linear algebra. session 1roquesol/math_304_fall... · introduction sistems of linear equations...

70
Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque Sol 08/01/2017 Dr. Marco A Roque Sol Linear Algebra. Session 1

Upload: others

Post on 17-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Linear Algebra. Session 1

Dr. Marco A Roque Sol

08/01/2017

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 2: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Table of contentsIntroductionSystems of linear equationsGaussian elimination, Gauss-Jordan reductionMatrices, matrix algebraDeterminantsVector spacesLinear independenceBasis and dimensionCoordinates, change of basisLinear transformationsOrthogonalityInner products and normsThe Gram-Schmidt orthogonalization processEigenvalues and eigenvectorsMatrix exponentials and DiagonalizationTopics in applied linear algebra

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 3: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Introduction

Linear Algebra

( Medical Imaging )Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 4: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Introduction

Linear algebra is a cornerstone in undergraduate mathematicaleducation. It develops a general language used by all scientists andis interdisciplinary in essence. It hence, evolves naturally towardsabstraction. For most students, it is a first contact with modernmathematics.

Here are some concrete areas where we can find applications ofLinear Algebra.

Abstract Thinking

Chemistry

Coding theory

Coupled oscillations

Cryptography

Economics

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 5: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Introduction

Classical Electromagnetism.

Geophysics.

Elimination Theory.

Games.

Genetics.

Geometry.

Graph theory.

Heat distribution.

Image compression.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 6: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Introduction

Linear Programming.

Markov Chains.

Networks.

Sociology

The Fibonacci numbers.

Eigenfaces.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 7: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Introduction

Definition (Linear Equation)An equation of the form ax + by = c (5x + 7y = 6) is called linearbecause its solution set is a straight line in R2

A solution of the equation is a pair of numbers (x0, y0) ∈ R2 suchthat ax0 + by0 = c (5x0 + 7y0 = 6).

For example, (1, 1/7) and (−1/5, 1), are solutions. In another way,we can write the first solution, as x = 1, y = 1/5 and the secondone, as x = −1/5, y = 1

And the graph of the lines is:

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 8: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Introduction

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 9: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Sistems of linear equations

General equation of a line

The General equation of a line is given by

ax0 + by0 = c

where x , y are variables and a, b, and c are constants (except forthe case a = b = 0 )

DefinitionA linear equation in the variables x1, x2, · · · , xn, is an equation ofthe form:

a1x1 + a2x2 + · · · anxn = b

where a1, a2, · · · an and b are constants.

A solution of the equation is an array of numbersα1, α2, · · ·αn ∈ Rn such that

a1α1 + a2α2 + · · ·+ anαn = b

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 10: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

System of linear equations

System of linear equations

A System of linear equations is an expression of the form:a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2...

am1x1 + am2x2 + · · ·+ amnxn = bm

Here x1, x2, · · · xn are variables and aij , bj are constants.

In many applications, we will find such a systems of equations andit is here, where all the study of Linear Algebra Starts.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 11: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

Example 1.1

Find the point of intersection of the lines x − y = −2 and2x + 3y = in R2. You can find the solution of this problem bysetting up and solving the system of two equations in twounknowns {

x − y = −22x + 3y = 6

⇔ ( Equivalent System){x = y −2

2x + 3y = 6

⇔ {x = y − 2

2(y − 2) + 3y = 6

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 12: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

⇔ {x = y − 2

5y = 10

⇔ {x = y − 2y = 2

⇔ {x = 0y = 2

Thus, the solution is given by the point (0, 2)

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 13: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

{x − y = −2

2x + 3y = 6x = 0; y = 2

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 14: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

In a similar way, we have

{2x + 3y = 22x + 3y = 6

inconsistent system (no solution)

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 15: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

{4x + 6y = 122x + 3y = 6

2x+3y = 6 (infinitely many solutions)

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 16: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

Solving systems of linear equations

Elimination Method

Algorithm:(1) pick a variable, solve one of the equations for it, and eliminateit from the other equations;

(2) put aside the equation used in the elimination, and return tostep (1).

