life cycle water use for electricity generation: a review...

48
SD-1 Life Cycle Water Use for Electricity Generation: A Review and Harmonization of Literature Estimates J Meldrum, S Nettles-Anderson, G Heath, and J Macknick Supplemental Data Table of Contents A.1 Methods Details: Searching and Screening SD-1 A.2 Methods Details: General Calculations SD-3 A.3 Results: Collected Estimates SD-4 A.4 Results: Approach for Construction of Figure 6 SD-39 A.5 References for Water Use Estimates SD-40 List of Tables A-1 Screening criteria and outcomes SD-2 A-2 through A-7 Collected estimates of water consumption or withdrawal for the fuel cycle, by generation technology SD-4 A-8 through A-20 Collected estimates of water consumption or withdrawal for the power plant equipment life cycle, by generation technology SD-13 A-21 through A-33 Collected estimates of water consumption or withdrawal for power plant operations, by generation technology SD-27 A-34 Baseline consumption factors for life cycle stages in gal/MWh SD-39 A-35 Variability in life cycle water consumption factors due to variability in parameters SD-39 A.1 Methods Details: Searching and Screening Our literature search was broad and inclusive of many different source types. When we found potentially useful references, we gathered not only water use estimates and related information but also novel references from their works cited lists. Although we considered more thorough search for additional, well-documented water use estimates that might exist in corporate sustainability reports (CSR) and Environmental Impact Statement (EIS) filings, any depth of exploration in such areas would have quickly exceeded the resources available for this project. Therefore, we only included in our search CSR’s and EIS’s that were included in accessed databases or in other references’ work cited lists. Table SD-1 reports the criteria applied at each level of the screening process. For the reference collection stage, an affirmative answer to any question passed a reference to the first screen; this screen preceeded those described in the manuscript. In screening stages 1 through 3 (as summarized in the manuscript), references only pass to the next level if all criteria questions are answerable in the affirmative.

Upload: duonghanh

Post on 07-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-1

Life Cycle Water Use for Electricity Generation: A Review and Harmonization of Literature Estimates J Meldrum, S Nettles-Anderson, G Heath, and J Macknick Supplemental Data Table of Contents A.1 Methods Details: Searching and Screening SD-1 A.2 Methods Details: General Calculations SD-3 A.3 Results: Collected Estimates SD-4 A.4 Results: Approach for Construction of Figure 6 SD-39 A.5 References for Water Use Estimates SD-40 List of Tables A-1 Screening criteria and outcomes SD-2 A-2 through A-7 Collected estimates of water consumption or withdrawal for the fuel cycle, by

generation technology SD-4 A-8 through A-20 Collected estimates of water consumption or withdrawal for the power plant

equipment life cycle, by generation technology SD-13 A-21 through A-33 Collected estimates of water consumption or withdrawal for power plant

operations, by generation technology SD-27 A-34 Baseline consumption factors for life cycle stages in gal/MWh SD-39 A-35 Variability in life cycle water consumption factors due to variability in parameters SD-39

A.1 Methods Details: Searching and Screening

Our literature search was broad and inclusive of many different source types. When we found potentially useful references, we gathered not only water use estimates and related information but also novel references from their works cited lists. Although we considered more thorough search for additional, well-documented water use estimates that might exist in corporate sustainability reports (CSR) and Environmental Impact Statement (EIS) filings, any depth of exploration in such areas would have quickly exceeded the resources available for this project. Therefore, we only included in our search CSR’s and EIS’s that were included in accessed databases or in other references’ work cited lists. Table SD-1 reports the criteria applied at each level of the screening process. For the reference collection stage, an affirmative answer to any question passed a reference to the first screen; this screen preceeded those described in the manuscript. In screening stages 1 through 3 (as summarized in the manuscript), references only pass to the next level if all criteria questions are answerable in the affirmative.

Page 2: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-2

Table A-1: Screening criteria and outcomes Screen Criteria Resultsa 0: Reference Collection

• Does the reference appear to have potential to pass the preliminary reference screen?

• Is the reference cited in another reference as containing water use information?

