lightning activity

Upload: sorry2qaz

Post on 04-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Lightning Activity

    1/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 1 -

    Lightning Activity

  • 7/29/2019 Lightning Activity

    2/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 2 -

    Lightning Activity

    Worldwide about 2000 thunderstorms at any time

    Worldwide about 2000 thunderstorms at any time

    Estimation: 100 lightning strokes every second

    Estimation: 100 lightning strokes every second

    Strong local differences in lightning activities

    Strong local differences in lightning activities

    But for each region constant average lightning activity

    But for each region constant average lightning activity

    Lightning maps can be produced

    Lightning maps can be produced

    Keraunic level TD = number of thunderstorm days per year

    Keraunic level TD = number of thunderstorm days per year

  • 7/29/2019 Lightning Activity

    3/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 3 -

    Lightning Activity

    Keraunic levels worldwide

    Keraunic levels worldwide

    Middle Europe: TD = 10 ... 25

    in equator regions: TD = 100 ... 180

    Middle Europe: TD = 10 ... 25

    in equator regions: TD = 100 ... 180

  • 7/29/2019 Lightning Activity

    4/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 4 -

    Lightning Activity

    Keraunic levels worldwideKeraunic levels worldwide

    TD = 20 ... 80

    Middle Europe: TD = 10 ... 25

    in equator regions: TD = 100 ... 180

    Middle Europe: TD = 10 ... 25

    in equator regions: TD = 100 ... 180TD = 80 ... 180

  • 7/29/2019 Lightning Activity

    5/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 5 -

    Lightning Activity

    Keraunic level GermanyKeraunic level Germany

    Mean values

    Lightning ground flash density Ng = number of lightning ground flashes per km2 and year

    = N T1.25g d

    0.04Empirical relation: Ng in (km

    2

    a)-1

  • 7/29/2019 Lightning Activity

    6/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 6 -

    Lightning Activity

  • 7/29/2019 Lightning Activity

    7/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 7 -

    Lightning Activity

    Lightning ground flash detection and tracking systemsLightning ground flash detection and tracking systems

  • 7/29/2019 Lightning Activity

    8/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 8 -

    Lightning Activity

    Thunderstorms in Germany 29.6.2005, recorded by BLIDSThunderstorms in Germany 29.6.2005, recorded by BLIDS

    http://www.blids.de

  • 7/29/2019 Lightning Activity

    9/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 9 -

    Lightning Activity

  • 7/29/2019 Lightning Activity

    10/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 10 -

    Lightning Activity

    http://www.aldis.at/

  • 7/29/2019 Lightning Activity

    11/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 11 -

    Lightning Activity

    http://www.meteorage.fr/meteorage.fr/index.php

  • 7/29/2019 Lightning Activity

    12/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 12 -

    Formation of Thunderstorms

    Pre-conditions: strong upwinds and high humidity

    Thermal thunderstormThermal thunderstorm

    Ground temperatures > 30 C; warm air is raising up, cold air comes down in turnand flows back sideways

    Front thunderstormFront thunderstorm

    Mass ofcold air slides underhumid and warm mass of air

    Warm and humid air raises up condensation of contained humidity:clouds of thunderstorms contain rain, snow and ice crystals

    Warm and humid air raises up

    condensation of contained humidity:clouds of thunderstorms contain rain, snow and ice crystals

  • 7/29/2019 Lightning Activity

    13/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 13 -

    Formation of Thunderstorms

    Tropopause

    propagation

    prevailingwind direction

    wind direction on ground

    rain

    snow

    ice crystals

    rain

  • 7/29/2019 Lightning Activity

    14/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 14 -

    Formation of Thunderstorms

  • 7/29/2019 Lightning Activity

    15/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 15 -

    Formation of Thunderstorms

  • 7/29/2019 Lightning Activity

    16/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 16 -

    Formation of Thunderstorms

  • 7/29/2019 Lightning Activity

    17/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 17 -

    Formation of Thunderstorms

  • 7/29/2019 Lightning Activity

    18/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 18 -

    Formation of Thunderstorms

    propagation

    prevailing

    wind direction

    wind direction on ground

    rain

    snow

    ice crystals

    rain

    Generation mechanism of electricity not yetfully understood; contribution of scattering of water droplets fragmentation of ice crystals

    freezing of polarized water droplets

    Typical charge distribution: positive charge on top

    negative charge at the bottom small positive area at the bottom

    Thunderstorm cloud = dipole chargedto 25 As (in average)

