system, 665Fenichel

normal form, 73, 74theorem, classical fast–slow, 48theorem, fast–slow systems, 55,

328theorem, foliations, 45theorem, general manifolds, 28,

42FHN, 11

Page 100: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

804 INDEX

fiberbundle, 45stable, 45, 46unstable, 45

Field–Koros–Noyes mechanism, 673Filippov convex method, 628Fillipov system, 606finite differences, 306finite smoothness, 65first

-order corrector, 598exit-time, 481, 514integral, 202, 646Lyapunov coefficient, 209, 372,

408Lyapunov exponent, 435

FitzHugh–Nagumo equation, 112D ODE, 10, 233, 314, 3722D PDE, 10, 120, 573, 6493D ODE, 141, 350, 406, 534, 650lattice model, 573symmetry, 650

FitzHugh-Nagumo equation3D ODE, 11, 67

FKN mechanism, 673flow, 11, 584

box, 75skew-product, 507

fluid dynamics, 691Fokker–Planck equation, 473, 481fold

bifurcation, 62blowup, 180curve, 80, 353curve, nondegenerate, 80curve, normal form, 80in the slow flow, 433nonautonomous, 103point, 62, 632point, generic, 77, 103, 178, 359,

386, 489point, nondegenerate, 62point, normal form, 77, 80, 359saddle, 450

fold-homoclinic bursting, 416

foldedcenter, 218focus, 218, 410node, 218, 353, 400, 408, 410saddle, 218, 410saddle, example, 214saddle-node, 218, 404, 410singularity, 409singularity in R

2, 198singularity in R

3, 216singularity, generic, R2, 198

foliation, 45asymptotic rate, 46

folium of Descartes, 376forward Kolmogorov equation, 481frozen

component size, 700node, 698

full system, 12function

input-output, 365functional differential equation

mixed, 574retarded, 586

functional equation, 39functional response, 559fundamental solution, 309, 483, 556,

696

gain, 578block, 665medium, 676

galaxy, 640Gaspard–Nicolis–Rossler model, 399gating variable, 669gauge function, 15Gauss points, 307Gaussian random variable, 484generating function, 647generator, 481

infinitesimal, 482Markov chain, 510

generic, 621-parameter family, 198delayed Hopf, 363fold point, 77, 103

Page 101: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 805

geometricdesingularization, 160singular perturbation theory, 53,

56geometrical optics, 262Gevrey

asymptotic expansion, 269order, 269

Gierer–Meinhardt equation, 682Ginzburg–Landau equation, 615global error, 296good rate function, 514gradient, 5, 132

system, 512, 516graph, 33, 696

transform, 34, 35Green’s function, 309Gronwall’s lemma, 32

generalized, 138GSPT, 53

Henon map, 455half-return map, 447, 462halo, 641Hamiltonian

Schrodinger equation, 695system, 273, 316, 646, 652system, time-dependent, 647

harmonic average, 599harmonic oscillator, 274, 276, 646

damped, 274Hausdorff distance, 55heat equation, 585Heaviside function, 578, 690height

of an edge, 384of the Newton diagram, 384

Hermite polynomial, 222Hermitian conjugate, 590Hessenberg index-1, 621Hessian, 163heteroclinic

cycle, 628orbit, 114, 527orbit, connection problem, 150

heterogeneous, 596

heterogeneous multiscale methods,315

hidden constraint, 622high-gain amplifier, 666HMM, 315Hodgkin–Huxley equations, 669Holling functional response, 559holomorphic, 270homoclinic orbit, 114, 405

computation, FHN, 350double loop, 471existence, FHN, 142Lorenz-type model, 470MFDE, 576n-homoclinic, 407

homogeneous coordinates, 174homogenization, 595, 596homogenized tensor, 596homological Conley index, 531homology, 531homotopy, 470

method, computation, 354Hopf bifurcation, 63, 361

delayed, 361, 407in van der Pol-type system, 208singular, 315, 643singular, R2, 206, 207singular, R3, 404subcritical, 414, 416theorem, 209