• Did the reference pass the NREL LCA Harmonization Project’s first and second screen? (see www.nrel.gov/harmonization and the bibliography at en/openei.gov/lca)

More than 1000 references

1: Preliminary Reference Screen

• Is water use evaluated? • Is water use quantified? • Is at least one life cycle stage of at least one electricity generation

technology evaluated? • Is the reference complete? (incomplete references include

presentation slide shows, abstracts, and posters)

270 references passed

2: Reference Quality and Relevance Screen

• Are methods of sufficient quality? o Are any reported data neither secondary nor assumed?

• Is reporting of sufficient quality? o Is the distinction between withdrawal and consumption explicit,

or can it be inferred? o Is there a list of references? o Is the data collection method or model named or described? o Can the results be trusted and traced based on documentation

provided? • Is the information relevant?

o Is at least one analyzed scenario relevant for evaluating a present-day electricity generation technology?

138 references passed

3: Estimate • Are estimates unique in our dataset? • Are estimates reasonable, based on engineering principles and the

preponderance of evidence, including evidence from other, well-documented sources?

• Is sufficient documentation provided for distinguishing crucial details for usefulness (including disaggregation of subcategories, such as cooling technologies or mining types)?

36 unique estimates omitted (plus 30 unique estimates omitted from geothermal for including produced water)

aCounts are approximate, due to a combination of factors, including the evolution of project scope and imperfect tracking of citation information for references that did not make it to at least screen 2.

Page 3: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-3

A.2 Methods Details: General Calculations

We made many unit conversions in gathering data; commonly used identities include the following:

• 1 m3 water = 1000 kg water = 1000 L water = 264.2 gallons water • 1 acre-foot water = 325,851 gallons • 1 MWh = 3.6 GJ = 3.412 MMBtu • 1 tonne = 1.102 ton (“short ton”)

As an example of converting a fuel cycle water use factor (in terms of water use per fuel unit) into a life cycle water use factor for that stage (in terms of water per unit delivered electricity), we convert a coal fuel cycle estimate in gallons per ton into an estimate in gallons per megawatt-hour as follows:

𝑔𝑎𝑙𝑡𝑜𝑛

∗ �1 𝑡𝑜𝑛

21.01𝑚𝑚𝐵𝑡𝑢� ∗ �

3.413𝑚𝑚𝐵𝑡𝑢1 𝑀𝑊ℎ𝑓𝑢𝑒𝑙

� ∗ �100% 𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛

35.4% 𝑒𝑛𝑒𝑟𝑔𝑦𝑜𝑢𝑡� =

𝑔𝑎𝑙𝑀𝑊ℎ

(SD-1)

where the second term in the product is the heat content of the fuel by weight, the third term is a unit conversion for the energy embodied in the fuel, and the fourth term is the ratio of input energy delivered as electricity expressed as the reciprocal of the thermal efficiency.

As an example of converting a power plant equipment water use factor (in terms of water use per facility) into a life cycle water use factor for that stage (in terms of water per unit delivered electricity), we convert a PV power plant estimate in gallons per facility into an estimate in gallons per megawatt-hour as follows:

𝑔𝑎𝑙𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦

∗𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦

𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ∗ 𝜂 ∗ 𝑃𝑅 ∗ 𝐿𝑇 ∗ 𝐴=

𝑔𝑎𝑙𝑀𝑊ℎ

(SD-2)

where irradiation is measured in 𝑀𝑊ℎ𝑚2𝑦𝑟

, 𝜂 is the unit’s solar-to-electric efficiency, 𝑃𝑅 is the performance

ratio, 𝐿𝑇 is the lifetime (measured in years), and 𝐴 is the unit’s area (measured in 𝑚2). (See Hsu et al. (2012) for more complete description of each term.)

Page 4: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-4

A.3 Results: Collected Estimates

This section reports the complete set of unique estimates collected from references passing the first two screens (duplicate estimates have been omitted), both in originally reported form (converted into common units) and as estimates harmonized to common performance parameters. Estimates that were collected but omitted in the third screen are reported in separate panels on relevant tables.

