linear optical quantum information processing in silicon...

63
Linear optical quantum information processing in silicon nanophotonics Edwin E. Hach, III School of Physics and Astronomy Rochester Institute of Technology 1 23 Jan 2019 PfQ

Upload: others

Post on 29-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Linear optical quantum information

processing in silicon nanophotonics

Edwin E. Hach, III

School of Physics and Astronomy

Rochester Institute of Technology

1 23 Jan 2019 PfQ

Page 2: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

2

I am grateful to pursue the work described here in

collaboration with…

Dr. Stefan F. Preble, Microsystems Engineering, RIT

Dr. Ali W. Elshaari, KTH Royal Inst. of Tech., Stockholm

Dr. Paul M. Alsing, Air Force Research Lab, Rome, NY

Michael L. Fanto, Air Force Research Lab, Rome, NY

RIT Students: Jeffrey Steidle*

Ryan Scott**

Thomas Kilmer**

* ** David Spiecker**

23 Jan 2019 PfQ

Dr. A. Matthew Smith, Air Force Research Lab, Rome, NY

Dr. Christopher C. Tison, Air Force Research Lab, Rome, NY

Page 3: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

3

We wish this would happen …

… but it requires an intensity on the order of 1033 W/cm2

So we search for nonlinear crystals to mediate the interaction…

… but media having nonlinear susceptibilities large enough

for practical applications are not readily available

Prologue: Photonic Control of Photons (Deterministic)…

0

𝑉𝐻

𝑉𝐻

0

1

𝑉𝐻

𝐻V

and

𝝌 𝟐 , 𝝌 𝟑 01

H HV

23 Jan 2019 PfQ

Page 4: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

4

Prologue: Photonic Control of Photons (Probabilistic)…

Figure: pieter-kok.staff.shef.ac.uk

b

a

r

r

d

c

ˆ

ˆ

ˆ

ˆ**

𝜂 a

b

d

c

Control Target In Target Out

0 0 0

0 1 1

1 0 1

1 1 0 Success

1

16 of the time*

Linear Optical Quantum Information Processing

• Linear Optical Transformations

• Measurements/Post selection

• Feedback/Feedforward

Desired Characteristics:

• Scalable

• Dynamically Tunable

Linear Optical Elements

23 Jan 2019 PfQ

Page 5: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

5

Prologue: Photonic Control of Photons (sort of)…

• 50/50 Beam Splitter

• The Hong-Ou-Mandel Effect

• Post Selection

𝜂 → 1

2

1

1

in = 1 1

out ~ 2 0 − 0 2

P = 50%

P = 50%

Pcoinc = 0%

14 Sept 2018

Page 6: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

6

Outline

• The Goal

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

14 Sept 2018

Page 7: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

7

Scalable, tunable, on-chip quantum circuits

in silicon nanophotonics …

Goal:

14 Sept 2018

Page 8: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

R.I.T

Nanophotonics Group

8 nanophotonics.rit.edu

DEVICE FABRICATION I

SOI piece

Spin coat

XR-1541

Soft baking

2 min

E-beam

exposure

Resist developing Si etch (RIE) SiO2 cladding

(This slide is included to emphasize the power

of multidisciplinary collaboration …

…personally, I have no business trying to

explain the fabrication process)

Page 9: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

R.I.T

Nanophotonics Group

9 nanophotonics.rit.edu

DEVICE FABRICATION II

†ˆ ˆ grad students and post docs; no deviceRIT Cornella a

†ˆ ˆ grad students and post docs; deviceRIT Cornella a

… about 24 hours later …

Page 10: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

10

Outline

• The Goal

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

23 Jan 2019 PfQ

Page 11: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

11

Linear Quantum Optics on-a-Slide

𝑎 , 𝑎 †

𝑏 , 𝑏 †

𝑐 , 𝑐 †

𝑑 , 𝑑 † 𝑐 𝑑

=𝜏 𝜅

−𝜅∗ 𝜏∗𝑎 𝑏

𝑎 , 𝑎 † = 1

𝑏 , 𝑏 † = 1 ⟹

𝑐 , 𝑐 † = 1

𝑑 , 𝑑† = 1

Invert Hermitian Adjoints

𝑎 † = 𝜏𝑐 † − 𝜅∗𝑑 †

𝑏 † = 𝜅𝑐 † + 𝜏∗𝑑 †

𝜓out = 𝐴𝑚𝑛

𝑚𝑗

𝑛𝑙

𝜏𝑗 −𝜅∗ 𝑚−𝑗𝜅𝑙𝜏∗𝑛−𝑙

𝑚! 𝑛!𝑐 †

𝑗+𝑙𝑑 †

𝑚+𝑛−𝑗−𝑙 vac

𝑛

𝑙=0

𝑚

𝑗=0

𝑛=0

𝑚=0

𝜓in = 𝐴𝑚𝑛

𝑎 † 𝑚𝑏 † 𝑛

𝑚! 𝑛! vac

𝑛=0

𝑚=0

𝜅 2 + 𝜏 2=1

U(2) The usual program…

23 Jan 2019 PfQ

Page 12: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

12

Linear Optical Quantum Information Processing

Figure: pieter-kok.staff.shef.ac.uk

U(2)

Knill-Laflamme-Milburn (KLM) Proposal

DiVincenzo Criteria Scalable Initialization of Qubits Faster than Decoherence Time Universal Gates Easy Readout “Quantum” Portability (Qcomm)