horizontalpart, 439, 441surface, 440

horizontally cylindric, 441horseshoe map, 437hydra, 681hyperbolic

conservation law, 571manifold, 41matrix, 48normally, 41splitting, 41

hyperreal number, 638, 640hysteresis, 633

operator, 635

Page 102: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

806 INDEX

ILDM, 345

ill conditioned, 308

implicit

Euler method, 299

function theorem, 59

method, 299

index

bundle, 550

DAE, 620

Morse, 556

of nilpotency, 623

pair, 530

pair, singular, 544

triple, 536

induced derivation, 146

inequality

Lojasiewicz, 166

inertial manifold, 595, 601

infinitely

close, 641

large, 638

small, 638

infinitesimal generator, 481, 482

infinitesimal hyperreal, 640

inflection point, 233

inflowing

invariant manifold, 21

inhibition, 691

initial conditions

sensitive dependence, 435

inner

expansion, 241

layer, 242

product, 5

input-output function, 365

integer programming, 388

integrating factor, 137

integrator block, 665

integrodifferential equation, 578,590

interaction kernel, 578

interior layer, 150, 242, 253

intersection

transverse, 142

interval, 529interval arithmetic, 449intrinsic low-dimensional manifold,

345invariance equation, 328, 336, 604,

632invariant

globally, 20locally, 49, 55manifold, 22manifold, random, 508measure, 458negatively, 45positively, 46probability measure, 317set, 587subspaces, blowup, 184

inverse function theorem, 30isola, 485isolating

block, 531neighborhood, 526, 540neighborhood, singular, 541

Ito integral, 480Ito’s formula, 480, 483iterative method

slow manifold, 347

Jeffrey–Hamel flow, 691jet, 163jump, 97

-back canards, 211-forward canards, 212-on set, 151matrix, 510point, 109, 188, 191

Kepler’s second law, 686kinematic viscosity, 692Kirchhoff’s law, 668Kolmogorov’s

backward equation, 481, 517forward equation, 481

Koper model, 354, 408symmetric, 409

Kramers law, 517

Page 103: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 807

Lagrangian viewpoint, 693Landau notation

big-O, 14little-o, 14

Langevin equation, 497LAO, 399Laplace method, 490Laplace transform, 501Laplacian, 5, 611large deviation

principle, 514theory, 514

large-amplitude oscillation, 399laser, 590, 676lattice differential equation, 573layer

equations, 12inner, 242interior, 150, 242, 253outer, 242problem, 12

LDP, 514leaf, 45Lebesgue space, 587Lienard transformation, 9Lienard transformation, 573Lie bracket, 333light amplitude, 590limit

distinguished, 251set, alpha, 527set, omega, 527

limited distance apart, 640limited hyperreal, 640Lin’s method, 653Lindstedt’s method, 276linear

k-step method, 299DAE, 623multistep method, 298recurrence relation, 299stability, traveling wave, 555system, 86

link, 696Liouville equation, 472Lipschitz

set-valued map, 606local

truncation error, 296, 320vector field, 177

locally invariant manifold, 22, 55logarithmic equivalence, 515logistic map, 433Lojasiewicz inequality, 166Lorenz attractor, 468Lyapunov

-type numbers, 23, 40coefficient, Hopf bifurcation, 209,

408equation, 484exponent, 435exponent, first, 435number, 435

macro solver, 316macroscopic variable, 316magnifying glass, 85, 644manifold, 6, 54

boundary, 149center-stable, semiflow, 589center-unstable, semiflow, 589critical, 12, 54hyperbolic, 41inertial, 595, 601inflowing invariant, 21intrinsic low-dimensional, 345invariant, 22locally invariant, 22normally hyperbolic, 41, 48, 54overflowing invariant, 22slow, 56stable, 42unstable, 42

maprank-one, 456singularly perturbed, 455

Markov chain, 510martingale, 488mass action kinetics, 674matched asymptotic expansion, 240,