Table A-2: Collected Estimates of Water Consumption for the Coal Fuel Cycle Water Use Harmonized by:b Harmonized Water

Consumption (gal/MWh) Category Additional Details about Reported

Estimate Reference

Reported Valuea

Units Heat content

Thermal efficiency

Primary Detail

4.79E+01 gal/ton X X 22 Extraction type not specified from Australian corporate reports (Evans et al. 2003)

5.21E+00 gal/ton X X 2.4 Extraction surface Dust control (Mavis 2003) 2.28E+01 gal/ton X X 10 Extraction surface Dust control, no produced water,

Texas lignite mining (Nicot et al.

2011) 5.28E+02 gal/TJ (fuel) X 5.4 Extraction surface No revegetation (Gleick

1994) 1.32E+03 gal/TJ (fuel) X 13 Extraction surface With revegetation (Gleick

1994) 7.04E+00 gal/ton X X 3.2 Extraction surface Wyoming PRB, North Gillette

Subregion (BLM 2008b)

7.06E+00 gal/ton X X 3.2 Extraction surface Wyoming PRB, South Gillette Subregion

(BLM 2008b)

7.40E+00 gal/ton X X 3.4 Extraction surface Wyoming PRB, Wright Subregion (BLM 2008b)

7.93E+02 gal/TJ (fuel) X 8.1 Extraction underground (Gleick 1994)

5.28E+03 gal/TJ (fuel) X 54 Extraction underground (Gleick 1994)

8.28E+01 gal/ton X X 38 Extraction underground (NETL 2009c)

1.32E+03 gal/TJ (fuel) X 13 Processing Beneficiation (Gleick 1994)

2.32E+01 gal/ton X X 11 Processing Beneficiation (DOE 1983) 2.38E+02 gal/ton X X 110 Transport slurry (Abbey

1979) 8.89E+02 gal/ton X X 410 Transport slurry (Abbey

1979) 1.09E+02 gal/MWh X 110 Transport slurry @"35% system efficiency", (Gleick

Page 5: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-5

ignored because HHV/LHV not specified

1994)

2.31E+02 gal/MWh X 230 Transport slurry @"35% system efficiency", ignored because HHV/LHV not

specified

(Gleick 1994)

2.39E+02 gal/ton X X 110 Transport slurry 1355 miles (DOE 1983) 2.22E+02 gal/ton X X 100 Transport slurry optimal, based on energy costs (Palmer et al.

1977) 1.41E+00 gal/ton X X 0.65 Transport train 1170 miles (NETL

2010c) 1.65E-01 gal/ton X X 0.076 Transport train 200 miles (NETL

2010b) 6.40E-01 gal/ton X X 0.29 Transport train 205 miles (NETL

2010e) aConverted into common units of gal/ton where possible, e.g. from liters to gallons, and into similar, alternative units (as reported) where not possible with available information bHarmonized to common performance parameters for heat content and thermal efficiency, shown in Table 1

Table A-3: Collected Estimates of Water Withdrawals for the Coal Fuel Cycle Water Use Harmonized by:b Harmonized Water

Withdrawal (gal/MWh) Category Additional Details about Reported

Estimate Reference

Reported Valuea

Units Heat content

Thermal efficiency

Primary Detail

1.47E+02 gal/ton X X 67 Extraction type not specified 8 mine average in Kaskaskia River Basin (Illinois)

(Dziegielewski and Thomas 2011)

2.64E+02 gal/ton X X 120 Extraction type not specified Dust control and road maintenance (van Engelenburg and Nieuwlaar 1992)

2.64E+01 gal/ton X X 12 Extraction type not specified Dust control and road maintenance (van Engelenburg and Nieuwlaar 1992)

1.52E+01 gal/ton X X 7 Extraction surface Includes land reclamation (Tolba 1985) 2.76E+01 gal/ton X X 13 Extraction surface @25.6 MMBtu/ton; Includes land

reclamation; Eastern U.S. (DOE 1983)

2.77E+01 gal/ton X X 13 Extraction underground (Tolba 1985) 3.60E+01 gal/ton X X 17 Extraction underground Crown #3 mine (Illinois), low

water use (Dziegielewski and

Thomas 2011) 2.23E+01 gal/ton X X 10 Extraction underground Dust control (Spath et al. 1999) 1.94E+02 gal/ton X X 89 Extraction underground Gateway mine (Illinois) (Dziegielewski and

