linear relations in irregularly clocked linear finite state machines cees jansen deltacrypto b.v....

26
Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

Upload: emory-stevens

Post on 16-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

Linear Relations in Irregularly Clocked Linear Finite State Machines

Cees JansenDeltaCrypto B.V.

NATO-ARW

Veliko Tarnovo, October 8, 2008

Page 2: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 2

Outline Linear Finite State Machines Linear Relations in LFSMs The Basic Algorithm A More Efficient Way… An Example Conclusions

Page 3: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 3

L-1

ML

c0

L-2

ML-1

c1

0

M1

cL-1

o

0,:

0,:Transition State

),,,(:State LFSM

0

1

021

t

ttt

tt

ttL

tL

t

T

T

1

2

1

0

100

010001000

:(LFSR)Matrix Transition

Lc

ccc

T

)( ofroot a of role theplays i.e. ,0)(

)det()(

:Then

of Polynomial sticCharacteri thebe )(Let

xCC

xxC

xC

TT

TI

T

A Linear Finite State Machine

Matrix approach: “Error-Correcting Codes”, W.W. Peterson, 1961

Page 4: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 4

Another LFSM

L-1 L-2 0o

c0cL-2cL-1

0100

00100001

:Matrix Transition

0121

cccc LL

T

Similarity Transform:

GCLFSR TMMT 1

1000

10010

1

1

21

121

1

L

L

LL

c

ccccc

MM

M

MTMTMTMT

iGC

iLFSR

iGC

iLFSR

GCLFSRGCLFSR

1

1

Page 5: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 5

And Another LFSM

11

22

11

100

0

010

1

00

dt

td

td

td

Tnn

nn

jLFSR

Jumping LFSR Transition Matrix

dn

Mn

tn

dn-1

Mn-1

tn-1

d1

M1

t1

s

10000

1

000

100

10

1

,1

,21,2

,21,223

,11,11312

nn

nnnn

nn

nn

m

mm

mmm

mmmm

M

1;

1;

;0

;1

21,

1,121,,

idm

ijnmdm

ij

ji

m

jnji

jijnjiji

Jumping LFSR – LFSR Similarity Transform Matrix:

Page 6: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 6

And Another LFSMJumping LFSR – jumping GC Similarity Transform Matrix:

n

n

nn

jGC

d

d

d

tttdt

T

100

0

10

001

1

2

1211

Jumping GC Transition Matrix

d1 d2 dns

tnt2t1

10000

1

000

100

10

1

12

1323

1,11,223

,11,11312

m

mm

mmm

mmmm

M

nn

nn

njitddm

ijnmddm

ij

ji

m

jinjji

jiinjjiji

or1;)(

1;)(

;0

;1

1111,

1,1111,,

Page 7: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 7

Other LFSMs Include:

Subfield implementations Optimized transition matrices

Implementation complexity (#gates) Side channel characteristics

Are just simple linear transforms away from each other… Similarity Transform Matrices

Page 8: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 8

Pomaranch V3 Family

S-box: x-1 mod I(x)

Subfield implementation

M-1

10000

1

000

100

10

1

,1

,21,2

,21,223

,11,11312

nn

nnnn

nn

nn

m

mm

mmm

mmmm

M

M

10000

1

000

100

10

1

,1

,21,2

,21,223

,11,11312

nn

nnnn

nn

nn

m

mm

mmm

mmmm

M

Different irreducible polynomial

Different (sub)field implementation

Different F/S sequence (subfield elts)

Different feedback tapsDifferent Register

M

10000

1

000

100

10

1

,1

,21,2

,21,223

,11,11312

nn

nnnn

nn

nn

m

mm

mmm

mmmm

M

F F S SS F

6 1

Page 9: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 9

0,:

0,:Transition State

),,,(:State LFSM

0

1

021

t

ttt

tt

ttL

tL

t

T

T

)( ofroot a of role theplays i.e. ,0)(

)det()(

:Then

of Polynomial sticCharacteri thebe )(Let

xCC

xxC

xC

TT

TI

T

A Linear Finite State Machine

0

:RelationLinear

:bitsOutput

01111

0

STT

ST

Coococo

o

tttLtLLt

tt

L-1

ML

c0

L-2

ML-1

c1

0

M1

cL-1

o

1

2

1

0

100

010001000

:(LFSR)Matrix Transition

Lc

ccc

T

Page 10: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 10

Irregularly Clocked LFSMs Two or more Transition Matrices

Selected by some external control signal May change per output bit produced

Classic clock control: Jump control:

0

:RelationLinear

:bitsOutput

011011010

001111

100

11

SITTTTTT

STT

aaaoaoaoaoa

o

LL LL

tttLtLLtL

tt

eTTTT 10 ,ITTTT 10 ,

Page 11: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 11

Linear Relations Linear relations in L+1 output bits of

irregularly stepped LFSM always occur Objective is to determine all linear relations

(aL,…,a0) and their occurrences (all combinations of external control signal bits resulting in Lin.Rel.)