14 Sept 2018

Page 13: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

13

κ,τ 𝒂 , 𝒂 † 𝒄 , 𝒄 †

𝒇 , 𝒇 † 𝒍 , 𝒍 † γ,η

𝝓𝟏 𝝓𝟐 𝜽

U(2) Coupled Micro-Ring Resonator (MRR): A Fundamental

Circuit Element for Quantum Optics on-a-Chip

To address the problem of scalability for use in an integrated quantum circuit, we consider …

𝑎 , 𝑎 † = 1

𝑓 , 𝑓 † = 1 ⟹

𝑐 , 𝑐 † = 1

𝑙 , 𝑙 † = 1

• Continuous Wave (CW) Operation

• “Internal” Modes not Pictured

• Lossless (Unitary) Operation

Simple Model:

• Scalable

• Can be tuned dynamically

• Stefan et al can make them (they do it all the time)

Practical Advantages:

14 Sept 2018

Page 14: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

14

Outline

• The Goal

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

23 Jan 2019 PfQ

Page 15: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

15

Transition Amplitudes, Quantum Interference, and Path Integrals

The transition amplitude for a system to evolve from some initial state to some final

state is determined by the quantum interference between transition amplitudes

along all possible paths connecting the initial and final states

The transition amplitude for a system to evolve from some initial state to some final

state along a particular path connecting the initial and finals states is a product of

transition amplitudes for taking each individual “step” along the path

𝜑 𝑓,𝑖=𝜑 𝑓,𝑓−1 ∙ 𝜑 𝑓−1,𝑓−2 ⋯ 𝜑 𝑖+2,𝑖+1 ∙ 𝜑 𝑖+1,𝑖

Φ 𝑖→𝑓 = 𝜑 𝑓,𝑖𝑎𝑙𝑙

𝑝𝑎𝑡ℎ𝑠

𝑓 = Φ 𝑖→𝑓

𝑖

𝑖

The transition amplitude for a system to evolve from some initial state to some final

state is determined by the quantum interference between transition amplitudes

along all possible paths connecting the initial and final states

(Propagator)

23 Jan 2019 PfQ

Page 16: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

16

“Discrete Path Integral*” Approach to Linear Quantum Optics

To adapt the Feynman prescription for use in linear quantum optics …

1) Imagine that the Boson operators represent** photons and that photons are

little, classical, localized balls of light***

** They don’t

*** They aren’t

2) Enumerate the classical paths of the ‘Boson operators’ through the optical

system

3) Construct the transition element along each path by multiplying the appropriate

transition element for each step (phase shift, reflection, transmission, etc.) along

the path

4) Propagator: sum over all paths connecting particular pairs of input and output

modes

5) Use the propagator to express each output ‘Boson operator’ as a linear

superposition of the inputs

6) Forget Step 1 and treat the ‘Boson operators’ like Boson operators

23 Jan 2019 PfQ

* Skaar et al, and some others, thought of this, too

Page 17: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

17

Phase Shifter U(1)

Path Transition Amplitude

𝑎 in → 𝑎 out 𝑒−𝑖𝜃

ϴ 𝑎 in 𝑎 out

(rectilinear propagation through linear optical medium)

Linear Quantum Optics: discrete “stepwise” transition amplitudes are generally easy to determine using the Heisenberg Picture

Feynman’s Spacetime Formulation: infinitesimal transition amplitudes are determined using the classical action

𝑎 in → 𝑎 out = 𝑒𝑖𝜃𝑎 in†𝑎 in𝑎 in𝑒−𝑖𝜃𝑎 in

†𝑎 in = 𝑎 in𝑒−𝑖𝜃

𝜃 = 𝑛𝜔𝐿

𝑐= 𝜔𝑡int

23 Jan 2019 PfQ

Page 18: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

18

Directional Coupler (or any SU(2))

𝑎 , 𝑎 †

𝑏 , 𝑏 †

𝑐 , 𝑐 †

𝑑 , 𝑑 †

𝜏

𝜏∗

−𝜅∗ 𝜅

Path (input mode output

mode)