Thomas 2011) 4.03E+02 gal/ton X X 180 Extraction underground Monterey #1 mine (Illinois), high

water use (Dziegielewski and

Thomas 2011) 1.31E+01 gal/ton X X 6 Fuel cycle surface Mining, washing, and 1400 train

miles, Eastern US bituminous (Meridian Corporation

1989)

Page 6: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-6

1.35E+02 gal/ton X X 62 Fuel cycle underground @26.8 MMBtu/ton; Dust control and coal washing with recycling,

East US

(DOE 1983)

4.31E+01 gal/ton X X 20 Fuel cycle type not specified Australia average (Dones et al. 2004) 1.02E+02 gal/ton X X 47 Fuel cycle type not specified Canada industry-wide average for

2009 (Statistics Canada

2012b) 1.22E+02 gal/ton X X 56 Fuel cycle type not specified Canada industry-wide average for

2009 (Statistics Canada

2012a) 9.83E+01 gal/ton X X 45 Fuel cycle type not specified Coal preparation, cleaning, and

dust suppression; Southern Illinois (NETL 2010b)

1.06E+02 gal/ton X X 49 Fuel cycle type not specified East Asia average (Dones et al. 2004) 1.23E+02 gal/ton X X 57 Fuel cycle type not specified East Europe average (Dones et al. 2004) 1.13E+01 gal/ton X X 5.2 Fuel cycle type not specified Mining, washing, and transporting (Doctor et al. 2001) 8.51E+01 gal/ton X X 39 Fuel cycle type not specified North America average (Dones et al. 2004) 1.21E+02 gal/ton X X 55 Fuel cycle type not specified Russia average (Dones et al. 2004) 4.94E+01 gal/ton X X 23 Fuel cycle type not specified South Africa average (Dones et al. 2004) 4.79E+01 gal/ton X X 22 Fuel cycle type not specified South America average (Dones et al. 2004) 1.16E+02 gal/ton X X 53 Fuel cycle type not specified West Europe average (Dones et al. 2004) 1.52E+03 gal/ton X X 700 Processing Coal cleaning - "varies according to

type" (Tolba 1985)

3.76E+04 gal/ton X X 17000 Processing Coal cleaning - "varies according to type"

(Tolba 1985)

4.08E+01 gal/ton X X 19 Processing Coal cleaning by jig washing (Spath et al. 1999) 1.98E+01 gal/ton X X 9.1 Processing Coal handling plants, with water

recycling (van Engelenburg and

Nieuwlaar 1992) 3.96E+01 gal/ton X X 18 Processing Coal handling plants, with water

recycling (van Engelenburg and

Nieuwlaar 1992) 2.25E+03 gal/ton X X 1000 Processing Coal handling plants, without water

recycling (van Engelenburg and

Nieuwlaar 1992) 6.59E+01 gal/ton X X 30 Processing Coal preparation (Dziegielewski and

Thomas 2011) 9.60E+01 gal/ton X X 44 Processing Coal preparation (Dziegielewski and

Thomas 2011) 4.48E+00 gal/ton X X 2.1 Transport train 1170 miles, Upstream (NETL 2010c) 5.97E-01 gal/ton X X 0.27 Transport train 200 miles, Upstream (NETL 2010b) 2.01E+00 gal/ton X X 0.92 Transport train 205 miles, Upstream (NETL 2010e)

aConverted into common units of gal/ton where possible, e.g. from liters to gallons, and into similar, alternative units (as reported) where not possible with available information bHarmonized to common performance parameters for heat content and thermal efficiency, shown in Table 1

Page 7: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-7

Table A-4: Collected Estimates of Water Consumption for the Natural Gas Fuel Cycle Water Use Harmonized by:c Harmonized Water

Consumption (gal/MWh)

Category Additional Details about Reported

Estimate

Reference per wella (gal/well)

EURb (MMscf/well)

per volume (gal/MMscf)

Heat content

Thermal efficiency

Primary Detail

2.50E+05 1420 1.76E+02 X X 1.1 Well drilling

Barnett Shale (Chesapeake Energy 2012a)

2.70E+05 1420 1.90E+02 X X 1.2 Well drilling

Barnett Shale (Clark et al. 2011)

2.50E+05 1420 1.76E+02 X X 1.1 Well drilling

Barnett Shale (GAO 2012)

