linear cameras what is a perspective camera? reguli linear congruences direct and inverse...

82
Linear cameras • What is a perspective camera? • Reguli • Linear congruences • Direct and inverse projections • Multi-view geometry Présentations mercredi 26 mai de 9h30 à midi, salle U/V Planches : http://www.di.ens.fr/~ponce/geomvis/l ect6.ppt

Upload: mervin-little

Post on 29-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Linear cameras

• What is a perspective camera?• Reguli• Linear congruences• Direct and inverse projections• Multi-view geometry

Présentations mercredi 26 mai de 9h30 à midi, salle U/V

Planches :

– http://www.di.ens.fr/~ponce/geomvis/lect6.ppt

– http://www.di.ens.fr/~ponce/geomvis/lect6.pdf

Page 2: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

П1

Chasles’ absolute conic: x12+x2

2+x32 = 0, x4 = 0.

Kruppa (1913); Maybank & Faugeras (1992)

Triggs (1997);Pollefeys et al. (1998,2002)

, u0, v0

The absolute quadric u0 = v0 = 0The absolute quadratic complex 2 = 2, = 0

u0

v0

kl

f

x’ ¼ P ( H H-1 ) xH = [ X y ]

Page 3: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Relation between K, , and *

Page 4: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

» = u1 »1 + u2 »2 + u3 »3

Line bundles

c

x

3

1

2

Page 5: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

» = u1 »1 + u2 »2 + u3 »3

y = u1 y1 + u2 y2 + u3 y3

y2

c

r

x

y

y1

3

1

2

y3

Line bundles

Page 6: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

» = X u , where X2R6£3, u2R3

y = Y u , where Y2R4£3, u2R3

y2

c

r

x

y

y1

3

1

2

y3

Line bundles

Page 7: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

u = Yzy y = Yz

y [(c Ç x) Æ r]

y2

c

r

x

y

y1

3

1

2

y3

Line bundles

Note:

Page 8: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

u = Yzy y = Yz

y [(c Ç x) Æ r]

y2

c

r

x

y

y1

3

1

2

y3

Line bundles

Note:(c Ç x) Æ r = [c x – x c ] rT T

Page 9: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

u = Yzy y = Yz

y [(c Ç x) Æ r] = P x when z = c

y2

c

r

x

y

y1

3

1

2

y3

Line bundles

Page 10: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

c

r

x

y

u ¼ P x ¼ P*

p ¼ P T ¼ P T y

Perspective projection

z

p’

Page 11: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

c

r

x

y

y ¼ P x ¼ P*

p ¼ P T ¼ P T y

Perspective projection

z

p’

Note: y and u haveare identified here

Page 12: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

П1

Chasles’ absolute conic: x12 + x2

2 + x32 = 0, x4 = 0.

The absolute quadratic complex: T diag(Id,0) = | u |2 = 0.

Page 13: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Perspective projection

c

r

x

x’

c

r

x

x’

x’¼P x’¼P*

p’¼P T ’ ¼P T x’

x’¼P x ¼P*

p’¼P T ¼P T

The AQC general equation:T = 0, with = X*TX*

Proposition:T’ ¼ û¢ û’

Proposition :P P T ¼

’p

y’

y’

Proposition :P * P T ¼ *

Triggs (1997);Pollefeys et al. (1998)

epT = H ppT

ex = H-1 px

e = p

*

*

Z

X

Page 14: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Relation between K, , and *

Page 15: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

What is a camera?What is a camera?(Ponce, CVPR’09)(Ponce, CVPR’09)

x

c

ξ

ry

x

Page 16: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

c

ξ

ry

c

Page 17: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

c

ξ

ry

x

c

ξ

Page 18: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

c

ξ

ry

x

c

ξ

ξ

Page 19: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

c

ξ

ry

x

ξ

ry

Linear familyof lines

x

ξ

x

c

ξ

ξ

ξ

Page 20: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Lines linearly dependent on 2 or 3 lines

(Veblen & Young, 1910)

Then go on recursively for general linear dependence

© H. Havlicek, VUT

Page 21: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

What a camera is

Definition: A camera is a two-parameter linear family of lines – that is, a degenerate regulus, or a non-degenerate linear congruence.