    Thunderstorm cloud = dipole charged

    to 25 As (in average)

  • 7/29/2019 Lightning Activity

    19/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 19 -

    Formation of Thunderstorms

    Lebenszyklus einer Gewitterwolke: Startphase, Entwicklungsphase, Reifestadium, Abbauphase

    maximum external activitymaximum external activity

    maximum internal activitymaximum internal activity

    Life cycle of a thunderstorm cloud: initial phase, development phase, mature phase, decay phase

    Average life time: ca. 1 h

  • 7/29/2019 Lightning Activity

    20/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 20 -

    Lightning Discharge

    When the breakdown electric field strength at the cloudsedge has been reached:Streamerdischarge starting in the cloudPropogation of a first leader10 m to 200 m long

    Development of a stepped leaderDevelopment of a stepped leader

    Charge tube: several 10 mCharge tube: several 10 m

    Plasma core: ca. 2 mmPlasma core: ca. 2 mm

    Center ofnegative charges

    Influencedpositive charges

  • 7/29/2019 Lightning Activity

    21/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 21 -

    Lightning Discharge

    Center ofnegative charges

    Influencedpositive charges

    Development of a stepped leaderDevelopment of a stepped leader

    After a time interval of 10 s to 100 s(during this time additional charge flowswithin and from the cloud):Formation of a new leader

  • 7/29/2019 Lightning Activity

    22/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 22 -

    Lightning Discharge

    etc. etc.propagation of the

    stepped leader

    Direction of individual leadersnot uniform; depends on field

    distribution and ionizationconditions.

    Increase of groundelectric field strength!

    Approximation to ground up toseveral 10 meters

    v 300 km/s (1/1000 c0)

    Center ofnegative charges

    Influencedpositive charges

    Development of a stepped leaderDevelopment of a stepped leader

    Steppedleader withplasma coreand chargetube

  • 7/29/2019 Lightning Activity

    23/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 23 -

    Lightning Discharge

    Connecting leader

    (developing from streamers)propagates towards thestepped leader

    After unification:

    Return strokeReturn stroke

    propagates upwards light flash rolling thunder v 30 000 km/s (1/10 c0) up to 200 kA time duration only few 10 s

    Center ofnegative charges

    Influencedpositive charges

    Development of a stepped leaderDevelopment of a stepped leader

    Steppedleader withplasma coreand chargetube

    Steppedleader withplasma coreand chargetube

    Connecting leader

  • 7/29/2019 Lightning Activity

    24/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 24 -

    Lightning Discharge

    Return stroke emptiesthe charge tube

    Plasma core ofstepped leader

    Charge tubeof steppedleader

    Return stroke

    Current flow of returnstroke caused by

    discharge of thecharge tube, not ofthe cloud!

    Current flow of returnstroke caused bydischarge of the

    charge tube, not ofthe cloud!

  • 7/29/2019 Lightning Activity

    25/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 25 -

    Lightning Discharge

    Further discharge of the cloud by subsequent strokes (multiple strokes) in timeintervals of 10 ms to 100 ms, utilizing the pre-ionized discharge channel

    Single (not stepped) leaders (dart leaders) at v 3000 km/s (1/100 c0)

    higher front steepness lower amplitude up to 54 follow strokes reported --> flashing of a lightning flash

    often: dc component(in ca. 50% of all cases)11 current impulses of 7 kAup to 63 kA peak value

    dc component

    scale of dccomponent

  • 7/29/2019 Lightning Activity

    26/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 26 -

    Lightning Discharge

    Multiple strokes of a negative cloud-to-ground lightning flash

    discharge channels separated by wind

    branches of first stroke directed downwards indicate cloud-to-earth flash

    subsequent strokes do not have branches dart leaders time interval between first and second stroke so long that the

    flash finds a new point of strike

    veil of last stroke indicates a dc component

  • 7/29/2019 Lightning Activity

    27/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 27 -

    Types of Lightning Flashes

    > 90%> 90%

    fromexposedpoints suchas aerials,tv towers

    no subsequentstrokes,highestreportedcurrent peakvalues andcharges

    Seldom!

    downward flash

    upward flash

    cloud-to-cloud flash

    negative cloud-to-ground positive cloud-to-ground

    negative ground-to-cloud positive ground-to-cloud

  • 7/29/2019 Lightning Activity

    28/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 28 -

    Lightning Activity

  • 7/29/2019 Lightning Activity

    29/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 29 -

    Lightning Current Parameters

    Lightning currents are imposed currents!Lightning currents are imposed currents!