4.00E+05 1420 2.82E+02 X X 1.8 Well drilling

Barnett Shale (Ground Water Protection Council

and ALL Consulting 2009)

8.51E+04 1020 8.34E+01 X X 0.54 Well drilling

(generic) conventional gas

(Clark et al. 2011)

1.17E+05 1020 1.14E+02 X X 0.74 Well drilling

(generic) conventional gas

(Clark et al. 2011)

2.93E+02 1020 2.87E-01 X X 0.0019 Well drilling

(generic) conventional gas

(IEA 2012)

2.93E+03 1020 2.87E+00 X X 0.019 Well drilling

(generic) conventional gas

(IEA 2012)

1.25E+05 5000 2.50E+01 X X 0.16 Well drilling

Eagle Ford Shale (Chesapeake Energy 2012c)

1.25E+05 5000 2.50E+01 X X 0.16 Well drilling

Eagle Ford Shale (GAO 2012)

1.89E+05 2070 9.12E+01 X X 0.59 Well drilling

Fayetteville (Clark et al. 2011)

6.00E+04 2070 2.90E+01 X X 0.19 Well drilling

Fayetteville (Ground Water Protection Council

and ALL Consulting 2009)

6.50E+04 1020 6.37E+01 X X 0.41 Well drilling

generic (Chesapeake Energy 2012b)

6.00E+05 1020 5.88E+02 X X 3.8 Well drilling

generic (Chesapeake Energy 2012b)

1.30E+05 1020 1.27E+02 X X 0.83 Well drilling

generic horizontal (Noble Energy Inc. and CSU 2012)

7.70E+04 1020 7.55E+01 X X 0.49 Well drilling

generic vertical (Noble Energy Inc. and CSU 2012)

6.00E+05 3570 1.68E+02 X X 1.1 Well drilling

Haynesville shale (Chesapeake Energy 2012d)

3.11E+05 3570 8.72E+01 X X 0.57 Well Haynesville shale (Clark et al. 2011)

Page 8: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-8

drilling 6.00E+05 3570 1.68E+02 X X 1.1 Well

drilling Haynesville shale (GAO 2012)

1.00E+06 3570 2.80E+02 X X 1.8 Well drilling

Haynesville shale (Ground Water Protection Council

and ALL Consulting 2009)

1.00E+05 1180 8.47E+01 X X 0.55 Well drilling

Marcellus shale (Chesapeake Energy 2012e)

2.00E+05 1180 1.69E+02 X X 1.1 Well drilling

Marcellus shale (Clark et al. 2011)

8.50E+04 1180 7.20E+01 X X 0.47 Well drilling

Marcellus shale (GAO 2012)

8.00E+04 1180 6.78E+01 X X 0.44 Well drilling

Marcellus shale (Ground Water Protection Council

and ALL Consulting 2009)

3.00E+05 1020 2.94E+02 X X 1.9 Well drilling

Niobara shale (Chesapeake Energy 2012f)

8.40E+05 1020 8.24E+02 X X 5.3 Well drilling

Niobara shale (Chesapeake Energy 2012f)

3.00E+05 1020 2.94E+02 X X 1.9 Well drilling

Niobara shale (GAO 2012)

1.96E+04 1020 1.92E+01 X X 0.12 Well drilling

off shore, conventional

(includes hotel uses)

(DOE 1983)

2.97E+06 1020 2.91E+03 X X 19 Well drilling

on shore, conventional well

(DOE 1983)

1.46E+03 1020 1.44E+00 X X 0.0093 Fracturing other “conventional well with fracture stimulation”

(IEA 2012)

1.46E+04 1020 1.44E+01 X X 0.093 Fracturing other “conventional well with fracture stimulation”

(IEA 2012)

2.93E+04 1020 2.87E+01 X X 0.19 Fracturing other Tight Gas (IEA 2012) 2.93E+05 1020 2.87E+02 X X 1.9 Fracturing other Tight Gas (IEA 2012) 4.55E+06 1020 4.46E+03 X X 29 Fracturing shale Average (Joint Institute for

Strategic Energy Analysis (JISEA)

2012) 2.27E+06 1420 1.60E+03 X X 10 Fracturing shale Barnett Shale (Joint Institute for