243, 248maximal canard, 200

Page 104: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

808 INDEX

Maxwell–Bloch equation, 593measure

F -invariant, 458-preserving, 506acc, 459conditional, 458physical, 459SRB, 459

Melnikovmethod, 228, 684theory, 156

membrane potential, 668mesh, 306

adaptation, 308metastable, 481method

of characteristics, 563of multiple scales, 277

metric dynamical system, 506MFDE, 574Michaelis–Menten kinetics, 688Michaelis–Menten–Henri, 338micro solver, 316microscopic variable, 316mild solution, 594Minkowski sum, 373mitotic oscillator, 688mixed functional differential equation,

574mixed-mode oscillations, 398mixing, 436, 458MMH, 338MMO, 398modified Euler method, 298modulation equation, 614moment

of falling, 364of jumping, 364

Morris–Lecar model, 413, 416, 689Morse

decomposition, 529index, 556

movingframe, 339window, 658

multi-index, 280, 377

multiplescales method, 277, 596shooting, 306

multiplier, 437multistep method, 298, 625

natural continuation, 314near-identity transformation, 273negatively invariant, 45neighborhood

isolating, 526Nernst potential, 668Netushil’s principle, 635networks, 696neural competition, 485neural field, 578neuroscience, 668Newell–Whitehead–Segel equation,

614Newton

diagram, 374diagram, height, 384law of gravitation, 686method, 307open polygon, 375polygon, 373

Newtonian expansion, 602nilpotency index, 623node

folded, 218, 353of a graph, 696

noise level, 493noise-induced

effect, 479transition, 479

nondegeneratefold curve, 80fold point, 62

nonsmooth system, 628nonstandard analysis, 637nonwandering set, 443norm, 4

sup-norm, 37Euclidean, 4

normalbundle, 23

Page 105: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 809

form, 71hyperbolicity, semiflow, 588space, 23switching condition, 80, 191, 461

normal formFenichel, 74fold point, 77, 359Hopf bifurcation, 361linear system, 87theory, 284

normally hyperbolicattracting, 55manifold, 41, 48, 54planar system, 98repelling, 55saddle type, 55splitting, 41

numerical continuation, 312

ODE, 3omega limit set, 527one-step method, 298operator norm, 587orbit

complete, 437heteroclinic, 114homoclinic, 114

order, 298higher than, 14not lower than, 14partial, 529total, 529

Oregonator, 674Ornstein–Uhlenbeck process, 484, 503oscillation

bursting, 398large-amplitude, 399mixed-mode, 398relaxation, 97relaxation, simple, 97small-amplitude, 399

outerexpansion, 241layer, 242

overflowing invariant manifold, 22overlap domain, 244

parthorizontal, 439, 441vertical, 439, 441

partial order, 529PDE, 4period

of oscillation, vdP, 108of relaxation oscillation, R3, 194

perturbationregular, 95singular, 95

phasecomplex, 365

physical measure, 459physical optics, 262, 695pitchfork bifurcation, 265, 386Planck’s constant, 694plane bundle, 561plastic deformation, 667play operator, 633Poincare asymptotics, 270Poincare–Lindstedt method, 276point spectrum, 555polar blowup

R2, 160

Rn, 162

rescaled, 164weighted, 173weighted, rescaled, 173

population inversion, 676positive averages, strictly, 542positively invariant, 46, 587

random set, 507post-Newtonian expansion, 602potential

double-well, 512quasi-, 516

powerpositive, 458ramp, 372transformation, 377transformation, unimodular, 377

predator–prey, 558, 679predictor–corrector, 313principal solution, 309, 483, 556,