Page 22: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Rank-3 families:Reguli

Line fields ≡ epipolar plane images(Bolles, Baker, Marimont, 1987)

Line bundles

Page 23: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Rank-4 (nondegenerate) families:Linear congruences

Figures © H. Havlicek, VUT

Page 24: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

ξ

yr

x

yr

ξ

Hyperbolic linear congruences

Crossed-slit cameras(Zomet et al., 2003)

Linear pushbroom cameras(Gupta & Hartley, 1997)

Page 25: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

© E

. M

olz

can

© L

eic

a

Hyperbolic linear congruences

Page 26: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

© T. Pajdla, CTU

Elliptic linear congruences

Linear oblique cameras (Pajdla, 2002)Bilinear cameras (Yu & McMillan, 2004)Stereo panoramas / cyclographs (Seitz & Kim, 2002)

Page 27: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Parabolic linear congruences

Pencil cameras (Yu & McMillam, 2004)Axial cameras (Sturm, 2005)

Page 28: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Plücker coordinates and the Klein quadric

line

screw

the Klein quadric= x Ç y =

uv[ ]

x

y

Note: u . v = 0

P5

Page 29: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Pencils of screws and linear congruences

line

s

P5

the Klein quadric

Reciprocal screws:(s | t) = 0

Screw ≈ linear complex:s ≈ { ± | ( s | ± ) = 0 }

Page 30: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

line

s

P5

the Klein quadric

tl

Pencils of screws and linear congruences

Reciprocal screws:(s | t) = 0

Screw ≈ linear complex:s ≈ { ± | ( s | ± ) = 0 }

Pencil of screws: l = { ¸ s + ¹k t ; ¸k¹2R }

The carrier of l is alinear congruence

Page 31: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

P5

e

hp

Reciprocal screws:(s | t) = 0

Screw ≈ linear complex:s ≈ { ± | ( s | ± ) = 0 }

Pencil of screws: l = { ¸ s + ¹k t ; ¸k¹2R }

The carrier of l is alinear congruence

Pencils of screws and linear congruences

Page 32: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

±2

Hyperbolic linear congruences

»

±1

Page 33: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x»1

p1

±1

±2

p2

Hyperbolic linear congruences

» = (xT[ p1 p2T]x) »1 + (xT[ p1 p2

T]x) »2

+ (xT[ p1 p2T]x) »3 + (xT[ p1 p2

T]x) »4

»2

»3 »4

»

Page 34: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x»1

p1

±1

±2

p2

Hyperbolic linear congruences

» = (yT[ p1 p2T] y) »1 + (yT[ p1 q2

T] y) »2

+ (yT[ q1 p2T] y) »3 + (yT[ q1 q2

T] y) »4

y = u1 y1 + u2 y2 + u3 y3 = Y u

»2

»3 »4

»

y

Page 35: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x»1

p1

±1

±2

p2

Hyperbolic linear congruences

» = (uT[ ¼1¼2T]u) »1 + (uT[ ¼1 ρ½2

T]u) »2

+ (uT[ ρ½1¼2T]u) »3 + (uT[ρ½1 ρ½2

T]u) »4

= X û , where X2R6£4 and û2R4

»2

»3 »4

»

y

Page 36: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x ξ

±

a2

p1

z

p2

p

a1

Parabolic linear congruences

±

T

» = X û , where X2R6£5 and û2R5

Page 37: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Elliptic linear congruences

x

»y

» = X û , where X2R6£4 and û2R4

Page 38: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

x

»1

y1

»2

y2

Epipolar geometry

(»1 | »2 ) = 0 or û1TF û2 = 0, where F = X1

TX2 2R4£4

Feldman et al. (2003): 6£6 F for crossed-slit cameras

Gupta & Hartley (1997): 4£4 F for linear pushbroom cameras

Page 39: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Trinocular geometry

Di (»1 , »2 , »3 ) = 0 or Ti (û1 , û2 , û3 ) = 0, for i = 1,2,3,4

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

δ

η φ

x

Page 40: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The essential map(Oblique cameras, Pajdla, 2002)

x

ξ

Ax

x ! ξ = x Ç Ax

B

H

P

E

Canonical forms of essential maps A ( = matrices with quadratic minimal poylnomial)

(Batog, Goaoc, Ponce, 2009)

Alternative geometric characterization of linearcongruences

Page 41: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

A new elliptic camera? (Batog, Goaoc, Ponce, 2010)

Page 42: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

SMOOTH SURFACES AND THEIR OUTLINES

• Elements of Differential Geometry• What are the Inflections of the Contour?• Koenderink’s Theorem•The second fundamental form• Koenderink’s Theorem• Aspect graphs• More differential geometry• A catalogue of visual events• Computing the aspect graph

• http://www.di.ens.fr/~ponce/geomvis/lect6.ppt • http://www.di.ens.fr/~ponce/geomvis/lect6.pdf

Page 43: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Smooth Shapes and their Outlines

Can we say anything about a 3D shapefrom the shape of its contour?

