limitation of the ecris performance by kinetic plasma instabilities o. tarvainen, t. kalvas, h....

51
Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University of Jyväskylä I. Izotov, D. Mansfeld, V. Skalyga Institute of Applied Physics – Russian Academy of Sciences V. Toivanen CERN G. Machicoane National Superconducting Cyclotron Laboratory, Michigan State University The 16 th International Conference on Ion Sources New York, NY, USA, August 2015

Upload: louise-bradley

Post on 16-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Limitation of the ECRIS performance by kinetic plasma

instabilitiesO. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen

University of Jyväskylä

I. Izotov, D. Mansfeld, V. Skalyga Institute of Applied Physics – Russian Academy of Sciences

V. ToivanenCERN

G. MachicoaneNational Superconducting Cyclotron Laboratory, Michigan State University

The 16th International Conference on Ion Sources

New York, NY, USA, August 2015

Page 2: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Content

ECRIS magnetic field configuration and semiempirical scaling laws

Instabilities in ECRIS plasmas

Experimental setup and diagnostics signals

Instabilities limiting ECRIS performance

Page 3: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS magnetic field

Superposition of solenoid and sextupole fields

The magnetic field configuration serves for three purposes

The figure is by courtesy of C. Lyneis

Page 4: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Resonance condition

Electrons gain sufficient energy for the ionization of highly charged ions and cause significant wall bremsstrahlung

Page 5: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Plasma (electron) confinement

Binj = magnetic field at injection

Bext = magnetic field at extraction

Bmin = minimum magnetic field

Brad = radial magnetic field at the pole

Result: electron confinement

Binj

Bext

Bmin

Brad

Page 6: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Suppression of MHD instabilities

∂B/∂r < 0

∂B/∂r ≥ 0

JYFL 14 GHz ECRIS

Conditions for suppressing MHD instabilities

and ∂B/∂r ≥ 0

OK

Sextupole

Solenoid

Page 7: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Empirical scaling laws of ECRIS B-fieldD. Hitz, A. Girard, G. Melin, S. Gammino, G. Ciavola, L. CelonaRev. Sci. Instrum. 73, (2002), p. 509.

Brad affected by the solenoid field!

Page 8: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

VENUS 18 GHz Xe26+

D. Leitner, C.M. Lyneis, T. Loew, D.S. Todd, S. Virostek and O. Tarvainen, Rev. Sci. Instrum. 77(3), (2006).

0.75

Page 9: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

H. Arai, M. Imanaka, S.M. Lee, Y. Higurashi, T. Nakagawa, M. Kidera, T. Kageyama, M. Kase, Y. Yano and T. Aihara, Nucl.Instrum. Meth. A 491, 1-2, (2002).

RAMSES 18 GHz Kr15+

0.78

Page 10: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

Previously unpublished

SuSI 18 GHz Xe35+

0.80

Page 11: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

O. Tarvainen, J. Laulainen, J. Komppula, R. Kronholm, T.Kalvas, H. Koivisto, I. Izotov, D. Mansfeld and V. Skalyga, Rev. Sci. Instrum. 86, 023301, (2015).

JYFL 14 GHz A-ECR O5+

0.70

Page 12: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

0.7 – 0.8

Page 13: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

What limits the ECRIS performance at ?

Page 14: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

A clue from the temporal stability of the extracted beam current (JYFL 14 GHz A-ECR)

Below the optimum Bmin/BECR Above the optimum Bmin/BECR

Page 15: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

ECRIS performance vs. Bmin/BECR

A clue from the temporal stability of the extracted beam current (SuSI 18 GHz)

Below the optimum Bmin/BECR Above the optimum Bmin/BECR

Xe35+

Xe35+

Page 16: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Periodic oscillations of the beam current

Page 17: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Periodic oscillations of the beam current

30 Hz – 1.4 kHz

1 – 65 %

Page 18: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

What causes the beam current oscillations?

Page 19: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Content

ECRIS magnetic field configuration and semiempirical scaling laws

Instabilities in ECRIS plasmas

Experimental setup and diagnostics signals

Instabilities limiting ECRIS performance

Page 20: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Electron velocity distribution in ECRIS

Resonant heating

Anisotropic EVDF due to hot electron population with v > v||

Page 21: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Electron energy distribution in ECRIS

Kinetic instabilities!

Cold (non-relativistic) electrons

Warm and hot electrons carrying most of the plasma energy

Page 22: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Fingerprints of electron cyclotron instabilities

Hot electrons interacting with the excited plasma wave

Bursts of microwave emission and hot electrons from the plasma

S.A. Hokin, R.S. Post, and D.L. Smatlak, Phys. Fluids B: Plasma Physics 1, 862 (1989).