The algorithm reduces the number of variables (as well as thenumber of equations), hence it stops after a finite number of steps.After the algorithm stops, the system is simplified so that it shouldbe clear how to complete solution

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 17: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

Example 1.2 x − y = 2

2x − y− z = 3x + y+ z = 6

Solve the 1st equation for x :x = y + 2

2x − y− z = 3x + y+ z = 6

⇔Eliminate x from the 2nd and 3rd equations:

x = y + 22(y + 2) − y− z = 3(y + 2) + y+ z = 6

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 18: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

⇔Simplify:

x = y+ 2y− z = −12y + z = 4

In this way we have that, the whole system has been reduced to asystem (2nd and 3rd equations) of two linear equations in twovariables.

Solve the 2nd equation for y :x = y+ 2y = z− 12y + z = 4

⇔Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 19: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

Eliminate y from the 3rd equation:x = y+ 2y = z+ 1

2(z − 1) + z = 4

Simplify x = y+ 2y = z+ 13z = 6

Thus, the elimination process, has been completed. Now, thesystem is easily solved by back substitution

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 20: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Systems of linear equations

That is, we find z from the 3rd equation, then substitute it in the2nd equation and find y , then substitute y and z in the 1stequation and find x .

x = y + 2y = z + 1

z = 2

x = y + 2y = 1z = 2

x = 3y = 1z = 2

Finally, the System of linear equations:x − y = 2

2x − y− z = 3x + y+ z = 6

has as a solution, the point (x , y , z) = (3, 1, 2) .

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 21: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian elimination

System of linear equations

Remember that a System of linear equations is an expression ofthe form:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2...

am1x1 + am2x2 + · · ·+ amnxn = bm

Here x1, x2, · · · xn are variables and aij , bj are constants.

A solution of the system is a common solution of all equationspresent in the system.

A system of linear equations can have one solution, infinitely manysolutions, or no solution at all.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 22: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Using the Elimination method we had already shown the first caseand using it again we can illustrate the other two extra cases

Example 1.3 x + y− 2z = 1

y− z = 3−x + 4y− 3z = 14

Solve the 1st equation for x :⇔ ( Equivalent Systems)

x = −y+ 2z+ 1y − z = 3

−x + 4y− 3z = 14

Eliminate x from the 3rd equation :

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 23: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 24: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

⇔ x = −y + 2z + 1

y − z = 3−(−y + 2z + 1) + 4y − 3z = 14

Simplify :⇔

x = −y + 2z + 1y − z = 3

5y − 5z = 15⇔Solve the 2nd equation for y

x = −y+ 2z+ 1y = z+ 35y − 5z = 15

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 25: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Eliminate y from the 3rd equation:x = −y+ 2z+ 1y = z+ 3

5(z + 3)− 5z = 15

Simplify : x = −y+ 2z+ 1y = z + 3

0 = 0

Now, the elimination process is completed. The last equation isactually 0z = 0. Hence z , is a free variable, that is, it can beassigned an arbitrary value. Then, x and y are found by backsubstitution .

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 26: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

z = t (a parameter)

y = z + 3x = −y + 2z + 1

⇔ z = t

y = t + 3x = t − 2

Thus, the system x + y− 2z = 1

y − z = 3−x + 4y− 3z = 14

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 27: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

has the General Solution

(x , y , z) = (t − 2, t + 3, t)

or in vector form

(x , y , z) = (−2, 3, 0) + t(1, 1, 1)

The set of all solutions is a straight line in R3 passing through thepoint P = (−2, 3, 0) in the direction v =< 1, 1, 1 > .

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 28: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Example 1.4

x + y− 2z = 1

y− z = 3−x + 4y− 3z = 1

Solve the 1st equation for x :

⇔ (Equivalent System )x = −y + 2z + 1

y − z = 3−x + 4y − 3z = 1

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 29: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

⇔Eliminate x from the 3rd equation:

x = −y + 2z + 1y − z = 3

−(−y + 2z + 1) + 4y − 3z = 1⇔Simplify:

x = −y + 2z + 1y − z = 3

5y − 5z = 2⇔Solve the second equation for y :

x = −y + 2z + 1y = z + 3

5y − 5z = 2Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 30: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

⇔Eliminate y from the 3rd equation:

x = −y + 2z + 1y = z + 3

5(z + 3)− 5z = 2⇔Simplify:

x = −y + 2z + 1y = z + 3

15 = 2

Now, the elimination process is completed. The last equationactually is giving us a contradiction. Hence, there is no solution forthis system.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 31: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Thus, the system x + y− 2z = 1

y− z = 3−x + 4y− 3z = 1

has the General Solution

φ = empty set

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 32: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian elimination

Gaussian elimination is a modification of the elimination methodthat allows only so-called elementary operations .