    Surge impedance of discharge channels: 900 (@ 50 kA) 2000 (@ 10 kA)

    Surge impedance overhead line:

    300

    Grounding surge impedance: < 10 up to several 10

  • 7/29/2019 Lightning Activity

    30/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 30 -

    Lightning Current Parameters

    Four important lightning current parameters:Four important lightning current parameters:

    peak value peak value

    maximum steepness Smax (also: di/dtmax)maximum steepness Smax (also: di/dtmax)

    charge idt(current-time integral)charge idt(current-time integral)

    i-squared-time integral i2dt(action integral)

    i-squared-time integral i2dt(action integral)

    Impulse current of acloud-to-ground stroke

    several 100 micro-seconds

    h P

  • 7/29/2019 Lightning Activity

    31/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 31 -

    Lightning Current Parameters

    Peak value Peak value = 5 kA ... 100 kA (250 kA as an extreme)

    Resistive voltage drops at grounding structures overvoltages, flashovers

    Resistive voltage drops at grounding structures overvoltages, flashovers

    Amplitude of overvoltages propagating as traveling waves along lines(= Z)

    Amplitude of overvoltages propagating as traveling waves along lines(= Z)

    Grounding impedance should be < 10 !Grounding impedance should be < 10 !

    Kind of ground in m

    Humid soil 30

    Humid sand 200

    Dry gravel 1000

    Rocks 3000

    Li h i C P

  • 7/29/2019 Lightning Activity

    32/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 32 -

    Lightning Current Parameters

    Hufigkeit der Blitzstromscheitelwerte (1: erste negative Teilblitze; 2: negative Folgeblitze; 3: positive Blitze)

    Peak value Peak value = 5 kA ... 100 kA (250 kA as an extreme)50%-value 30 kA

    = 5 kA ... 100 kA (250 kA as an extreme)50%-value 30 kA

    Relative occurrence of lightni es)ng current peak values (1: 1st negative stroke; 2: negative subsequent strokes; 3: positive strok

    Relativeoccurrence

    Lightning current peak value

    Li ht i C t P t

  • 7/29/2019 Lightning Activity

    33/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 33 -

    Lightning Current Parameters

    Maximum steepness Smax (also: di/dtmax)Maximum steepness Smax (also: di/dtmax)

    Electromagnetically induced voltages in conductor loopsElectromagnetically induced voltages in conductor loops

    Smax Most relevant for electromagneticinterference of lines, electronic circuits etc.

    Most relevant for electromagneticinterference of lines, electronic circuits etc.

    In Schleifen induzierte Spannungen innerhalb eines durch einen Blitzableiter geschtzten Gebudes1: Eigenschleife des Blitzableiters mit mglicher berschlagstrecke s12: Schleife aus Blitzableiter und Installationsleitung mit mglicher berschlagstrecke s2

    3: Vom Blitzableiter isolierte Installationsschleife mit mglicher berschlagstrecke s3

    Voltages induced to conductor loops in a building protected by a Franklin rod

    1: intrinsic current loop of the lightning conductor with possible flashover distance s12: loop formed by lightning conductor and power installation with possible flashoverdistance s23: completely isolated loop (e.g. of power supply system) with possible flashover

    distance s3

    Building

    Lightning conductor

    Li ht i C t P t

  • 7/29/2019 Lightning Activity

    34/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 34 -

    Lightning Current Parameters

    Maximum steepness Smax (also: di/dtmax)Maximum steepness Smax (also: di/dtmax)

    Hufigkeit der maximalen Stromsteilheiten (beide Polaritten)

    Smax = 1 kA/s ... 100 kA/s50%-value 20 kA/s

    Smax = 1 kA/s ... 100 kA/s50%-value 20 kA/s

    Relative occurrence of maximum steepness (both polarities)

    Relativeoccurrence

    Maximum steepness di/dt

    Li ht i C t P m t s

  • 7/29/2019 Lightning Activity

    35/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 35 -

    Lightning Current Parameters

    Charge idt(current-time-integral)Charge idt(current-time-integral)

