linear wire antennas - empossible...outline •introduction •infinitesimal dipole •small dipole...

24
Linear Wire Antennas EE-4382/5306 - Antenna Engineering

Upload: others

Post on 16-Mar-2020

44 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Linear Wire Antennas

EE-4382/5306 - Antenna Engineering

Page 2: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Outline• Introduction

• Infinitesimal Dipole

• Small Dipole

• Finite Length Dipole

• Half-Wave Dipole

• Ground Effect

2Linear Wire Antennas

Constantine A. Balanis, Antenna Theory: Analysis and Design 4th Ed., Wiley, 2016.

Stutzman, Thiele, Antenna Theory and Design 3rd Ed., Wiley, 2012.

Page 3: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Finite Length Dipole

3

Page 4: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Finite length dipole

Slide 4

A finite length dipole is still in the order of 𝑎 ≪ 𝜆, where and 𝑎 is the thickness of the. However, the length 𝑙 of the antenna is in the same order of magnitude

as the operating wavelength 𝜆

10< 𝑙 ≤ 2𝜆

The current distribution is now approximated to a sinusoidal function:

𝐈e x, y, z =

ෝ𝒂𝑧𝐼0 sin 𝑘𝑙

2− 𝑧 , 0 ≤ 𝑧 ≤

𝑙

2

ෝ𝒂𝑧𝐼0 sin 𝑘𝑙

2− 𝑧 , −

𝑙

2≤ 𝑧 ≤ 0

Linear Wire Antennas

Page 5: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Slide 5Linear Wire Antennas

Page 6: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Slide 6Linear Wire Antennas

Page 7: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Radiated Fields: Element Factor, Space Factor, and Multiplication

Slide 7

To obtain the radiated fields of the finite length dipole in the far-field region, we subdivide the antenna into infinitesimal dipoles and integrate to obtain the contributions from all the infinitesimal elements.

𝑑𝐸𝜃 = 𝑗𝜂𝑘𝐼𝑒 𝑥, 𝑦, 𝑧 𝑒−𝑗𝑘𝑅

4𝜋𝑅sin 𝜃 𝑑𝑧

𝑅 ≅ 𝑟 − 𝑧 cos 𝜃 for far-field approximations in phase terms𝑅 ≅ 𝑟 for far-field approximations in amplitude terms

𝑑𝐸𝜃 = 𝑗𝜂𝑘𝐼𝑒 𝑥, 𝑦, 𝑧 𝑒−𝑗𝑘𝑟

4𝜋𝑟sin 𝜃 𝑒+𝑗𝑘𝑧 𝑐𝑜𝑠(𝜃)𝑑𝑧

𝐸𝜃 =ඵ−𝑙2

+𝑙2𝑑𝐸𝜃 = න

−𝑙2

+𝑙2𝑗𝜂𝑘𝑒−𝑗𝑘𝑟

4𝜋𝑟sin 𝜃 න

−𝑙2

+𝑙2𝐼𝑒 𝑥, 𝑦, 𝑧 𝑒+𝑗𝑘𝑧 cos 𝜃 𝑑𝑧

total field = element factor × (space factor)

Linear Wire Antennas

Page 8: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Slide 8

Radiated Fields – Far-Field

Eθ = 𝑗𝜂𝐼0𝑒

−𝑗𝑘𝑟

2𝜋𝑟

cos𝑘𝑙2cos 𝜃 − cos

𝑘𝑙2

sin 𝜃

Hϕ =Eθ𝜂= 𝑗

𝐼0𝑒−𝑗𝑘𝑟

2𝜋𝑟

cos𝑘𝑙2cos 𝜃 − cos

𝑘𝑙2

sin 𝜃

Linear Wire Antennas

Page 9: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Slide 9Linear Wire Antennas

Page 10: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Power Density, Radiation Intensity, Radiation Resistance, Directivity