Here output bits of Binary Jump Registers are considered

Bias in occurrence of Linear Relations leads to cryptanalysis

Page 12: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 12

Power Polynomial & Notation Power Polynomial dependent on jump control bits ji

Linear Relation Coefficients for LFSM output bits ot

LFSM Characteristic Polynomial

Linear Relation

011

1)( cxcxcxcxC LL

LL

0,,,, 01111011 ttLtLLtLLL oaoaoaoaaaaa

0,

0,1)(

1

011

1

iijxpxpxpxpxP

jumping of casein )()(mod0)(0

xCxCxPaL

Page 13: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 13

Solving for Linear Relations

Always solution: determinant = 1 Upper triangular matrix: use back substitution

)()(0

xCxPaL

011

10

10

12

021

011 ,,,,

1000

10010

1

,,,, ccccp

ppppp

aaaa LL

LLL

LLL

LL

LL

Lipaca

capapa

capapacapaca

L

ij

jijii

LL

LL

LLLLL

LLL

LLLLL

LL

0,

1

001

010

221212

111

Matrix PL

Page 14: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 14

Basic AlgorithmTo determine the linear relation coefficients, given the L jump control bits and the LFSM’s Characteristic Polynomial C(x) of degree L

0,,Return .4

0 else 2.3

)()()(;1 then if 3.1

do 0 downto for .3

)()( polynomialauxiliary Set .2

,,1),( theCalculate .1

aa

a

xPxHxHaph

Li

xCxH

LxP

L

i

iiiii

Clearly the coefficients aL,…,a0 are functions of cL,…,c0 and the jump control bits jL,…,j1

Linear in L as polynomial arithmetic is used (in 32-/64-bit words)!But exponentially many combinations of jump control bits needed to determine LES /LEB!

Page 15: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 15

Solving for Linear Relations Rev.

Matrix PL expanded into ji :

Note the relation from the definition of Pl :

111

,1

iii pjppp

10001000

10000100

101

,,,,

1

1212

123121323123

11

11211

011

jjjjjjjjjjjjjjjjj

jjjjjjjjjj

aaaa

L

LLLL

LL

Page 16: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 16

Solving for Linear Relations (2)

The inverse matrix obtained through back substitution1

10

10

12

021

10

10

12

021

1000

10010

1

1000

10010

1

p

ppppp

e

eeeee

LLL

LLL

LL

LLL

LLL

LL

1;1

ii

ijj

jii epee

0,10 je 11

11

iiii ejee

Page 17: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 17

Solving for Linear Relations (3)So far we have:

• Shown on next slide in hexadecimal truth table form• Contains Linear Relations for all 2l combinations of Jump Control bits in one vector

10001000

10000100

101

,,,,

1

112

11212123

12123121323

11

11111

011

jjjjjjjjjjjj

jjjjjjjjjjjjj

jjjjjj

cccc

L

LLL

LL

Page 18: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 18

Linear Relation Coefficient Vectorsa0 a1 a2 a3 a4 a5 a6

c0 3 0 00 0000 00000000 0000000000000000 0000000000000000 0000000000000000c1 1 F 00 0000 00000000 0000000000000000 0000000000000000 0000000000000000c2 1 6 FF 0000 00000000 0000000000000000 0000000000000000 0000000000000000c3 1 7 69 FFFF 00000000 0000000000000000 0000000000000000 0000000000000000c4 1 6 7E 6996 FFFFFFFF 0000000000000000 0000000000000000 0000000000000000c5 1 7 68 7EE8 69969669 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000000c6 1 6 7F 6880 7EE8E881 6996966996696996 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFc7 1 7 69 7FFF 68808001 7EE8E881E8818117 6996966996696996 9669699669969669c8 1 6 7E 6996 7FFFFFFE 6880800180010116 7EE8E881E8818117 E88181178117177Ec9 1 7 68 7EE8 69969668 7FFFFFFEFFFEFEE8 6880800180010116 8001011601161668c10 1 6 7F 6880 7EE8E880 6996966896686880 7FFFFFFEFFFEFEE8 FFFEFEE8FEE8E880c11 1 7 69 7FFF 68808000 7EE8E880E8808000 6996966896686880 9668688068808000c12 1 6 7E 6996 7FFFFFFF 6880800080000000 7EE8E880E8808000 E880800080000000c13 1 7 68 7EE8 69969669 7FFFFFFFFFFFFFFF 6880800080000000 8000000000000000c14 1 6 7F 6880 7EE8E881 6996966996696996 7FFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFc15 1 7 69 7FFF 68808001 7EE8E881E8818117 6996966996696996 9669699669969669c16 1 6 7E 6996 7FFFFFFE 6880800180010116 7EE8E881E8818117 E88181178117177Ec17 1 7 68 7EE8 69969668 7FFFFFFEFFFEFEE8 6880800180010116 8001011601161668c18 1 6 7F 6880 7EE8E880 6996966896686880 7FFFFFFEFFFEFEE8 FFFEFEE8FEE8E880c19 1 7 69 7FFF 68808000 7EE8E880E8808000 6996966896686880 9668688068808000c20 6880800080000000 7EE8E880E8808000 E880800080000000c21 7FFFFFFFFFFFFFFF 6880800080000000 8000000000000000c22 7FFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