Transition Amplitude Along

Path

a c 𝜏

a d −𝜅∗

b c 𝜅

b d 𝜏∗

𝜅 2 + 𝜏 2=1

Heisenberg Picture: Rotations generated by

𝐽 1 = 12 𝑎 †𝑏 + 𝑎 𝑏 † and 𝐽 2 = 1

2𝑖 𝑎 †𝑏 − 𝑎 𝑏 †

23 Jan 2019 PfQ

Page 19: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

19

κ,τ 𝒂 , 𝒂 † 𝒄 , 𝒄 †

𝒇 , 𝒇 † 𝒍 , 𝒍 † γ,η

𝝓𝟏 𝝓𝟐 𝜽

Path #Round Trips Transition Amplitude Along Path

ac 0 𝜏

1 −𝜅∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜅

2 −𝜅∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜅

⋮ ⋮

n −𝜅∗ 𝑒−𝑖𝜙1 𝜂∗ 𝜏∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2𝑛−1

𝜅

fc “1/2” −𝛾∗ 𝑒−𝑖𝜙2 𝜅

“3/2” −𝛾∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜅

⋮ ⋮

n + “1/2” −𝛾∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2𝑛

𝜅

al “1/2” −𝜅∗ 𝑒−𝑖𝜙1 𝛾

“3/2” −𝜅∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝛾

⋮ ⋮

n + “1/2” −𝜅∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1𝑛

𝛾

fl 0 𝜂

1 −𝛾∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝛾

2 −𝛾∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝛾

⋮ ⋮

n −𝛾∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1 𝜂∗ 𝑒−𝑖𝜙2 𝜏∗ 𝑒−𝑖𝜙1𝑛−1

𝛾

Discrete Path Integral (DPI) Formulation of the Basic

Ring Resonator Quantum Circuit Element: CW Operation

𝑐 = sum over paths in class 𝑎 ⟶ 𝑐 𝑎 + sum over paths in class 𝑓 ⟶ 𝑐 𝑓

Similar idea for (a,f)l

23 Jan 2019 PfQ

Page 20: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

20

DPI Solution for CW Quantum Transfer Function for

Basic Ring Resonator Quantum Circuit Element

𝑐 = sum over paths in class 𝑎 ⟶ 𝑐 𝑎 + sum over paths in class 𝑓 ⟶ 𝑐 𝑓

= 𝜏 + −𝜅∗ 𝜂∗ 𝜅 𝑒−𝑖𝜃 𝜂∗𝜏∗𝑒−𝑖𝜃 𝑚∞

𝑚=0

𝑎 + −𝛾∗ 𝑒−𝑖𝜙2 𝜅 𝜂∗𝜏∗𝑒−𝑖𝜃 𝑚∞

𝑚=0

𝑓

= 𝜏 −𝜂∗ 𝜅 2𝑒−𝑖𝜃

1 − 𝜂∗𝜏∗𝑒−𝑖𝜃𝑎 −

𝛾∗𝜅𝑒−𝑖𝜙2

1 − 𝜂∗𝜏∗𝑒−𝑖𝜃𝑓

𝑙 = −𝛾𝜅∗𝑒−𝑖𝜙1

1 − 𝜂∗𝜏∗𝑒−𝑖𝜃𝑎 + 𝜂 −

𝜏∗ 𝛾 2𝑒−𝑖𝜃

1 − 𝜂∗𝜏∗𝑒−𝑖𝜃𝑓

𝔱 ≡𝜂∗ − 𝜏𝑒𝑖𝜃

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝔰 ≡𝛾𝜅∗𝑒𝑖𝜙2

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝔱′ ≡𝜏∗ − 𝜂𝑒𝑖𝜃

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝔰′ ≡𝜅𝛾∗𝑒𝑖𝜙1

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝑎 † = 𝔱𝑐 † + 𝔰𝑙 †

𝑓 † = 𝔰′𝑐 † + 𝔱′𝑙 † ⟹

23 Jan 2019 PfQ

Page 21: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

21

Ring Resonator/Fabry-Perot Etalon Equivalence

ϕ 𝑟1 −𝑟1∗

𝑡1

𝑡1∗

𝑎 in

𝑏 out

𝑟2 −𝑟2∗

𝑡2

𝑡2∗

𝑎 out

𝑏 in

A schematic representation of an externally driven Fabry-Perot etalon. Each distinct input/ouput optical mode is

labeled with its Bosonic annihilation operator. The phase conventions for the transmission and reflection

amplitudes adopted here are valid parameterizations for the SU(2) transformations that occur at the lossless,

partially reflective mirrors forming the cavity; to facilitate our comparison this is in agreement with the notation

in Ref. [8]. The linear phase shift, ϕ, is the phase shift for a single crossing of the cavity; that is, a round trip

through the cavity is accompanied by a phase shift of θ = 2ϕ.

23 Jan 2019 PfQ

Page 22: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

22

Simple Model for a Lossy Ring Coupled to a Single Waveguide

κ,τ 𝒂 , 𝒂 † 𝒄 , 𝒄 †

𝒇 , 𝒇 † 𝒍 , 𝒍 † γ,η

𝝓𝟏 𝝓𝟐 𝜽

κ,τ 𝒂 , 𝒂 † 𝒄 , 𝒄 †

𝜽 ≈ 𝚪 𝟎

𝒇 “ ? 𝒍”

“Drop” Port

𝜓out = 𝔱𝑐 † + 𝔰𝑙 † ∅ = 𝔱 1 𝑐 ⊗ 0

𝑙 + 𝔰 0 𝑐 ⊗ 1

𝑙 ≡ 𝔱 1,0 + 𝔰 0,1

𝜚 out(G)

= 𝜓out 𝜓out = 𝔱 2 1,0 1,0 + 𝔱𝔰∗ 1,0 0,1 +𝔰𝔱∗ 0,1 1,0 + 𝔰 2 0,1 0,1

𝜚 out(𝑐)

= Trmode 𝑙 𝜚 out(G)

= 𝔱 2 1 1 + + 𝔰 2 0 0

𝑃 0,1 1,0 =𝛾 2 𝜅 2

1 + 𝜂 2 𝜏 2 − 2Re 𝜂𝜏𝑒𝑖𝜃

1) Solve the deterministic problem:

2) Express the deterministic solution using (pure state) global density operator:

3) Trace over loss channel to obtain (mixed state) reduced density operator for transmission mode:

14 Sept 2018

Page 23: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

23

Comparison with Classical Electrodynamics (Sanity Check)

Parametric Limit

𝜓in = 𝛼, 0 = 𝒟 𝑎 𝛼 ⊗ 𝕀 𝑓 vac =exp 𝛼𝑎 † − 𝛼∗𝑎 vac

Highly excited ordinary coherent state input along mode a:

𝜓out = 𝒟 𝑐 𝔱𝛼 ⊗ 𝒟 𝑙 𝔰𝛼 vac = 𝔱𝛼 𝑐 ⊗ 𝔰𝛼 𝑙

The output (pure state) is a direct product of ordinary coherent states:

𝛼out = 𝔱𝛼 =𝜂∗ − 𝜏𝑒𝑖𝜃

𝜂∗𝜏∗ − 𝑒𝑖𝜃𝛼in Specifically, in mode c 𝜚 out

(𝑐)= 𝔱𝛼 𝔱𝛼 where

Quantity

Yariv Classical

Treatment

Fully QM Treatment w/

Coherent State

“Circulation Factor”

Method

Physical Loss Model

(Drop Port Method)

Input Field Amplitude 1 𝛼in

Output Field Amplitude (waveguide) 𝑏1 𝛼ou𝑡

“CirculationFactor”/Internal Transmission

Amplitude at Drop Port 𝛼 𝜂∗

Round Trip Phase 𝜃 −𝜃

ac transition Amplitude 𝑡 𝜏

𝑎 𝛼 = α 𝛼

A. Yariv, Electronics Letters 36, 321 (2000) 14 Sept 2018

Page 24: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

24

Outline

• The Goal

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

23 Jan 2019 PfQ

Page 25: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

25

Hong-Ou-Mandel Effect (Beam Splitter/Bulk Optics)

HOM 2-photon interference At the 50/50 operating point: 1,1 → 2 ∷ 0 =1

2 2,0 − 0,2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

𝐹

𝑡

𝑟, 𝑡

1

1

in = 1 1

H-O-M Output State Fidelity:

𝐹 ≡ 2 ∷ 0 out 2

0 ≤ 𝐹 ≤ 1

The 50/50 point is a “zero

dimensional” HOMM

23 Jan 2019 PfQ

Page 26: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

26

Two Photon Driving: Hong-Ou-Mandel Manifolds (HOMM)

κ,τ 𝒂 , 𝒂 † 𝒄 , 𝒄 †

𝒇 , 𝒇 † 𝒍 , 𝒍 † γ,η 𝑡 ≡

𝜂∗ − 𝜏𝑒𝑖𝜃

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝑠 ≡𝛾𝜅∗𝑒𝑖𝜙2

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝑡′ ≡𝜏∗ − 𝜂𝑒𝑖𝜃

𝜂∗𝜏∗ − 𝑒𝑖𝜃

𝑠′ ≡𝜅𝛾∗𝑒𝑖𝜙1

𝜂∗𝜏∗ − 𝑒𝑖𝜃 Input state: 𝜓in = 1,1 = 𝑎 †𝑓 † ∅

Output state: 𝜓out = 2𝑡𝑠′ 2,0 + 𝑡𝑡′ + 𝑠𝑠′ 1,1 + 2𝑠𝑡′ 0,2

HOMM: 𝒕𝒕′ + 𝒔𝒔′ = 𝟎 𝜿 𝟐 + 𝜸 𝟐 + 𝜿 𝟐 𝜸 𝟐 + 𝟐𝐑𝐞 𝜼𝝉𝒆𝒊𝜽 = 𝟐

23 Jan 2019 PfQ

Page 27: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

27

Hong-Ou-Mandel Manifolds: Robust Two-Photon “Bunching”

EEHIII, S.F. Preble, A.W. Elshaari, P.M. Alsing and M.L. Fanto, Phys. Rev. A89, 043805 (2014)

HOMM: 𝒕𝒕′ + 𝒔𝒔′ = 𝟎 𝜿 𝟐 + 𝜸 𝟐 + 𝜿 𝟐 𝜸 𝟐 + 𝟐𝐑𝐞 𝜼𝝉𝒆𝒊𝜽 = 𝟐

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

θ

𝜏=

𝜂 (

Rea

l)

𝜏 = 𝜂 (Real) θ

𝑃(1

,1)

Parameter space of ring resonator circuit element features a differentiable manifold of

operating points on which the HOM Effect occurs … this will translate into enhanced

robustness in the operation of devices that rely on this effect.

1d Case

𝜏 𝜃 = 2 − cos 𝜃 − 2 − cos 𝜃2

− 1

23 Jan 2019 PfQ

Page 28: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

28

Hong-Ou-Mandel Manifolds Allow for Operational

Optimization of a Scalable U(2) Device

FA < 1 FB = 1 Dynamic Tuning

τ = η

θ

A

B

(Off of HOMM)

(On HOMM) Experimentally adjustable

14 Sept 2018

Page 29: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

29

Hong-Ou-Mandel Manifolds: Robust Two-Photon “Bunching”

HOMM: 𝒕𝒕′ + 𝒔𝒔′ = 𝟎 𝜿 𝟐 + 𝜸 𝟐 + 𝜿 𝟐 𝜸 𝟐 + 𝟐𝐑𝐞 𝜼𝝉𝒆𝒊𝜽 = 𝟐

A Two-Dimensional HOMM: Constraint: 𝑃 1,1 = 0

τ

θ

η

This figure was featured in the Physical

Review A online Kaleidoscope

c. April 2014

23 Jan 2019 PfQ

Page 30: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

30

Outline

• The Goal

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

23 Jan 2019 PfQ

Page 31: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

31

We Introduce a set of “Mode Swap” Transformations …

The Ring Resonator “Circuit Theory”

𝒂 𝐨𝐮𝐭 𝒍 𝟏𝟐

𝒂 𝐢𝐧

𝜽𝟏

𝒃 𝐨𝐮𝐭 𝒍 𝟐𝟏

𝒃 𝐢𝐧

κ2,τ2 κ1,τ1

γ1,η1 γ2,η2

𝜽𝟐

𝑐 out

𝑑 out=

𝐴 𝐵𝐶 𝐷

𝑐 in𝑑 in

Notation:

𝑏 out

𝑙 12

=𝐴 𝐵𝐶 𝐷

𝑙 21

𝑎 in

𝑙 21

𝑎 out=

𝐹 𝐺𝐻 𝐽

𝑏 in

𝑙 12

We have:

“Block 1” “Block 2”

We want: 𝑏 out

𝑎 out=

𝒯11 𝒯12

𝒯21 𝒯22

𝑏 in

𝑎 in

Overall Network

23 Jan 2019 PfQ

Page 32: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

32

“Mode Swap” Transformation

𝒂 𝐨𝐮𝐭 𝒍 𝟏𝟐

𝒂 𝐢𝐧

𝜽𝟏

𝒃 𝐨𝐮𝐭 𝒍 𝟐𝟏

𝒃 𝐢𝐧

κ2,τ2 κ1,τ1

γ1,η1 γ2,η2

𝜽𝟐

𝑐 out

𝑑 out=

𝐴 𝐵𝐶 𝐷

𝑐 in𝑑 in

⟶𝑐 in𝑑 out

= 𝐴′ 𝐵′𝐶′ 𝐷′

𝑐 out

𝑑 in Upper “Rail”

𝑐 out

𝑑 out=

𝐴 𝐵𝐶 𝐷

𝑐 in𝑑 in

⟶𝑐 out

𝑑 in= 𝐴′′ 𝐵′′

𝐶′′ 𝐷′′

𝑐 in𝑑 out

𝐴′ =1

𝐴, 𝐵′ = −

𝐵

𝐴, 𝐶′ =

𝐶

𝐴, 𝐷′ =

1

𝐴det

𝐴 𝐵𝐶 𝐷

Upper Rail

Lower “Rail”