Slide 10Linear Wire Antennas

𝑊𝑎𝑣 =1

2Re E × H∗ =

1

2Re ො𝐚𝜃E𝜃 × ො𝐚𝜙

𝐸𝜙∗

𝜂

𝑃𝑟𝑎𝑑 =

𝑆

𝑾𝑎𝑣 ∙ 𝑑𝒔 = න

0

2𝜋

0

𝜋

ෝ𝒂𝑟𝑊𝑎𝑣 ∙ ෝ𝒂𝑟𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙

𝑃𝑟𝑎𝑑 = 𝜂𝐼0

2

4𝜋𝐶 + ln 𝑘𝑙 − 𝐶𝑖 𝑘𝑙 +

1

2sin 𝑘𝑙 𝑆𝑖 2𝑘𝑙 − 2𝑆𝑖 𝑘𝑙 +

1

2cos 𝑘𝑙 𝐶 + 𝑙𝑛

𝑘𝑙

2+ 𝐶𝑖 2𝑘𝑙 − 2𝐶𝑖 𝑘𝑙

𝐶𝑖 𝑥 = −න𝑥

∞ cos 𝑦

𝑦𝑑𝑦 = න

𝑥 cos 𝑦

𝑦𝑑𝑦 𝑆𝑖 𝑥 = න

0

𝑥 sin 𝑦

𝑦𝑑𝑦

Page 11: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Slide 11

𝑅𝑟 =2𝑃𝑟𝑎𝑑𝐼0

2=

𝜂

2𝜋

𝐶 + ln 𝑘𝑙 − 𝐶𝑖 𝑘𝑙 +1

2sin 𝑘𝑙 𝑆𝑖 2𝑘𝑙 − 2𝑆𝑖 𝑘𝑙 +

1

2cos 𝑘𝑙 𝐶 + 𝑙𝑛

𝑘𝑙

2+ 𝐶𝑖 2𝑘𝑙 − 2𝐶𝑖 𝑘𝑙

𝐷0 =2𝐹0ȁ𝑚𝑎𝑥

𝑄

𝑄 =

𝐶 + ln 𝑘𝑙 − 𝐶𝑖 𝑘𝑙 +1

2sin 𝑘𝑙 𝑆𝑖 2𝑘𝑙 − 2𝑆𝑖 𝑘𝑙 +

1

2cos 𝑘𝑙 𝐶 + 𝑙𝑛

𝑘𝑙

2+ 𝐶𝑖 2𝑘𝑙 − 2𝐶𝑖 𝑘𝑙

Power Density, Radiation Intensity, Radiation Resistance, Directivity

Linear Wire Antennas

Page 12: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Input Resistance

Introduction to Antennas Slide 12

To calculate Input Resistance at the terminals, assume lossless antenna (no 𝑅𝐿)and equate the power at the input to the power at the current maximum

𝐼𝑖𝑛2

2𝑅𝑖𝑛 =

𝐼02

2𝑅𝑟

𝑅𝑖𝑛 =𝐼0𝐼𝑖𝑛

2

𝑅𝑟

𝑅𝑖𝑛 = Radiation Resistance at Input terminals𝑅𝑟 = Radiation Resistance at Current Maximum

𝐼0 = Current Maximum𝐼𝑖𝑛 = Current at input terminals

Assuming a sinusoidal current,

𝑅𝑖𝑛 =𝑅𝑟

sin2𝑘𝑙2

Page 13: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Slide 13Linear Wire Antennas

Page 14: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Linear Wire Antennas Slide 14

Page 15: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole

15

Page 16: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole

Slide 16

One of the most commonly used antennas.

The arms are 𝜆

4in length and are fed at the center.

Radiation Resistance is excellent for transmission line connections:

𝑅𝑟 = 73𝑍𝑖𝑛 = 73 + 𝑗42.5

To get rid of reactance, it is common practice to cut the length until it vanishes.