Elementary operations for systems of linear equations:

(1) to multiply an equation by a nonzero scalar;

(2) to add an equation multiplied by a scalar to another equation;

(3) to interchange any two equations.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 33: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

The next result, is very important, because it ensures that thisoperations will not modify the solution set of the originall system.

Theorem

(i) Applying elementary operations to a system of linear equationsdoes not change the solution set of the system.

(ii) Any elementary operation can be undone by anotherelementary operation.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 34: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Operation 1: Multiply the ith equation by r 6= 0

a11x1 + a12x2 + · · ·+ a1nxn = b1...

ai1x1 + ai2x2 + · · ·+ ainxn = bi...

am1x1 + am2x2 + · · ·+ amnxn = bm

a11x1 + a12x2 + · · ·+ a1nxn = b1...

(rai1)x1 + (rai2)x2 + · · ·+ (rain)xn = rbi...

am1x1 + am2x2 + · · ·+ amnxn = bm

To undo the operation, multiply the ith equation by r−1

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 35: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Operation 2: Add r times the ith equation to the jth equation

...ai1x1 + ai2x2 + · · ·+ ainxn = bi

...aj1x1 + aj2x2 + · · ·+ ajnxn = bj

...

...ai1x1 + ai2x2 + · · ·+ ainxn = bi

...(aj1 + rai1)x1 + (aj2 + rai2)x2 + · · ·+ (ajn + rain)xn = bj + rbi

...

To undo the operation, add −r times the ith equation to the jthequation .

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 36: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Operation 3: interchange the ith and jth equations.

...ai1x1 + ai2x2 + · · ·+ ainxn = bi

...aj1x1 + aj2x2 + · · ·+ ajnxn = bj

...

...aj1x1 + aj2x2 + · · ·+ ajnxn = bj

...ai1x1 + ai2x2 + · · ·+ ainxn = bi

...

To undo the operation, apply it once more .

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 37: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Example 1.5 x − y = 2

2x − y − z = 3x + y + z = 6

Add −2 times the 1st equation to the 2nd equation:x − y = 2

y − z = −1x + y + z = 6

R2 := R2 − 2 ∗ R1

Add −1 times the 1st equation to the 3rd equation:x − y = 2

y − z = −12y + z = 4

R3 := (−1) ∗ R1 + R3

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 38: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Add −2 times the 2nd equation to the 3rd equation:x − y = 2

y − z = −13z = 6

R3 := (−2) ∗ R2 + R3

Note: At this point, the elimination process is completed, and wecan solve the system by back substitution. However, we cancontinue with elementary operations

Multiply the 3rd equation by 1/3:x − y = 2

y − z = −1z = 2

R3 := (1/3) ∗ R3

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 39: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Gaussian Elimination. Gauss-Jordan Reduction

Add the 3rd equation to the 2nd equation:x − y = 2

y = 1z = 2

R2 := R2 + R3

Add the 2nd equation to the 1st equation:x = 3

y = 1z = 2

R1 := R2 + R1

Thus, the system x − y = 2

2x − y − z = 3x + y + z = 6

has as the solution set, the point (3, 1, 2)Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 40: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Matrices

Definition. A matrix is a rectangular array of numbers.

The dimension of a matrix is given by

dimensions = (number of rows) X ( number of columns)

Thus we have

n × n : Square matrixn × 1 : Column vector1× n : Row vector

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 41: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Examples of matrices are:

2 7−1 03 3

(3× 2)

(2 7 0−1 1 5

)(2× 3)

358

(3× 1)

(2 4 9

)(1× 3)

(−2 01 5

)(2× 2)

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 42: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

From a system of linear equations:a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2...

am1x1 + am2x2 + · · ·+ amnxn = bm

We can find the coefficient matrix and column vector of theright-hand sides:

a11 a12 · · · a1na21 a22 · · · a2n

...am1 am2 · · · amn

b1

b2...

bm

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 43: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

and also associated to the linear system we have the Augmentedmatrix:

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2...

am1 am2 · · · amn bm

Now, rember that using Gaussian elimination, the solution of asystem of linear equations splits into two parts:(A) Elimination and(B) Back substitution.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 44: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Both parts can be done by applying a finite number of elementaryoperations:

(1) to multiply a row by a nonzero scalar;

(2) to add the ith row multiplied by some r ∈ R to the jth row;

(3) to interchange two rows.