𝐴′′ =1

𝐷det

𝐴 𝐵𝐶 𝐷

, 𝐵′′ =𝐵

𝐷, 𝐶′′ = −

𝐶

𝐷,𝐷′′ =

1

𝐷 Lower Rail

14 Sept 2018

Page 33: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

33

Quantum Transfer Function for Circuit

𝒂 𝐨𝐮𝐭 𝒍 𝟏𝟐

𝒂 𝐢𝐧

𝜽𝟏

𝒃 𝐨𝐮𝐭 𝒍 𝟐𝟏

𝒃 𝐢𝐧

κ2,τ2 κ1,τ1

γ1,η1 γ2,η2

𝜽𝟐

𝑏 out

𝑙 12

=𝐴 𝐵𝐶 𝐷

𝑙 21

𝑎 in⟶

𝑙 21

𝑙 12

= 𝐴′ 𝐵′𝐶′ 𝐷′

𝑏 out

𝑎 in

• local upper swap on block 1

• local upper swap on block 2

𝑙 21

𝑎 out=

𝐹 𝐺𝐻 𝐽

𝑏 in

𝑙 12

⟶𝑏 in

𝑎 out=

𝐹′ 𝐺′𝐻′ 𝐽′

𝑙 21

𝑙 12

𝑏 in

𝑎 out=

𝐹′ 𝐺′𝐻′ 𝐽′

𝐴′ 𝐵′𝐶′ 𝐷′

𝑏 out

𝑎 in=

𝒮11 𝒮12

𝒮21 𝒮22

𝑏 out

𝑎 in

• result of local swaps

• global upper swap 𝑏 out

𝑎 out=

𝒯11 𝒯12

𝒯21 𝒯22

𝑏 in

𝑎 in

𝒯11 = 𝒮′11, 𝒯12 = 𝒮′12, 𝒯21 = 𝒮′21, 𝒯22 = 𝒮′22

q.e.d

14 Sept 2018

Page 34: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

34

A Ring Resonator Based Nonlinear Phase Shifter

𝑐 in𝑏 out

𝑙 13

=1 0 00 𝐴 𝐵0 𝐶 𝐷

𝑐 in𝑙 21

𝑎 in

𝑐 in𝑙 21

𝑙 13

=1 0 00 𝐴′ 𝐵′0 𝐶′ 𝐷′

𝑐 in𝑏 out

𝑎 in

𝑐 out

𝑙 21

𝑙 13

=𝑃 𝑄 0𝑅 𝑆 00 0 1

𝑐 in𝑙 32

𝑙 13

𝑐 out

𝑙 32

𝑙 13

=𝑃′′ 𝑄′′ 0

𝑅′′ 𝑆′′ 00 0 1

𝑐 in𝑙 21

𝑙 13

𝑐 out

𝑙 32

𝑎 out

=1 0 00 𝐹 𝐺0 𝐻 𝐽

𝑐 out

𝑏 in

𝑙 13

𝑐 out

𝑏 in

𝑎 out

=1 0 00 𝐹′ 𝐺′0 𝐻′ 𝐽′

𝑐 out

𝑙 32

𝑙 13

𝑐 out

𝑏 in

𝑎 out

=1 0 00 𝐹′ 𝐺′

0 𝐻′ 𝐽′

𝑃′′ 𝑄′′ 0𝑅′′ 𝑆′′ 00 0 1

1 0 00 𝐴′ 𝐵′

0 𝐶′ 𝐷′

𝑐 in𝑏 out

𝑎 in

=

𝛼11 𝛼12 𝛼13

𝛼21 𝛼22 𝛼23

𝛼31 𝛼32 𝛼33

𝑐 in𝑏 out

𝑎 in

𝑐 out

𝑏 in

𝑎 out

=

𝛼11 𝛼12 𝛼13

𝛼21 𝛼22 𝛼23

𝛼31 𝛼32 𝛼33

𝑐 in𝑏 out

𝑎 in

𝑐 out

𝑏 out

𝑎 out

=1

𝛼22

𝑀33 𝛼12 −𝑀31

−𝛼21 1 −𝛼23

−𝑀13 𝛼32 𝑀11

𝑐 in𝑏 in

𝑎 in

Local Swaps

Global Middle Rail Swap

Many adjustable, controllable parameters to search …

𝜓 in

𝑎 in

𝑐 in

𝑏 in 𝑏 out

𝑎 out

𝑐 out

𝜽𝟏

𝜽𝟐

𝜽𝟑

“Block 1” “Block 2” “Block 3”

𝜓′ shifted

0 in

1 in

𝟏 𝐨𝐮𝐭

𝟏 𝐨𝐮𝐭

FAIL…

SUCCEED!

23 Jan 2019 PfQ

Page 35: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

35

Outline

• The Goal

• Essential Ideas About Quantum Optics/Information

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

23 Jan 2019 PfQ

Page 36: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

36

Figure 2 A schematic diagram of a NonLinear Sign Gate (a) in bulk optics and (b) as implemented

via our proposal using directionally coupled silicon nanophotonics waveguides and microring

resonators (mrr). The nonlinear sign flip is effected on the state in mode c, as given in Eq. (1); modes

a and b are auxiliary modes required for the probabilistic action of the gate. The black arrow

connecting parts (a) and (b) of the figure effectively summarizes the advancement we discuss in detail

in this paper.

(a) (Bulk Optics)

𝝓

1

2

3

Block 1 Block 2 Block 3

𝑐 in

𝑏 in

𝑎 in

𝑐 out

𝑏 out

𝑎 out

(Scalable Silicon Nanophotonics) (b)

23 Jan 2019 PfQ

𝜓 in

𝑎 in

𝑐 in

𝑏 in 𝑏 out

𝑎 out

𝑐 out

𝜽𝟏

𝜽𝟐

𝜽𝟑

“Block 1” “Block 2” “Block 3”

𝜓′ shifted

0 in

1 in

𝟎 𝐨𝐮𝐭

𝟏 𝐨𝐮𝐭

SUCCEED…

SUCCEED!

Page 37: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

SUCCEEDL…

A Ring Resonator Based NonLinear Phase Shifter (NLPS)

𝑎 3,in

𝑎 1,in

𝑎 2,in 𝑎 2,out

𝑎 3,out

𝑎 1,out

𝜽𝟏

𝜽𝟐

𝜽𝟑

“Block 1”

𝜓′

0 in

1 in

𝟎 𝐨𝐮𝐭

𝟏 𝐨𝐮𝐭 SUCCEED

!

𝜅1𝜏1

𝜅2𝜏2

𝜅3𝜏3

𝛾2𝜂2 𝛾3𝜂3 𝛾1𝜂1

“Block 2” “Block 3”

3” 𝛿 1 𝛿 3

𝛿 2

𝑐 23 𝑐 12

𝑏 21

𝑎 23 𝑎 12

𝑏 32

T(1) T(2)

T(3)

𝜓

Our Proposal for the Essential Piece of a Scalable KLM

CNOT Gate …

37 23 Jan 2019 PfQ

Page 38: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

38

12 13

3

1 21 3,3 3,2

11

31 2,3 2,2

11

g g

G g m mg

g m m

S

3,3 12 3,1

3

2 21 23

22

1,3 32 1,1

11

m g m

G g gg

m g m

S

2,2 2,1 13

3

3 1,2 1,1 23

33

31 32

1

1

m m g

G m m gg

g g

S

1,out 1,in

3 3 3 3 2 3 1

2,out 2 2 2 2 2,in

3,out 3,in

ˆ ˆ

ˆ ˆ

ˆ ˆ

a a

a a

a a

T T TS S S S

1,in 1,out

2,in 2,out

3,in 3,out

† †

† †

† †

ˆ ˆ

ˆ ˆ

ˆ ˆ

T

a a

a a

a a

S

2

successˆNLPS NLPSp P

NLPS

0 1 2 0 1 20 1 2 0 1 2

1 2 31 0

2ˆ 1NLPSU

ˆ

ˆ

NLPS

NLPS

NLPS

P

P

Unitary Projection

23 Jan 2019

What it does:

The NonLinear Phase Shifter (we’ll have two, please)

How it works (when it works):

How often it works:

𝜓 in

𝑎 in

𝑐 in

𝑏 in 𝑏 out

𝑎 out

𝑐 out

𝜽𝟏

𝜽𝟐

𝜽𝟑

“Block 1” “Block 2” “Block 3”

𝜓′ shifted

0 in

1 in

𝟎 𝐨𝐮𝐭

𝟏 𝐨𝐮𝐭

SUCCEED…

SUCCEED!