Directivity is also good for omnidirectional terrestrial communications

𝐷0 =4𝜋𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑= 1.643 = 2.156 dBi

Linear Wire Antennas

Page 17: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole Fields

Slide 17

𝐸𝜃 ≅ 𝑗𝜂𝐼0𝑒

−𝑗𝑘𝑟

2𝜋𝑟

cos𝜋2cos 𝜃

sin 𝜃

𝐻𝜙 ≅ 𝑗𝐼0𝑒

−𝑗𝑘𝑟

2𝜋𝑟

cos𝜋2cos 𝜃

sin 𝜃

𝑊𝑎𝑣 ≅ 𝜂𝐼0

2

8𝜋2𝑟2sin3(𝜃)

𝑈 = 𝑟2𝑊𝑟𝑎𝑑 ≅ 𝜂𝐼0

2

8𝜋2sin3(𝜃)

Normalized Power Pattern

𝑈𝑛 ≅ sin3(𝜃)

Linear Wire Antennas

Page 18: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole

Introduction to Antennas Slide 18

Page 19: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole

Introduction to Antennas Slide 19

Page 20: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole

Introduction to Antennas Slide 20

Page 21: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Half-Wave Dipole

Introduction to Antennas Slide 21

Page 22: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Dipole - Examples

Introduction to Antennas Slide 22

A center-fed dipole of length 𝑙 is attached to a balanced lossless transmission line whose characteristic impedance is 50 Ω. Assuming the dipole is resonant at the given length, find the input VSWR when

(a) 𝑙 =𝜆

4(b) 𝑙 =

𝜆

2(c) 𝑙 =

3𝜆

4(d) 𝑙 = 𝜆

𝑉𝑆𝑊𝑅 =1 + ȁΓȁ

1 − ȁΓȁΓ =

𝑅𝑖𝑛 − 𝑍0𝑅𝑖𝑛 + 𝑍0

𝑅𝑖𝑛 =𝑅𝑟

sin2𝑘𝑙2

𝑅𝑟 ቚ𝑙=𝜆4

≅ 6.84

𝑅𝑟 ቚ𝑙=𝜆2

≅ 73

𝑅𝑟 ቚ𝑙=3𝜆4

≅ 372

𝑅𝑟 ቚ𝑙=𝜆4

= ∞

Page 23: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Dipole - Examples

Introduction to Antennas Slide 23

The approximate far zone electric field radiated by a very thin wire linear dipole of length 𝑙, positioned symmetrically along the z-axis, is given by

𝐸𝜃 = 𝐶𝑜 sin1.5(𝜃)

𝑒−𝑗𝑘𝑟

𝑟Where 𝐶𝑜 is a constant. Determine the exact directivity and the length of the dipole

𝐷0 =4𝜋𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑𝑃𝑟𝑎𝑑 = න

0

2𝜋

0

𝜋

𝑈 sin(𝜃) 𝑑𝜃𝑑𝜙

Page 24: Linear Wire Antennas - EMPossible...Outline •Introduction •Infinitesimal Dipole •Small Dipole •Finite Length Dipole •Half-Wave Dipole •Ground Effect Linear Wire Antennas

Dipole Examples

Introduction to Antennas Slide 24

A 𝜆

2dipole with its center at the origin radiates a time-averaged power

of 600W. A second 𝜆

2dipole is placed with its center point at

𝑃(𝑟, 𝜃, 𝜙) where 𝑟 = 200 m, 𝜃 = 90°, 𝜙 = 40°. It is oriented so that its axis is parallel to that of the transmitting antenna. What is the available power at the terminals of the second (receiving) dipole? Assume both antennas are lossless and perfectly matched in all unmentioned parameters.

Friis Transmission Equation

𝑃𝑟 = 𝑃𝑡𝜆

4𝜋𝑟

2

𝐷0𝑡𝐷0𝑟

𝑈 ≅ sin3(𝜃)