696

Page 106: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

810 INDEX

probabilitydensity, 480distribution, 480

projective space, 174propagation failure, 575propagator, 309pullback, 130pushforward, 130, 162

set, 544

Q-matrix, 510quantum adiabatic theorem, 695quantum Hamiltonian, 695quartic oscillator, 261quasihomogeneous

blowup, 173fold, 180function, 172vector field, 172, 393

quasipotential, 516quasistationary distribution, 512

Radon–Nikodym derivative, 459ramp, 370random

critical manifold, 509differential equation, 507dynamical system, 506equilibrium point, 509invariant manifold, 508set, 507

rank-one map, 456Rankine–Hugoniot condition, 565rarefaction, 566rate

function, 514independence, 635independent memory, 635

Rayleigh’s equation, 280RDE, 507RDS, 506reaction–diffusion equation, 554, 586recall, 29rectangle, 441rectification lemma, 75recurrence relation, 299

reduced flow, 11reduced problem, 11reflection coefficient, 695region of absolute stability, 301regular

pair, 623perturbation, 95point, fast–slow, 58

regularizationDafermos, 568nonsmooth, 630viscous, 567

related by continuation, 526relative homology, 531relaxation oscillation, 97, 188

asymptotics in R3, 194

existence in R2, 188

existence in R3, 190

period, vdP, 108simple, 97, 109

renormalization, 285renormalization group, 279

condition, 280, 283equation, 286equation, kth-order, 289transformation, 286transformation, kth-order, 289

repeated blowup, 165repelling normally hyperbolic, 55replica, 318rescaling, 83

chart, 220time, 195

resonance, 219Ackerberg–O’Malley, 69coherence, 479stochastic, 479

resonant term, 284retarded functional differential

equation, 586, 600Reynolds number, 692Riccati equation, 107Riemann

–Dafermos solutions, 568problem, 567

Page 107: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 811

Rosenzweig–MacArthur model, 558,679

rotation

sector of, 403, 424Runge–Kutta method, 298

saddle-focus, 407-node bifurcation, 62

-node, folded, 218-type slow manifold, 310, 348

node of limit cycles, 213type, normally hyperbolic, 55folded, 218

sample path, 318, 478SAO, 399scale-invariant conservation laws, 568

scaling law, 658Brownian motion, 482

fold, 360Schilder’s theorem, 515Schrodinger equation, 260, 694

Schurdecomposition, 345vector, 345

SDE, 478secondary canard, 226, 228, 420section, 30, 33

sector of rotation, 403, 424sectorial domain, 269

secular terms, 275, 687self-organized criticality, 700semiexplicit system, 620

semiflow, 584semigroup, 584sensitive dependence, 435

separation time, 365series

asymptotic, 92disordered, 104uniformly convergent, 92

set-valued map, 605Lipschitz, 606

shadow, 641

Sharkovskyordering, 434theorem, 434

shiftBernoulli, 438

shock, 564shooting

multiple, 306simple, 305

simple shooting, 305Sinai–Ruelle–Bowen measure, 459single-neuron models, 668singular

bifurcation diagram, 409, 649canard, 215canard cycle, 211eigenvalue, 207faux canard, 215Hopf bifurcation, 315, 643Hopf bifurcation, R2, 206, 207Hopf bifurcation, R3, 404, 408index pair, 544isolating neighborhood, 541limit, 12perturbation, 95point, fast–slow, 58point, singularity theory, 58trajectory, 65transition matrix, 539

singular perturbationcomputational, 331geometric theory, 56problem, 95

singularityfolded, in R

3, 216transcritical, 229

singularly perturbed map, 455skew-product flow, 507sleep–wake cycle, 689sliding

flow, 629window, 658

slowentrance point, 541entrance point, strict, 545exit guide, 543

Page 108: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

812 INDEX

exit point, 541flow, 11, 47, 54, 58manifold, 56manifold, finite smoothness, 65manifold, iterative, 347manifold, saddle-type, 310, 348subspace, 345subsystem, 11, 54time, 8variable, 8vector field, 11wave, 142

slowing down, 657Smale horseshoe, 437, 443

existence theorem, 441small-amplitude oscillation, 399smooth manifold, 54SMST algorithm, 348Sobolev space, 515special