Strategic Energy Analysis (JISEA)

Page 9: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-9

2012) 4.50E+06 1420 3.17E+03 X X 21 Fracturing shale Barnett Shale (Chesapeake Energy

2012a) 2.30E+06 1420 1.62E+03 X X 11 Fracturing shale Barnett Shale (Clark et al. 2011) 3.80E+06 1420 2.68E+03 X X 17 Fracturing shale Barnett Shale (Clark et al. 2011) 4.60E+06 1420 3.24E+03 X X 21 Fracturing shale Barnett Shale (GAO 2012) 2.30E+06 1420 1.62E+03 X X 11 Fracturing shale Barnett Shale (Ground Water

Protection Council and ALL Consulting

2009) 7.66E+05 1420 5.40E+02 X X 3.5 Fracturing shale Barnett Shale (TWDB 2012) 1.19E+06 1420 8.37E+02 X X 5.4 Fracturing shale Barnett Shale (TWDB 2012) 5.47E+06 1420 3.85E+03 X X 25 Fracturing shale Barnett Shale (TWDB 2012) 1.65E+06 2000 8.23E+02 X X 5.3 Fracturing shale Colorado (Colorado Oil and

Gas Conservation Commission

(COGCC) 2012) 3.75E+06 5000 7.50E+02 X X 4.9 Fracturing shale Eagle Ford Shale (Joint Institute for

Strategic Energy Analysis (JISEA)

2012) 4.80E+06 5000 9.60E+02 X X 6.2 Fracturing shale Eagle Ford Shale (Chesapeake Energy

2012c) 5.00E+06 5000 1.00E+03 X X 6.5 Fracturing shale Eagle Ford Shale (GAO 2012) 1.22E+06 5000 2.43E+02 X X 1.6 Fracturing shale Eagle Ford Shale (TWDB 2012) 8.96E+06 5000 1.79E+03 X X 12 Fracturing shale Eagle Ford Shale (TWDB 2012) 2.90E+06 2070 1.40E+03 X X 9.1 Fracturing shale Fayetteville (Clark et al. 2011) 4.20E+06 2070 2.03E+03 X X 13 Fracturing shale Fayetteville (Clark et al. 2011) 2.90E+06 2070 1.40E+03 X X 9.1 Fracturing shale Fayetteville (Ground Water

Protection Council and ALL Consulting

2009) 4.50E+06 1020 4.41E+03 X X 29 Fracturing shale generic (Chesapeake Energy

2012b) 1.00E+06 1020 9.80E+02 X X 6.4 Fracturing shale generic horizontal (Nicot et al. 2011) 8.00E+06 1020 7.84E+03 X X 51 Fracturing shale generic horizontal (Nicot et al. 2011) 2.70E+06 1020 2.65E+03 X X 17 Fracturing shale generic horizontal (Noble Energy Inc.

and CSU 2012) 2.65E+06 1020 2.60E+03 X X 17 Fracturing shale generic horizontal (TWDB 2007) 3.07E+06 1020 3.01E+03 X X 20 Fracturing shale generic horizontal (TWDB 2007) 1.30E+06 1020 1.27E+03 X X 8.3 Fracturing shale generic vertical (Nicot et al. 2011) 3.10E+05 1020 3.04E+02 X X 2 Fracturing shale generic vertical (Noble Energy Inc.

and CSU 2012)

Page 10: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-10

1.19E+06 1020 1.17E+03 X X 7.6 Fracturing shale generic vertical (TWDB 2007) 1.25E+06 1020 1.23E+03 X X 8 Fracturing shale generic vertical (TWDB 2007) 7.35E+06 1020 7.20E+03 X X 47 Fracturing shale Green River shale (Joint Institute for

Strategic Energy Analysis (JISEA)

2012) 5.00E+06 3570 1.40E+03 X X 9.1 Fracturing shale Haynesville shale (Chesapeake Energy

2012d) 2.70E+06 3570 7.56E+02 X X 4.9 Fracturing shale Haynesville shale (Clark et al. 2011) 5.00E+06 3570 1.40E+03 X X 9.1 Fracturing shale Haynesville shale (Clark et al. 2011) 5.00E+06 3570 1.40E+03 X X 9.1 Fracturing shale Haynesville shale (GAO 2012) 2.70E+06 3570 7.56E+02 X X 4.9 Fracturing shale Haynesville shale (Ground Water