Unitary Part:

“DPI” Formulation:

Mode Swap Algebra:

Page 39: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Case 1: On-resonance, no phase delays:

𝛿i= 0, θi = 2π, ti = ti*

𝛿i= 0,

no phase delays

t2* = 𝟐( 𝟐 − 𝟏),

t1* = t3* = 𝟏/ 𝟏 + 𝟐 𝟐

θi = 2π,

mrrs on resonance

39

Figure 3: The one dimensional manifolds 𝜂𝑖2 𝜏𝑖; 𝑇𝑖 vs 𝜏𝑖

2 (𝑖 = 1,3 , black solid; 𝑖 = 2, black dashed) from

Eq. 57 on which optimal operation of the scalable NLPSG occurs under conditions of resonant

(θi=0mod2π), balanced mrrs and 𝛿i=0mod2π phase shifts in the waveguides. In contrast with bulk optical

realizations, these curves provide theoretical evidence for vastly enhanced flexibility in implementation

and integration of the NLPSG based on directionally coupled mrrs in silicon nanophotonics.

1

0

Page 40: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Case 2: Outer MRR not on resonance

𝛿i= 0, θ2 = 2π, θ1,3 ≠ 2π, ti = ti*

θ2 = 2π, on resonance

θ1,3 = 2π, not on resonance

𝛿i= 0,

no phase delays

t2* = 𝟐( 𝟐 − 𝟏),

t1* = t3* = 𝟏/ 𝟏 + 𝟐 𝟐

14 Sept 2018 40

1

0

Page 41: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

41

Outline

• The Goal

• Essential Ideas About Quantum Optics/Information

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

23 Jan 2019 PfQ

Page 42: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

42 23 Jan 2019 PfQ

Increasing Losses (decreasing effective α)

Reality Check: Losses, etc.

P.M. Alsing, EEHIII, C. C. Tison, and A. M. Smith, Phys. Rev. A95, 053828 (2017)

P.M. Alsing and EEHIII, Phys. Rev. A96, 033847 (2017)

P.M. Alsing and EEHIII, Phys. Rev. A96, 033848 (2017)

Theoretical analysis of losses (“whistles” and spectral effects (bells”):

Theoretical analysis of photon pair generation (all the whistles and bells):

Page 43: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

43

Outline

• The Goal

• Essential Ideas About Quantum Optics/Information

• Input/Output Theory: A General Solution Under Ideal Conditions

• Hong-Ou-Mandel Manifolds: A Promising Result

• Formulation of a Quantum Optical Circuit Theory

• A Scalable KLM CNOT Gate!?

• Engineering and Design: The Fine Print

• Summary and Outlook

14 Sept 2018

Page 44: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

44

Summary

• Ring resonators in silicon nanophotonics offer a promising architecture for quantum

information processing devices (scalable, tunable, “easy” to fabricate)

• Passive Quantum Optical Feedback leads to a “topological” enhancement of the parameter

space of this class of device – first example: Hong-Ou-Mandel Manifolds (HOMM)

• The existence of Hong-Ou-Mandel Manifolds (HOMM) suggest that there are robust regimes for

operating quantum information processors based on ring resonator technology

• We now have a systematic way to formulate and search the parameter spaces of these systems

under realistic conditions with respect to finite pulse widths and environmental losses

Outlook

• There are many quantum gates and networks that could be pivotal to quantum information

processing, communications, metrology, and imaging – we are starting with the KLM CNOT

• We are working to develop numerical device design software to inform the planning and assembly

of experimental tests of our theoretical results, and, from there, to better inform device design and

integration

• Do you have any ideas for interesting quantum optical systems to investigate? We love to

collaborate!

23 Jan 2019 PfQ

Page 45: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

45

Thank You for Listening!

23 Jan 2019 PfQ

Page 46: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

46

Back-Up Slides

23 Jan 2019 PfQ

Page 47: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

47

M.S. and Professional Master’s Programs

Coming Fall 2019

https://www.rit.edu/programs/physics-ms

23 Jan 2019 PfQ

Page 48: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

48

Single Photon Transport: Quantum Dynamics

EEHIII, A.W. Elshaari, & S.F. Preble, Phys. Rev. A82, 063839(2010)

)(ˆˆ)(ˆˆ

1)()(ˆ *

c

c0eff xcaVaxVcxdxaaixcx

ivxdxcH g

(Scattering Theory Approach)

tHtt

i 1eff1ˆ

0,0ˆ~ˆ,~

cav1

atexctxdxt

14 Sept 2018

Page 49: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

49

Single Photon Transport: Quantum Dynamics

𝜶 𝟏𝐝𝐢𝐫𝐞𝐜𝐭 + 𝜶 𝟏𝐝𝒆𝒍𝒂𝒚

Finite Difference Time Domain Results: Wave Packet

14 Sept 2018

Page 50: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

50

Single Photon Transport: Quantum Dynamics

Finite Difference Time Domain Results: Adiabatic Wavelength Change

𝑝𝑑𝑞 =𝑈

𝜔= Nℏ

Adiabatic Invariant:

∴∆𝜆

𝜆=

∆𝑈

𝑈

14 Sept 2018

Page 51: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

51

Single Photon Transport: Quantum Dynamics Single Photon Storage: Toward Quantum Memory

14 Sept 2018

Page 52: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

mode a

mode b

mode a

mode b

Logical {1}

Logical {0}

52 14 Sept 2018

Page 53: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Outline • KLM Design for Nonlinear Sign Gate with beam splitters

– Essential element of KLM CNOT gate

• NLSG design with mrr

– Review of single-bus and double-bus mrr,

– Extension of dimension of parameter space by using; HOM Manifolds

– Results

• Papers

• Raymer, M. and McKinstrie, C., “Quantum input-output theory for optical cavities with arbitrary coupling strength: application to two-photon wave-packet shaping," Phys. Rev. A 88, 043819 (2013)

• E. E. Hach III, S. F. Preble, A. W. Elshaari, P. M. Alsing, and M. L. Fanto, “Scalable Hong-Ou-Mandel manifolds in quantum-optical ring resonators,” Phys. Rev. A 89, 043805 (2014).