Page 44: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

What are the contour stable features??

folds cusps T-junctions

Shadows are likesilhouettes..

Reprinted from “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean,J. Ponce, and D.J. Kriegman, the International Journal of ComputerVision, 9(3):231-255 (1992). 1992Kluwer Academic Publishers.

Reprinted from “Solid Shape,” by J.J. Koenderink,MIT Press (1990). 1990 by the MIT.

Page 45: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Differential geometry: geometry in the small

A tangent is the limitof a sequence ofsecants.

The normal to a curveis perpendicular to thetangent line.

Page 46: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

What can happen to a curve in the vicinity of a point?

(a) Regular point;

(b) inflection;

(c) cusp of the first kind;

(d) cusp of the second kind.

Page 47: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Gauss Map

• It maps points on a curve onto points on the unit circle.

• The direction of traversal of the Gaussian image revertsat inflections: it folds there.

Page 48: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The curvature

C

• C is the center of curvature;

• R = CP is the radius of curvature;

• = lim s = 1/R is the curvature.

Page 49: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Closed curves admit a canonical orientation..

> 0

<0

= d / ds à derivative of the Gauss map!

Page 50: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Twisted curves are more complicated animals..

Page 51: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

A smooth surface, its tangent plane and its normal.

Page 52: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Normal sections and normal curvatures

Principal curvatures:minimum value maximum value

Gaussian curvature:K = 1 1

22

Page 53: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The differential of the Gauss map

dN (t)= lim s ! 0

Second fundamental form:II( u , v) = uT dN ( v )

(II is symmetric.)

• The normal curvature is t = II ( t , t ).• Two directions are said to be conjugated when II ( u , v ) = 0.

Page 54: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The local shape of a smooth surface

Elliptic point Hyperbolic point

Parabolic point

K > 0 K < 0

K = 0

Reprinted from “On ComputingStructural Changes in Evolving Surfaces and their Appearance,”By S. Pae and J. Ponce, theInternational Journal of ComputerVision, 43(2):113-131 (2001). 2001 Kluwer AcademicPublishers.

Page 55: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The parabolic lines marked on the Apollo Belvedere by Felix Klein

Page 56: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

N . v = 0 ) II( t , v )=0

Asymptotic directions:

The contour cusps whenwhen a viewing ray grazesthe surface along an asymptotic direction.

II(u,u)=0

Page 57: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Gauss map

The Gauss map folds at parabolic points.Reprinted from “On ComputingStructural Changes in Evolving Surfaces and their Appearance,”By S. Pae and J. Ponce, theInternational Journal of ComputerVision, 43(2):113-131 (2001). 2001 Kluwer AcademicPublishers.K = dA’/dA

Page 58: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Smooth Shapes and their Outlines

Can we say anything about a 3D shapefrom the shape of its contour?

Page 59: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Theorem [Koenderink, 1984]: the inflections of the silhouetteare the projections of parabolic points.

Page 60: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Koenderink’s Theorem (1984)

K = r c

Note: > 0.r

Corollary: K and havethe same sign!

c

Proof: Based on the idea that,given two conjugated directions,

K sin2 = u v

Page 61: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

What are the contour stable features??

folds T-junctionscusps

How does the appearance of an object change with viewpoint?

Reprinted from “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean,J. Ponce, and D.J. Kriegman, the International Journal of ComputerVision, 9(3):231-255 (1992). 1992Kluwer Academic Publishers.

Page 62: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Imaging in Flatland: Stable Views

Page 63: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Visual Event: Change in Ordering of Contour Points

Transparent ObjectOpaque Object

Page 64: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Visual Event: Change in Number of Contour Points

Transparent ObjectOpaque Object

Page 65: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Exceptional and Generic Curves

Page 66: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Aspect GraphIn Flatland

Page 67: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Geometry of the Gauss Map

Cusp ofGauss

Gutterpoint

Concavefold

Convexfold

Gausssphere

Image ofparaboliccurve

Movinggreatcircle

Reprinted from “On ComputingStructural Changes in Evolving Surfaces and their Appearance,”By S. Pae and J. Ponce, theInternational Journal of ComputerVision, 43(2):113-131 (2001). 2001 Kluwer AcademicPublishers.