M. Viktorov, D. Mansfeld and S. Golubev, EPL, 109 (2015), 65002.

Page 23: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Content

ECRIS magnetic field configuration and semiempirical scaling laws

Instabilities in ECRIS plasmas

Experimental setup and diagnostics signals

Instabilities limiting ECRIS performance

Page 24: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Experimental setup – JYFL 14 GHz ECRIS (A-ECR)

6

4 3

85

7

7 7

21

1. Injection coil 2. Extraction coil3. PM hexapole4. Plasma chamber5. Waveguides6. Extraction7. Pumping8. Radial viewport

Page 25: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Experimental setup – diagnostics

10 MHz – 50 GHz microwave detector diode connected to WR-75 waveguide

WR-75 ’diagnostics port’

Biased disc

Page 26: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Experimental setup – diagnostics

BGO scintillator + PMT measuring bremstrahlung power flux

6

4 3

8

5

7

7 7

21

B GO

120

mm

PMT(a) (b)

biased di sc

WR62

WR75 (d iagnostic port)

visible l ight diagnostic s port

Page 27: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Experimental setup – diagnosticsFaraday cup 5 m downstream in the beam line

Solenoid

Dipole magnet Steering magnet

Faraday Cup

JYFL 14 GHz ECRIS

20 mm collimator

Page 28: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Typical diagnostics signals

Further details on the microwave emission in the poster by Ivan Izotov

Note different time scales!

Page 29: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Why we observe a perturbation of the beam current?

Biased disc current with -150 V applied voltage

0.2 mA

-22 mA electron peak

14 mA ion peak

Transient current 100 x steady-state current!

Page 30: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Why we observe a perturbation of the beam current?

Biased disc current with -150 V applied voltage

Electron losses overcome the ion losses for 1 µs

Build-up of significant plasma potential

Page 31: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Ion beam energy spreadFaraday cup 5 m downstream in the beam line

Solenoid

Dipole magnet Steering magnet

Faraday Cup

JYFL 14 GHz ECRIS

20 mm collimator

Ramp the dipole current

I(t,B)

Page 32: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Ion beam energy spread

Peaks in m/q spectrum overlap following an instability event

10% energy spread equals to 1 kV plasma potential

Page 33: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Content

ECRIS magnetic field configuration and semiempirical scaling laws

Instabilities in ECRIS plasmas

Experimental setup and diagnostics signals

Instabilities limiting ECRIS performance

Page 34: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

When do the instabilities occur and limit the ECRIS performance

(current and stability)?

Page 35: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Electron cyclotron instabilities

The energy of the microwave emission, Eµ, is described by mode- dependent growth and damping rates, and

Exponential growth of the instability amplitude when >

Threshold between stable and unstable regimes

is proportional to the anisotropy of the EVDF

is proportional to the (inelastic) electron collision frequency

Page 36: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Transition from stable to unstable regime

Page 37: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Transition from stable to unstable regime

Page 38: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Beam current oscillations in unstable regime

Page 39: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Instabilities limiting the source perfomance

Solid symbols: stable operating regimeOpen symbols: unstable operating regime

Page 40: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Instabilities limiting the source perfomance

Solid symbols: stable operating regimeOpen symbols: unstable operating regime

Instabilities limit the parameter space available for optimizing the extracted currents of high charge states!

Page 41: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Instabilities limiting the source perfomance

Temporal evolution of O6+ ion current in stable (red) and unstable (black) regime

Page 42: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Repetition rate of the periodic instabilities

Production of highly charged ions:

Good confinement

High microwave power

Low neutral gas pressure

Page 43: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Ionization times vs. instabilities

Ion current rise times (ionization + confinement) are on the order of 10 ms for high charge states (e.g. > Ar8+)R. C. Vondrasek, R. H. Scott, R. C. Pardo, and D. Edgell, Rev. Sci. Instrum. 73, 548 (2002).

Typical repetition rate of the instabilities is 1 kHz which corresponds to 1 ms temporal interval

Ions must survive 10 instability events in order to become highly charged!

10 ms

1 ms

Page 44: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Do all ECRISs suffer from electron cyclotron instabilities?

VENUS: studying plasma-microwave coupling

Peaks of microwave emission coincident with dropping beam current (poor resolution)

Page 45: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Do all ECRIS suffer from electron cyclotron instabilities?

14.5 GHz PHOENIX charge breeder at LPSC

Periodic ripple of beam current and bursts of bremsstrahlung

Microwave emission coincident with the leading edge of the burst of bremsstrahlung emission

+ +

Page 46: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Why is Bmin/BECR linked to instabilities?

Electron heating is a stochastic process.

The energy gain / resonance pass is proportional to

Electric field amplitude at the resonance

… and inversely proportional to the

Parallel component of the magnetic field gradient

at the resonance.

Page 47: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Unstable

Why is Bmin/BECR linked to instabilities?

JYFL 14 GHz ECRIS

Bmin/BECR = 0.66 Bmin/BECR = 0.73 Bmin/BECR = 0.80

Stable

Page 48: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

How to prevent instabilities?

Minimize the zero gradient regions on the ECR-surface?

Are those regions important or is all the action on axis?

To be studied with a superconducting ECRIS

Page 49: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

How to prevent instabilities?

Single frequency heating

Two frequency heating

Stabilizing effect of two-frequency heating is related to the suppression of electron cyclotron instabilities

Further details in poster by V. Skalyga

Page 50: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

“Tuning an ECR ion source is searching for an island of stability in a sea of turbulence”

- R. Geller

Thank you for your attention

Page 51: Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University

Future plans

A study of instabilities vs. gas mixing

Measurement of the ion beam energy spread in unstable operation mode together with estimating the electron charge repelled by the instability

Better understanding of the two-frequency stabilization