Protection Council and ALL Consulting

2009) 7.13E+05 3570 2.00E+02 X X 1.3 Fracturing shale Haynesville shale (TWDB 2012) 7.42E+06 3570 2.08E+03 X X 13 Fracturing shale Haynesville shale (TWDB 2012) 4.84E+06 1180 4.10E+03 X X 27 Fracturing shale Marcellus shale (Joint Institute for

Strategic Energy Analysis (JISEA)

2012) 5.50E+06 1180 4.66E+03 X X 30 Fracturing shale Marcellus shale (Chesapeake Energy

2012e) 3.80E+06 1180 3.22E+03 X X 21 Fracturing shale Marcellus shale (Clark et al. 2011) 5.50E+06 1180 4.66E+03 X X 30 Fracturing shale Marcellus shale (Clark et al. 2011) 5.60E+06 1180 4.75E+03 X X 31 Fracturing shale Marcellus shale (GAO 2012) 3.80E+06 1180 3.22E+03 X X 21 Fracturing shale Marcellus shale (Ground Water

Protection Council and ALL Consulting

2009) 4.00E+06 1020 3.92E+03 X X 25 Fracturing shale Niobara shale (Chesapeake Energy

2012f) 3.00E+06 1020 2.94E+03 X X 19 Fracturing shale Niobara shale (GAO 2012) 5.86E+05 1020 5.74E+02 X X 3.7 Fracturing shale (generic) shale gas (IEA 2012) 2.93E+07 1020 2.87E+04 X X 190 Fracturing shale (generic) shale gas (IEA 2012) 2.00E+06 1020 1.96E+03 X X 13 Fracturing shale (Jiang et al. 2011) 6.00E+06 1020 5.88E+03 X X 38 Fracturing shale (Jiang et al. 2011)

n/a 1.60E+01 X X 0.1 Processing Amine sweetening units

(NETL 2010f)

n/a 1.84E+02 X X 1.2 Transport liquefied natural gas

(LNG)

LNG tanker, berthing,

regasification, and pipeline transport

(NETL 2010d)

Page 11: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-11

n/a 8.62E+02 X X 5.6 Transport pipeline pipeline operations (Gleick 1994) n/a 1.73E+02 X X 1.1 Transport pipeline pipeline operations (NETL 2010d)

Omitted Estimates n/a 3.86E+03 X X 25 Fracturing (mix of well types) (NETL 2010d) n/a 1.21E+03 X X 7.8 Fracturing (mix of well types) (NETL 2010d) n/a 1.72E+03 X X 11 Processing (estimate old and not

transparent) (Gleick 1994)

aWater use per well estimates for IEA, 2012 and DOE, 1983 are back-calculated from per-volume estimates with assumed EUR bPlay-specific estimated ultimate recovery (EUR) as reported in EIA (2011); for plays for which no EUR is reported, U.S. average (1020 MMscf) is used. cHarmonized to common performance parameters for heat content and thermal efficiency, shown in Table 1

Table A-5: Collected Estimates of Water Withdrawals for the Natural Gas Fuel Cycle Water Use Harmonized by:a Harmonized Water

Withdrawal (gal/MWh)

Category Additional Details about Reported Estimate

Reference per well

(gal/well) EUR

(MMscf/well) per volume

(gal/MMscf) Heat

content Thermal

efficiency Primary Detail

n/a 1.60E+01 X X 0.1 Processing Amine sweetening units (NETL 2010f) n/a 1.20E+03 X X 7.8 Transport liquefied

natural gas (LNG)

LNG tanker, berthing, regasification, and pipeline transport

(NETL 2010d)

n/a 5.78E+02 X X 3.7 Transport pipeline hydrostatic testing (DOE 1983) n/a 6.45E+02 X X 4.2 Transport pipeline (NETL 2010d) n/a 2.06E+03 X X 13 Transport pipeline pipeline operations (Chesapeake

Energy 2012c) Omitted Estimates

n/a 3.85E+03 X X 25 Fracturing (mix of well types) (NETL 2010d) n/a 9.41E+02 X X 6.1 Fracturing (mix of well types) (NETL 2010d) n/a 1.01E+06 X X 6600 Transport liquefied

natural gas (LNG)