    Energy dissipation in foot point of the arc (due to u const.)

    melting effects at point of strike points of flashovers

    Energy dissipation in foot point of the arc (due to u const.) melting effects at point of strike points of flashovers

    Energy absorption capability of distribution surge arresters

    and line arresters

    Energy absorption capability of distribution surge arresters

    and line arresters

    Lightning Current Parameters

  • 7/29/2019 Lightning Activity

    36/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 36 -

    Lightning Current Parameters

    Charge idt(current-time-integral)Charge idt(current-time-integral)

    Hufigkeit der Ladungen (1: alle Blitze aus 119 Messungen; 2: negative Blitze; 3: positive Blitze;4: erste negative Teilblitze; 5: Stokomponenten der ersten negativen Teilblitze)

    idt= 1 As ... 100 As (350 As as an extreme50%-value 10 As

    idt= 1 As ... 100 As (350 As as an extreme50%-value 10 As

    Relative occurrence of charges (1: all flashes out of 119 measurements; 2: negative flashes;3: positive flashes; 4: 1st negative strokes

    Relativeoccurre

    nce

    Charge

    Lightning Current Parameters

  • 7/29/2019 Lightning Activity

    37/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 37 -

    Lightning Current Parameters

    i-squared-time integral i2dti-squared-time integral i2dt ("action integral")

    Thermal heating of conductors R i2dtThermal heating of conductors R i2dt

    Mechanical impulse FdtMechanical impulse Fdt

    electro thermal

    electro dynamiceffects

    Heating

    Mechan

    icalimpulse

    Lightning conductor

    Lightning Current Parameters

  • 7/29/2019 Lightning Activity

    38/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 38 -

    Lightning Current Parameters

    Hufigkeit der Stromquadrat-Zeitintegrale (1: alle Blitze aus 206 Messungen; 2: negativeTeilblitze; 3: positive Teilblitze)

    i2dt= 103A2s ... 107A2s50%-value 2104A2s

    i2dt= 103A2s ... 107A2s50%-value 2104A2s

    i-squared-time integral i2dti-squared-time integral i2dt

    Relative occurrence of i-squared-time integrals (1: all flashes out of 206 measurements; 2: negative flashes;3: positive flashes

    Relativeoccurrence

    i-squared-time integral

    Lightning Current Parameters

  • 7/29/2019 Lightning Activity

    39/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 39 -

    Lightning Current Parameters

    Basic difference of negative / positive lightning discharges with regard to course in time occurrence of subsequent strokes peak value

    Basic difference ofnegative / positive lightning discharges with regard to course in time occurrence of subsequent strokes peak value

    1st stroke

    2nd stroke

    3rd stroke

    Time

    Time

    Current

    Current

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    40/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 40 -

    Countermeasures against lightning flash

    Providing pre-defined points of strikeProviding pre-defined points of strike

    Shield wire foroverhead linesShield wire foroverhead lines

    Lightning rods, meshes, wires, ropes forbuildingsLightning rods, meshes, wires, ropes forbuildings

    Lightning current arrestersLightning current arresters

    Surge

    arrestersSurge

    arresters external protection onlyexternal protection only

    Concept oflightningprotection zones (LPZ)

    Concept oflightningprotection zones (LPZ)

    IEC 61024-1

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    41/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 41 -

    Countermeasures against lightning flash

    LPZ 0A: Direct lightning strikes and high electromagnetic fieldsLPZ 0B: No direct lightning strikes, but high electromagnetic fieldsLPZ 0C: Threat by contact or step voltages for living beings (3 m height /

    3 m depth around the building)LPZ 1: Protected electrical system, weakened electromagnetic fields

    (typically 30 dB)LPZ 2: Centrally protected terminal equipment, considerably weakened

    electromagnetic fields

    LPZ 3: Protected area within a terminal equipment. Protected by thisconcept, electronic equipment can also work at direct or closelightning strikes without interference.

    HAK = Main connection boxB = B arrester (lightning current arrester)C = C arrester (surge arrester, high energy)D = D arrester (surge arrester, low energy)

    Recommendation: for more info see http://www.dehn.de/www_DE/frameset_E.html

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    42/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 42 -

    Countermeasures against lightning flash

    Theory of protection zone by the electro-geometrical modelTheory of protection zone by the electro-geometrical model (former CIGR SC 33)

    Hypothesis:

    Once the head of the stepped leader has approached any object on ground bya certain distance (the final breakdown distance), the connecting leader willbridge this distance along the shortest possible path.