Page 68: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Asymptotic directions at ordinary hyperbolic points

The integral curves of the asymptoticdirections form two families ofasymptotic curves (red and blue)

Page 69: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Asymptotic curves

Parabolic curve Fold

Asymptotic curves’ images

Gaussmap

• Asymptotic directions are self conjugate: a . dN ( a ) = 0

• At a parabolic point dN ( a ) = 0, so for any curve t . dN ( a ) = a . dN ( t ) = 0

• In particular, if t is the tangent to the parabolic curve itself dN ( a ) ¼ dN ( t )

Page 70: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Lip Event

Reprinted from “On ComputingStructural Changes in Evolving Surfaces and their Appearance,”By S. Pae and J. Ponce, theInternational Journal of ComputerVision, 43(2):113-131 (2001). 2001 Kluwer AcademicPublishers.

v . dN (a) = 0 ) v ¼ a

Page 71: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Beak-to-Beak Event

Reprinted from “On ComputingStructural Changes in Evolving Surfaces and their Appearance,”By S. Pae and J. Ponce, theInternational Journal of ComputerVision, 43(2):113-131 (2001). 2001 Kluwer AcademicPublishers.

v . dN (a) = 0 ) v ¼ a

Page 72: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Ordinary Hyperbolic Point

Flecnodal Point

Reprinted from “On ComputingStructural Changes in Evolving Surfaces and their Appearance,”By S. Pae and J. Ponce, theInternational Journal of ComputerVision, 43(2):113-131 (2001). 2001 Kluwer AcademicPublishers.

Page 73: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Red asymptotic curves

Red flecnodal curve

Asymptoticsphericalmap

Red asymptotic curves

Red flecnodal curve

Cusp pairs appear or disappear as one crosses the fold of theasymptotic spherical map.This happens at asymptotic directions along parabolic curves,and asymptotic directions along flecnodal curves.

Page 74: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Swallowtail Event

Flecnodal Point

Reprinted from “On Computing Structural Changes in Evolving Surfaces and their Appearance,” by S. Pae and J. Ponce, theInternational Journal of Computer Vision, 43(2):113-131 (2001). 2001 Kluwer Academic Publishers.

Page 75: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Bitangent Ray Manifold:

Ordinarybitangents..

..and exceptional(limiting) ones.

P

P’

P”

limiting bitangent line

unodeReprinted from “Toward a Scale-Space Aspect Graph: Solids ofRevolution,” by S. Pae and J. Ponce, Proc. IEEE Conf. on ComputerVision and Pattern Recognition (1999). 1999 IEEE.

Page 76: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Tangent Crossing Event

Reprinted from “On Computing Structural Changes in Evolving Surfaces and their Appearance,” by S. Pae and J. Ponce, theInternational Journal of Computer Vision, 43(2):113-131 (2001). 2001 Kluwer Academic Publishers.

Page 77: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Cusp Crossing Event

After “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). 1992 Kluwer Academic Publishers.

Page 78: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

The Triple Point Event

After “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). 1992 Kluwer Academic Publishers.

Page 79: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

X0

X1

E1

S1

S2

E3

S1

S2

Tracing Visual Events

P1(x1,…,xn)=0…Pn(x1,…,xn)=0

F(x,y,z)=0

Computing the Aspect Graph

• Curve Tracing

• Cell Decomposition

After “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). 1992 Kluwer Academic Publishers.

Page 80: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

An Example

Page 81: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Approximate Aspect Graphs (Ikeuchi & Kanade, 1987)

Reprinted from “Automatic Generation of Object Recognition Programs,” by K. Ikeuchi and T. Kanade, Proc. of the IEEE, 76(8):1016-1035 (1988). 1988 IEEE.

Page 82: Linear cameras What is a perspective camera? Reguli Linear congruences Direct and inverse projections Multi-view geometry Présentations mercredi 26 mai

Approximate Aspect Graphs II: Object Localization(Ikeuchi & Kanade, 1987)

Reprinted from “Precompiling a GeometricalModel into an Interpretation Tree for ObjectRecognition in Bin-Picking Tasks,” by K. Ikeuchi,Proc. DARPA Image Understanding Workshop,1987.