line arresters: evaluating flashover performance and discharge … · 2015. 9. 21. · openetran...

17
Line Arresters: Evaluating Flashover Performance and Discharge Duty T. E. McDermott Univ. of Pittsburgh [email protected] 1-412-648-9585 1

Upload: others

Post on 03-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Line Arresters: Evaluating Flashover Performance and

    Discharge Duty

    T. E. McDermott

    Univ. of Pittsburgh

    [email protected]

    1-412-648-9585

    1

    mailto:[email protected]

  • Two open-source software programs with spreadsheet interfaces estimate line performance with arresters.

    2

    http://sourceforge.net/projects/epri-openetran/

    GPL v3

    License

    http://sourceforge.net/projects/ieeeflash/

    BSD

    License

  • IEEE Flash “Classic” focused on shielding and grounding; no arrester models.

    3

  • OpenEtran simulates traveling wave effects on line segments, insulators, grounds, surge arresters and lightning surges.

    4

    M InsulatorArrester

    Span 2 Span 3 Span 4Span 1

    Pole 1 Pole 2 Pole 3 Pole 4 Pole 5

    TerminationUngrounded Pole

    Surge Current

    Termination

    DC BiasDC Bias

  • Arresters have nonlinear and frequency-dependent discharge characteristics.

    5

  • OpenEtran waveforms show the effects of line arresters (at every other pole) on the insulator voltages.

    6

    -4.0E+05

    -3.5E+05

    -3.0E+05

    -2.5E+05

    -2.0E+05

    -1.5E+05

    -1.0E+05

    -5.0E+04

    0.0E+00

    5.0E+04

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Vo

    ltag

    e [

    V]

    Time [s]

    P16 ph A P17 ph A P17 ph B

    -4.0E+05

    -3.5E+05

    -3.0E+05

    -2.5E+05

    -2.0E+05

    -1.5E+05

    -1.0E+05

    -5.0E+04

    0.0E+00

    5.0E+04

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Vo

    ltag

    e [

    V]

    Time [s]

    P16 ph A P17 ph A P17 ph B

    54-kA Stroke

    No Flashover

    55-kA Stroke

    Causes Flashover

  • IEEE Flash calls OpenEtran with a root-finding method to find critical stroke current causing flashover.

    7

    5max max( ) 1 ( ) 10flashoverF I SI T t

    -4.0E+05

    -3.5E+05

    -3.0E+05

    -2.5E+05

    -2.0E+05

    -1.5E+05

    -1.0E+05

    -5.0E+04

    0.0E+00

    5.0E+04

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Vo

    ltag

    e [

    V]

    Time [s]

    P16 ph A P17 ph A P17 ph B

    -4.0E+05

    -3.5E+05

    -3.0E+05

    -2.5E+05

    -2.0E+05

    -1.5E+05

    -1.0E+05

    -5.0E+04

    0.0E+00

    5.0E+04

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Vo

    ltag

    e [

    V]

    Time [s]

    P16 ph A P17 ph A P17 ph B

    I = 54 kA; SImax = 0.99

    Almost a flashover

    I = 55 kA; SImax = 1.00

    Flashover did occur

    This function of peak stroke current, I, is zero when a

    flashover just barely occurred somewhere on the line.

    This lightly-weighted

    term is zero when

    flashover occurred

    right at the end of

    the simulation.

  • For a stroke to shield wire, most of the stroke current goes directly into the tower footing resistance.

    8

  • For a stroke to tower, line arresters prevent insulator flashover with little energy or charge duty.

    9

    -1.2E+05

    -1.0E+05

    -8.0E+04

    -6.0E+04

    -4.0E+04

    -2.0E+04

    0.0E+00

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Cu

    rre

    nt

    [A]

    Time [s]

    T11 grnd

    0.0E+00

    1.0E+05

    2.0E+05

    3.0E+05

    4.0E+05

    5.0E+05

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Vo

    ltag

    e [

    V]

    Time [s]

    T11 ph A T11 ph B T11 ph C

    0.0E+00

    2.0E+02

    4.0E+02

    6.0E+02

    8.0E+02

    1.0E+03

    1.2E+03

    1.4E+03

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05

    Curr

    ent [

    A]

    Time [s]

    T11 ph A T11 ph B T11 ph C

    Tower ground current

    Insulator voltages

    Arrester currents

  • For a stroke to phase conductor, the arrester energy and charge duty is much higher.

    10

  • Arresters also share the current discharge for a stroke to the phase conductor on a distribution line.

    11

    0

    5

    1 0

    1 5

    2 0

    2 5

    3 0

    3 5

    0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0

    A r r e s t e r a n d S t r o k e C u r r e n t s - U n d e r b u i l t G r o u n d W i r e

    Cu

    rr

    en

    t

    (k

    A)

    T im e (u s )

    L e ft M id d le S tro k e

  • Microsoft Excel provides the user interface, running simulations through Visual Basic for Applications (VBA)

    12

  • Critical currents for two 230-kV lines; results are used to check for acceptable tower ground resistances.

    13

  • IEEE Flash checks Lightning Detection Network events to identify lines with possible design issues (black dots).

    14

    0 2 4 6 8 10 12 14 16 18 200

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    Event #

    Peak C

    urr

    ent |k

    A|

    BackFlash

    Shield

  • For a stroke to shield wire, the arrester duty is higher but nearby arresters will share much of the duty.

    15

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 50 100 150 200

    Arr

    est

    er

    Ch

    arge

    [C

    ]

    Stroke Current [kA]

    Ph Charge [C] 65 kA 4x10 100 kA 4x10

    SL 5 kA SI 10 kA SH 20 kA

  • Want to help with OpenEtran? Try improving the model of induced voltages from nearby strokes.

    16

    037.3

    4.7

    eff

    m

    eff

    hU I CFO

    y

    h h

    IEEE Std. 1410-2010 (Rusck / Darveniza)

    Proposed New Model: Høidalen, “Calculation of Lightning-induced

    Voltages in MODELS Including Lossy

    Ground Effects”, [Online] at www.ipst.org

  • Want to help with IEEE Flash? Try implementing the CFO-added method, or transmission counterpoise.

    17