flow, delay equation, 601linear group, 377solution, delay equation, 601

spectralgap, 696gap, RDEs, 508problem, 554

spectrum, 554essential, 555point, 555

spike, 399, 669spiral wave, 684splitting, 439

hyperbolic, 41normally hyperbolic, 41

square-wave bursting, 416SRB measure, 459stability polynomial, 300stable

absolutely, 301fiber, 45, 46manifold theorem, 20subspace, 20

standardpart, hyperreal, 641rectangle, 439

standing wave, 694state space form method, 625static network, 697stiff differential equation, 297stiffness ratio, 297stochastic resonance, 479Stokes number, 693Stommel flow, 625, 693Stommel–Cessi model, 659stop operator, 637strained coordinate, 276strange attractor, 436strict slow entrance point, 545strictly positive averages, 542structural stability, 443subHopf–foldcycle bursting, 417subordinate, 458subspace

fast, 345slow, 345stable, 20unstable, 20

sufficiently small, 8sup-norm, 37superslow, 418support function, 609surface

horizontal, 440vertical, 440

Swift–Hohenberg equation, 611symbol sequence for MMOs, 399symbolic dynamics, 438symmetry

FHN, 650periodically forced vdP, 447

symplectic 2-form, 646system

extended, 117of first approximation, 83, 85, 222

systems biology, 688

tame branch, 388tangent

bundle, 23invariant manifolds, 413prediction, 313

Page 109: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

INDEX 813

test function, 565thermal conductivity tensor, 595thermohaline circulation, 658three-time-scale, 417Tikhonov’s theorem, 56time

rescaling, 195scale, 8step, 296

topologicallyconjugate, 438transitive, 436

total order, 529tourbillon, 408trait, 680transcendentally small, 248transcritical point, 63, 229transfer principle, 639transformation

canonical, 646power, 377

transitionfunction, nonsmooth, 630map, 177maps, blowup, 183matrix, 539matrix, singular, 539point, 655probability, 481, 511

transitivetopologically, 436

translation invariance, 555transmission coefficient, 695transport equation, 261, 594transversal

bundle, 30intersection, 142

transversality, 29condition, fold, 77condition, fold curve, 80parametric, 1D maps, 457

trapezoid rule method, 299traveling

back, 120front, 120pulse, 120

pulse, neural field, 579wave, 10, 120wave train, 120wave, nonlinear stability, 555wave, spectral stability, 555

trivial eigenvalue, 555truncation, 380tube, 546tubular neighborhood, 188tunneling, 694turning point, 62, 69, 272, 304, 695

of canards, 228twist, 401two-body problem, 685two-scale convergence, 599two-timing, 277, 687

ultrafilter, 639uniformity lemma, 26, 32unimodal map, 433unimodular power transformation,

377universal transfer, 639unlimited hyperreal, 640unstable

fiber, 45subspace, 20

upper semicontinuous, 608

van der Pol equation, 9, 16constant forcing, 9, 201, 233, 234,

305, 478, 642equation, 194periodically forced, 10, 13, 82, 97,

190, 222, 442, 460stochastic, 478, 494unforced, 9, 13, 59, 96, 102, 108,

252, 330, 541, 545variable

macroscopic, 316microscopic, 316

variation of constants, 484, 594variational equation, 117, 451vdP, 9vector bundle, 23vector exponent, 377

Page 110: link.springer.com978-3-319-12316-5/1.pdf · 706 Bibliography [AC87] B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase

814 INDEX

vector fielddiscontinuous, 628local, 177perturbed, 28quasihomogeneous, 172,

393unperturbed, 28

vertex, 696vertical

part, 439, 441surface, 440

vertically cylindric, 441viscosity, 692viscous profile criterion, 567viscous regularization, 567vrai canard, 218

wandering set, 443Wang–Young theory, 456wave

fast, 142function, 694number, 612slow, 142speed, 10, 120vector, 612

way-in/way-out map, 365Wazewski property, 532weak solution

conservation law, 565Weber equation, 221wedge product, 130Weierstrass canonical form, 623weighted

directional blowup, 176, 177polar blowup, 173

well conditioned, 308Wentzel–Kramers–Brillouin, 259white noise, 472Whitney sum, 562Wiener

measure, 506space, 506

WKB, 259, 518delayed Hopf, 371

Yamada model, 678

ZDP, 342zero section, 30zero-derivative principle, 342zoom, 85