Notation

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 45: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Augmented matrix:

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2...

am1 am2 · · · amn bm

=

v1v2...

vm

where vi = (ai1 ai1 ai1 · · · ai1) is a row vector.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 46: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Elementary row operations on Matrices

Operation 1: To multiply the ith row by r 6= 0

v1...

vi...

vm

v1...

rvi...

vm

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 47: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Operation 2: To add the ith row multiplied by r to the jth row

v1...

vi...

vj...

vm

v1...

vi...

vj + rvi...

vm

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 48: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Operation 3: To interchange the ith row with the jth row

v1...

vi...

vj...

vm

v1...

vj...

vi...

vm

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 49: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Row echelon form

Definition. Leading entry of a matrix is the first nonzero entry ina row.

The goal of the Gaussian elimination is to convert the augmentedmatrix into row echelon form

1) Leading entries shift to the right as we go from the first row tothe last one;

2) Each leading entry is equal to 1.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 50: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Thus, we have this example in the echelon form

1 −1 4 1 7 9 6 1 3 9 −50 1 3 −2 7 1 5 3 3 4 −10 0 0 0 1 5 6 −3 1 2 10 0 0 0 0 0 1 8 1 7 20 0 0 0 0 0 0 1 −2 7 −30 0 0 0 0 0 0 0 1 −2 90 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 51: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Row echelon form

General augmented matrix in row echelon form

� ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗� � � ∗ ∗ ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗

� � ∗ ∗� ∗

1) Leading entries are boxed (all equal to 1);

2) All the entries below, the (imaginary) staircase line are zero;

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 52: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

3) Each step of the (imaginary) staircase has height 1;

4) Each circle marks a column without a leading entry thatcorresponds to a free variable.

Strict triangular form

Is a particular case of row echelon form that can occur for systemsof n variables :

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 53: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

� ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

1) No zero rows.

2) No free variables.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 54: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Consistency check

The original system of linear equations is consistent if there is noleading entry in the rightmost column of the augmented matrix inrow echelon form.

Augmented matrix of an inconsistent system

� ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗� � � ∗ ∗ ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗

� � ∗ ∗� ∗

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 55: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

The goal of the Gauss-Jordan reduction is to convert theaugmented matrix into reduced row echelon form :

1 ∗ ∗ ∗ ∗ ∗1 � � ∗ ∗ ∗

1 � ∗ ∗1 ∗ ∗

1 � ∗1 ∗

1) All entries below the staircase line are zero; 2) Each boxed entryis 1, the other entries in its column are zero; 3) Each circlecorresponds to a free variable.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 56: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Example 1.6From a previous example, we have

x − y = 1

2x − y− z = 3x + y+ z = 6

1 −1 0 22 −1 −1 31 1 1 6

Row echelon form (also strict triangular):

x − y = 2y − z = −1

x + y+ z = 2⇒

1 −1 0 2

0 1 −1 −1

0 0 1 2

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 57: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Reduced row echelon form :x = 3

y = 1z = 2

1 0 0 3

0 1 0 1

0 0 1 2

Example 1.7

x + y− 2z = 1

y− z = 3−x + 4y− 3z = 6

1 1 −2 10 1 −1 3−1 4 −3 1

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 58: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Row echelon form:

x + y− 2z = 1

y− z = 30 = 1

1 1 −2 1

0 1 −1 3

0 0 0 1

Reduced row echelon form:

x + − z = 0y− z = 0

0 = 1⇒

1 0 −1 0

0 1 −1 0

0 0 0 1

Inconsistent system

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 59: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

How to solve a system of linear equations

1) Order the variables.

2) Write down the augmented matrix of the system.

3) Convert the matrix to row echelon form

4) Check for consistency.

5) Convert the matrix to reduced row echelon form Example 7

6) Write down the system corresponding to the reduced rowechelon form.

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 60: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

7) Determine leading and free variables.

8) Rewrite the system so that the leading variables are on the leftwhile everything else is on the right.

9) Assign parameters to the free variables and write down thegeneral solution in parametric form.