    Once the head of the stepped leader has approached any object on ground bya certain distance (the final breakdown distance), the connecting leader willbridge this distance along the shortest possible path.

    Following dependence of the final breakdown distance hB from the peakvalue of the first stroke

    = +

    h 6.8B

    2 30 (1 e ) hB

    in m; in kA

    The higher the peak value of the first stroke, the higher is hB.

    Lightning Discharge

  • 7/29/2019 Lightning Activity

    43/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 43 -

    Lightning Discharge

    Center ofnegative charges

    Influenced

    positive charges

    Stepped

    leader with

    plasma core

    and charge

    tube

    Development of stepped leaderDevelopment of stepped leader

    increase ofground fieldstrength!

    The higher the ground fieldstrength, the higher is thedistance which can be bridged

    by a breakdown.

    The more charge is containedin the charge tube, the higheris the ground field strength.

    The more charge is containedin the charge tube, the higheris the current peak value of

    the first stroke.

    The higher the lightning

    current peak value, the higher

    the final breakdown distance!

    The higher the lightning

    current peak value, the higher

    the final breakdown distance!

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    44/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 44 -

    Countermeasures against lightning flash

    Protected space of a lightning rodProtected space of a lightning rod

    Lightning rod Protected space

    Protected space of a lightning rod of height h< hB

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    45/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 45 -

    unt rm a ur aga n t g tn ng f a

    Protected space cannot

    become larger thanthat of a lightning rod ofheight h= hB!

    Protected space cannot

    become larger thanthat of a lightning rod ofheight h= hB!

    Protected space of a lightning rodProtected space of a lightning rod

    Protected space of a lightning rod of height h> hB

    Protected space

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    46/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 46 -

    g g g

    Protected space of a shield wireProtected space of a shield wire

    Protected space

    Protected space of a shield wire of elevation h< hB

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    47/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 47 -

    g g g

    Protected space of a shield wireProtected space of a shield wire

    Protected space

    Protected space of a shield wire of elevationh

    >h

    B

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    48/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 48 -

    g g g

    Protected space of a shield wireProtected space of a shield wire

    hB

    h = hB

    hB

    h = hB

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    49/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 49 -

    g g g

    Protected space of a shield wireProtected space of a shield wire

    hB

    h > hB

    hBhB

    h > hB

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    50/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 50 -

    Protected space of a shield wireProtected space of a shield wire

    hB

    h = hB

    hB

    h = hB

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    51/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 51 -

    Protected space of a shield wireProtected space of a shield wire Optimum forh= hBOptimum forh= hB

    hB

    h < hB

    hBhB

    h < hB

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    52/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 52 -

    Anwendung der Blitzkugel-Methode bei der Blitzschutzplanung von Gebuden

    Alle schraffierten Flchen mssen durch

    Fangeinrichtungen geschtzt werden.

    Rolling sphere methodRolling sphere method

    All hashed areas (i.e. all those which can betouched by the sphere) must be protected by

    lightning rods/meshes/wires

    Application of rolling sphere method for developing a lightning protection concept for buildings

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    53/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 53 -

    Rolling sphere methodRolling sphere method

    Shielding angleProtectionclass

    Sphere

    radius

    (m)

    Meshwidth

    Efficiency E

    Protected space

    Height of lightning rod aboveground

    Radius of lightning sphereShielding angle

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    54/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 54 -

    Rolling sphere methodRolling sphere method

    Rolling sphere

    Application of the rolling sphere method: aslong as the sphere only touches the lightningrods but not the building, the degree ofprotection is sufficient

    Countermeasures against lightning flash

  • 7/29/2019 Lightning Activity

    55/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 55 -

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    56/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 56 -

    Application of the rolling sphere methodApplication of the rolling sphere method

    hB

    i = ilimit

    Line conductors protected!Line conductors protected!

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    57/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 57 -

    hB

    Application of the rolling sphere methodApplication of the rolling sphere method

    i > ilimit

    Line conductors protected!Line conductors protected!

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    58/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 58 -

    Application of the rolling sphere methodApplication of the rolling sphere method

    hB i < ilimit

    Line conductors not protected!Line conductors not protected!