Page 19: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 20

Symmetric Boolean Functions

nnnnxxnn xxSxxSxxSn

,,,,:,, 11,,1 1

n

mn

mnmnnn

mn xxSxxSxxS

0111 ,,,,:,,

Symmetric Boolean Functions of order m, nm0

Function values: nH

n

mmnn xxwwm

wxxS ,,;2mod,, 10

1

Property: 111111

11 ,,,,,, n

mnn

mnnn

mn xxSxxSxxxS

Page 20: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 21

Symmetric Boolean Functions

General SBFs:

1112

2121

11101

12

211

10

11

00

1

)()()(

)()()(

: with,

nnnnnnn

nnnnnnn

nnnnnn

nnnn

SSSS

SSSS

SSSS

SSSx

Proposition:

11

10

11

11

111

1 21,

nnnn

nn

nn

nn

nnn

nn

nnn

mn

mn

mn

mn

mnn

SSSx

SSSSx

SSx

nmSSSSSx

Page 21: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 22

Applying SBFsThe inverse matrix:

10000010000

1000

10010

1

1000

10010

1

11

11

12

12

22

13

12

13

23

11

11

11

21

1

10

10

12

021

SSS

SSSSSS

SSSSS

e

eeeee L

LLL

LLL

LLL

LL

11

11

iiii ejee

nmSnmSS

S nn

mn

mnm

n ;;1From Proposition

Page 22: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 23

Applying SBFs Same columnwise recursion for all

matrix elements above diagonal Linear SBF allways included

Very compact representation SBF vector of length n versus truth

table of length 2n Easy to evaluate SBFs

n+1 weight values

Page 23: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 24

Calculating Linear Relations

126A1E2266AA1FE202206A1E22266E220120262

011FE26201AA1FE262

0166AAFE262012266AA7E22

011E22662A3E2201A1E22662A1E2

016A1E2226AE20126A1E226A2

0126A1E2620126A1E262

0126AE220126A62

01262201262

0122012

0000000000000000001

18

17

16

15

11314

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1817161514131211109876543210

cccc

fccccccccccccccc

aaaaaaaaaaaaaaaaaaa

L

ik

iikki fca

1;2mod2 12

1

kfff ik

iik

ik

Page 24: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 25

Pomaranch V3 Even sections: 1410761

Odd sections: 1501203

134C14C345CE1523F6B1D27719B2C14411410761 1817161514131211109876543210 aaaaaaaaaaaaaaaaaaa

145678121718 xxxxxxxx

179151718 xxxxxx

J = 84074, LEB = 660, |LES| = 7172

134D16A3E4D217639B2AC1F5E12262AE311501203 1817161514131211109876543210 aaaaaaaaaaaaaaaaaaa

J =27044, LEB = 720, |LES| = 4962

Page 25: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 26

All Linear Relations

111810017110016101001511110014100010113110011101210101001011111111011010100000110109110000101111810100011100007111100100100006100010110110001511001110110100114101010011011101013111111010110011111210000011110101000011110000100011111000101817161514131211109876543210 aaaaaaaaaaaaaaaaaaawH C(x): 1410761

C(x+1): 1410237

Page 26: Linear Relations in Irregularly Clocked Linear Finite State Machines Cees Jansen DeltaCrypto B.V. NATO-ARW Veliko Tarnovo, October 8, 2008

20081008 CJ 27

Conclusions

Similarity Transforms: Jumping LFSMs optimized for implementation

Linear Relations in output of jump controlled LFSMs: Coefficients are symmetric Boolean

functions of jump control bits Speed-up of LES/LEB calculations

enormously Generalizations