Example 1.7 {x2 + 2x3 + 3x4 = 6

x1 + 2x2 + 3x3 + 4x4 = 10

In this case the variables are x1, x2, x3, x4. and the Augmentedmatrix is :

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 61: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

(0 1 2 3 61 2 3 4 10

)To get it into row echelon form, we exchange the two rows:(

1 2 3 4 100 1 2 3 6

)Consistency check is passed. To convert into reduced row echelonform, add −2 times the 2nd row to the 1st row:(

1 0 −1 −2 −2

0 1 2 3 6

)The leading variables are x1 and x2 ; hence x3 and x4 are freevariables

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 62: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 63: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Back to the system:{x1 − x3 − 2x4 = −1x2 + 2x3 + 3x4 = 6

⇒{

x1 = x3 + 2x4 − 2x2 = −2x3 − 3x4 + 6

and the general solution is given byx1 = t + 2s − 2x2 = −2t − 3s + 6x3 = tx4 = s

(t, s ∈ R)

In vector form,

(x1, x2, x3, x4) = (−2, 6, 0, 0) + t(1,−2, 1, 0) + s(2,−3, 0, 1)

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 64: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Example 1.8 y + 3z = 0

x + y − 2z = 0x + 2y + az = 0

a ∈ R

The system is homogeneous (all right-hand sides are zeros).Therefore it is consistent ( x = y = z = 0 is a solution )The augmented matrix is: 0 1 3 0

1 1 2 01 2 a 0

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 65: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Since the 1st row cannot serve as a pivotal one, we interchange itwith the 2nd row: 0 1 3 0

1 1 −2 01 2 a 0

1 1 −2 00 1 3 01 2 a 0

Now we can start the elimination. First subtract the 1st row fromthe 3rd row: 1 1 −2 0

0 1 3 01 2 a 0

1 1 −2 00 1 3 00 1 a + 2 0

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 66: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

The 2nd row is our new pivotal row. Subtract the 2nd row fromthe 3rd row: 1 1 −2 0

0 1 3 00 1 a + 2 0

1 1 −2 00 1 3 00 0 a− 1 0

At this point row reduction splits into two cases.Case 1: a 6= 1. In this case, multiply the 3rd row by (a− 1)−1 1 1 −2 0

0 1 3 00 0 a− 1 0

1 1 −2 00 1 3 00 0 1 0

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 67: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

The matrix is converted into row echelon form. We proceedtowards reduced row echelon form. Subtract 3 times the 3rd rowfrom the 2nd row: 1 1 −2 0

0 1 3 00 0 1 0

1 1 −2 00 1 0 00 0 1 0

Add 2 times the 3rd row to the 1st row: 1 1 −2 0

0 1 0 00 0 1 0

1 1 0 00 1 0 00 0 1 0

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 68: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Finally, subtract the 2nd row from the 1st row: 1 1 0 00 1 0 00 0 1 0

1 9 0 00 1 0 00 0 1 0

Thus x = y = z = 0 is the only solution

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 69: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Case 2: a = 1. In this case, the matrix is already in row echelonform: 1 1 −2 0

0 1 3 00 0 a− 1 0

1 1 −2 00 1 3 00 0 0 0

To get reduced row echelon form, subtract the 2nd row from the1st row: 1 1 −2 0

0 1 3 00 0 0 0

1 0 −5 00 1 3 00 0 0 0

Dr. Marco A Roque Sol Linear Algebra. Session 1

Page 70: Linear Algebra. Session 1roquesol/Math_304_Fall... · Introduction Sistems of linear equations Gaussian Elimination. Gauss-Jordan Reduction Linear Algebra. Session 1 Dr. Marco A Roque

IntroductionSistems of linear equations

Gaussian Elimination. Gauss-Jordan Reduction

Row echelon form. Gauss-Jordan Reduction

Then, z is a free variable, and the solution is given by{x − 5z = 0y + 3z = 0

⇒{

x = 5zy = −3z

Thus, the System of linear equations:x + 3z = 0

x + y − 2z = 0x + 2y + az = 0

has as a solution:

if a 6= 1 then (x , y , z) = (0, 0, 0).if a = 1 then (x , y , z) = t(5,−3, 1) t ∈ R.

Dr. Marco A Roque Sol Linear Algebra. Session 1