• Alsing, P. M., Hach III, E. E., Tison, C. C., and Smith, A. M., “A quantum optical description of losses in ring resonators based on field operator transformations," Phys. Rev. A 95, 053828 (2017)

• Alsing, P. M. and Hach III, E. E., “Photon-pair generation in a lossy-microring resonator. I. Theory," Phys. Rev. A 96 (3), 033847 (2017); (1705.09227v2)

• Alsing, P. M. and Hach III, E. E., “Photon-pair generation in a lossy-microring resonator. II. Entanglement in the output mixed Gaussian squeezed state," Phys. Rev. A 96 (3), 033848 (1708.01338) (2017)

Page 54: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

KLM Nonlinear Sign Gate • Last Year (SPIE: Warsaw 2017): Nonlinear Sign Gate mrr

–Proposed KLM Nonlinear Sign Gate with mrrs

–Wider parameter range of operation (akin to HOM manifolds in mrr, in 2017 talk)

|𝝍′

|𝟏

|𝟎

|𝝍

|𝟏

|𝟎

t1

t2

t3

KLM CNOT gate

Ralph et al, PRA 65, 012314 (2002); Skaar and Landro, Am J Phys 72, 1385 (2004);

Page 55: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

KLM Nonlinear Sign Gate |𝝍′

|𝟏

|𝟎

|𝝍

|𝟏

|𝟎

t1

t2

t3

Ralph et al, PRA 65, 012314 (2002); Skaar and Landro, Am J Phys 72, 1385 (2004);

Page 56: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Quantum Input-Output Theory for MRR

Raymer & McKinstrie, PRA 88, 043819 (2013)

Wall & Milburn, Quantum Optics Springer (1994)

Standard Langevin Quantum I/O Theory

Alsing, Hach, Tison, Smith, PRA 95, 053828 (2017)

Page 57: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

High Cavity Q Limit

( )

- through coupling loss rate

- internal propagation loss rate

- cavity round trip time

The high cavity Q limit recovers the usual Langevin results valid near cavity resonances

Raymer & McKinstrie, PRA 88, 043819 (2013)

Alsing, Hach, PRA 96, 033847 & 033848 (2017)

(see also) Schneeloch, et al., 1807.10885

Page 58: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Dual Rail MRR: HOM Manifolds

HOM in MRR

Alsing, Hach, PRA 96, 033847 (2017); PRA 96, 033848 (2017);

Page 59: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Dual Bus MRR: HOM Manifolds

no loss

Alsing, P. M., et al. Phys. Rev. A 95, 053828 (2017) E. E. Hach III, et al., Phys. Rev. A 89, 043805 (2014);

no loss 5% loss 10% loss

15% loss 20% loss 25% loss

Page 60: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

14 Sept 2018 60

0 22 1 11 22 21 12 1 11 11 22 21 121 1 1 2 3

† † † † † †20 2 ,out 1 1 2 ,out ,out 1 1 2 ,out ,out ,out

2 , 1,2 , 2,1 , , perm 1,1,2

0 1 2 2 1 0

ˆ ˆ ˆ ˆ ˆ ˆ 0,0,02

j j j k j k j k l j k l

j j k j k l

S S S S S S S S S S

S a S S a a S S S a a a

0 22 0S

1 11 22 21 12 1S S S S

2 11 11 22 21 12 22S S S S S

2 2 2 21success 22 21 122

NLPSp S S S

11 1 2S

Page 61: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

61

~𝑒−𝑧𝛿 Affected by carrier injection

Affected by thermal strain

Conceptual Picture of Evanescent Coupling

23 Jan 2019 PfQ

Page 62: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

62

0 22 1 11 22 21 12 1 11 11 22 21 121 1 1 2 3

† † † † † †20 2 ,out 1 1 2 ,out ,out 1 1 2 ,out ,out ,out

2 , 1,2 , 2,1 , , perm 1,1,2

0 1 2 2 1 0

ˆ ˆ ˆ ˆ ˆ ˆ 0,0,02

j j j k j k j k l j k l

j j k j k l

S S S S S S S S S S

S a S S a a S S S a a a

0 22 0S

1 11 22 21 12 1S S S S

2 11 11 22 21 12 22S S S S S

2 2 2 21success 22 21 122

NLPSp S S S

11 1 2S

23 Jan 2019 PfQ

Page 63: Linear optical quantum information processing in silicon …ridl.cfd.rit.edu/products/talks/PfQ/Wednesday/PfQ Hach.pdf · 2019-01-23 · Linear optical quantum information processing

Case 3: vary middle interblock phase delay:

𝛿1= 𝛿3, 𝛿2≠0, θi = 2π, ti = ti*

t2*=t2*(η2, τ2, θ2)

= 𝟐( 𝟐 − 𝟏) δ2= θA2

(η2, τ2, θ2)

= π/30 1D intersection of the two surfaces for δ2=π/30

1D manifold of solutions

θi = 2π, mrrs on

resonance

𝛿2≠ 0, vary middle phase delay

t2* = 𝟐( 𝟐 − 𝟏),

t1* = t3* = 𝟏/ 𝟏 + 𝟐 𝟐

14 Sept 2018 63