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    59/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 59 -

    Application of the rolling sphere methodApplication of the rolling sphere method

    hB i < ilimit

    Higher elevationof shield wire

    Line conductors not protected!Line conductors not protected!

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    60/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 60 -

    Application of the rolling sphere methodApplication of the rolling sphere method

    hB

    i < ilimit

    Double shield wire

    Line conductors protected!Line conductors protected!

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    61/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 61 -

    Max. current peak value of a direct lightning stroke to an overhead line conductorMax. current peak value of a direct lightning stroke to an overhead line conductor

    E

    L

    S

    a

    b

    hB

    hB is the maximum final breakdowndistance for a direct stroke to theline conductor.

    Thus the current peak value whichbelongs to hB is the maximumpossible current amplitude of adirect stroke to the line conductor.

    hB is the maximum final breakdowndistance for a direct stroke to theline conductor.

    Thus the current peak value which

    belongs to hB is the maximumpossible current amplitude of adirect stroke to the line conductor.

    a= location of allpoints of equi-distances to theline conductorof concern andto ground

    "shielding angle"

    Note: Cigr recommends a slightly

    differing method see lecture"Insulation Coordination"; there furtherinformation is given on lightningprotection of overhead lines.

    (One of several possible approaches)

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    62/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 62 -

    Relative occurrence of direct lightning strokes to overhead linesRelative occurrence of direct lightning strokes to overhead lines

    i

    ilimit

    1

    2

    3

    i1

    hB,E,1

    hB,L,1

    Width of attraction for line conductor

    bL,1Width of attraction for shield wirebE,1

    Multiplication of total area of attractionwith ground flash density Ng: Relative occurence of direct strokes

    for current of amplitude i1

    Multiplication of width of attractionwith length of overhead line: total area of attraction of the line

    Same procedure for other amplitudes:Relative occurrence of direct

    strokes to the line in general

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    63/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 63 -

    Relative occurrence of direct lightning strokes to overhead linesRelative occurrence of direct lightning strokes to overhead lines

    Even terrain Hilly terrain

    N=30 to 60 strokes/100 kma

    Line strokes/system:1.6 to 3.2/100 kma

    Flashovers/system:0.8 to 1.6/100 kma

    N=26 to 52 strokes/100 kma

    Line strokes/system:0.7 to 1.4/100 kma

    Flashovers/system:0.4 to 0.8/100 kma

    N=20 to 40 strokes/100 kmaLine strokes/system:0.2 to 0.4/100 kmaFlashovers/system:0.2 to 0.4/100 kma

    N=35 to 70 strokes/100 kma

    Line strokes/system:3.0 to 6.0/100 kma

    Flashovers/system:1.7 to 3.4/100 kma

    N=30 to 60 strokes/100 kma

    Line strokes/system:1.4 to 2.8/100 kma

    Flashovers/system:1.0 to 2.0/100 kma

    N=22 to 44 strokes/100 kmaLine strokes/system:0.35 to 0.7/100 kmaFlashovers/system:0.35 to 0.7/100 kma

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    64/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 64 -

    Relative occurrence of direct lightning strokes to overhead linesRelative occurrence of direct lightning strokes to overhead lines

    Bad! ("shielding failure")

    Good!

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    65/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 65 -

    Back flashoverBack flashover

    iB = 2iE + iM

    uM = iMRMShield wire

    Line conductor

    RM ... Tower surge impedanceRM ... Tower surge impedance

    uinsul. = uM - uL

    At unfavorable phase relation:uinsul. = uM + |uL|

    If

    uinsul. > ud, LI

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    66/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 66 -

    Back flashoverBack flashover

    Countermeasure: RM < 10 Countermeasure: RM < 10

    Else: line arrestersElse: line arresters

    Shield wire

    Line conductor

    gapless

    gapped

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    67/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 67 -

    Line ArrestersLine Arresters

    Lightning Protection of Overhead Lines

  • 7/29/2019 Lightning Activity

    68/68

    FachgebietHochspannungstechnik

    High Voltage Technology / Chapter 11 - 68 -

    Back flashoverBack flashover

    Stromaufteilung auf benachbarte Masten nach einem Masteinschlag bzw. einem Einschlag in das Erdseilin Spannfeldmitte; gleiche Maststoerdungswiderstnde angenommenDistribution of lightning current fractions among neighboring towers after a stroke to a tower and after a mid

    span stroke to the shield wire respectively (identical tower surge impedances assumed)