(estimate old and not transparent)

(DOE 1983)

n/a 1.63E+03 X X 11 Processing (omitted, old and not transparent)

(Tolba 1985)

n/a 1.68E+03 X X 11 Processing (omitted, old and not transparent)

(DOE 1983)

aHarmonized to common performance parameters for heat content and thermal efficiency, shown in Table 1

Page 12: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-12

Table A-6: Collected Estimates of Water Consumption for the Nuclear Fuel Cycle Water Use Harmonized byb Harmonized Water

Consumption (gal/MWh) Category Additional Details about

Estimate Reference

Reported Valuea

Units relevant processing parameters

Primary Detail

2.92E+04 gal/ton U308 X 13 Extraction In situ leaching Beveryly mine (2006), external water only

(Mudd and Diesendorf 2009)

5.37E+04 gal/ton U308 X 23 Extraction In situ leaching Mining data (NETL 2012b) 1.50E+01 gal/MWh 15 Extraction Type not specified @33% thermal efficiency (Meridian

Corporation 1989) 6.08E+04 gal/ton U308 X 27 Extraction Surface Mining data (NETL 2010g) 8.75E+04 gal/ton U308 X 38 Extraction Surface Mining data; Cluff Lake

mine (2002) (Schneider et al.

2010) 6.10E+04 gal/ton U308 X 27 Extraction Surface Mining data; McLean Lake

Dam mine (Schneider et al.

2010) 1.24E+04 gal/ton U308 X 5.4 Extraction Surface Mining data; Ranger mine (Schneider et al.

2010) 2.11E+05 gal/ton U308 X 92 Extraction Surface Mining data; Rossing mine (Schneider et al.

2010) 5.28E+03 gal/TJ (heat

input energy) X 58 Extraction Surface Mining only (Gleick 1994)

2.22E-01 gal/MWh 0.22 Extraction Underground domestic water use only (DOE 1983) 1.35E+05 gal/ton U308 X 59 Extraction Underground Mining data; Olympic Dam

mine (Schneider et al.

2010) 5.48E+05 gal/ton U308 X 240 Extraction Underground Mining data; Rabbit Lake

mine (2007) (Schneider et al.

2010) 5.28E+01 gal/TJ (heat

input energy) X 0.58 Extraction Underground Mining only (Gleick 1994)

5.28E+02 gal/TJ (heat) X 5.8 Processing Enrichment enrichment by gas centrifuge

(Gleick 1994)

2.91E+03 gal/TJ (heat) X 32 Processing Enrichment enrichment by gaseous diffusion

(Gleick 1994)

3.43E+03 gal/TJ (heat) X 37 Processing Enrichment enrichment by gaseous diffusion

(Gleick 1994)

2.64E+02 gal/TJ (heat) X 2.9 Processing Fuel Fabrication fuel fabrication (Gleick 1994) 2.11E+03 gal/TJ (heat) X 23 Processing Milling milling (Gleick 1994) 2.64E+03 gal/TJ (heat) X 29 Processing Milling milling (Gleick 1994) 3.17E+02 gal/TJ (heat) X 3.5 End of life Fuel Management nuclear fuel processing (Gleick 1994) 7.24E+00 gal/MWh 7.2 End of life Fuel Management spent fuel recycling

(proposed) (NETL 2012b)

aConverted into common units of gal/ton where possible, e.g. from liters to gallons, and into similar, alternative units (as reported) where not possible with available information bHarmonized to common performance parameters shown in Table 1; relevant parameters vary according the original units

Page 13: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-13

Table A-7: Collected Estimates of Water Withdrawals for the Nuclear Fuel Cycle

Water Use Harmonized byc Harmonized Water Withdrawal (gal/MWh)

Category Additional Details about Estimate Reference Reported Valuea

Unitsb relevant processing parameters

Primary Detail

8.59E+04 gal/ton UF6nat X 13 Processing Conversion conversion to UF6 (NETL 2012b) 2.40E+04 gal/ton U308 X 10 Processing Conversion conversion to UF6 (Schneider et al.

2010) 1.60E+05 gal/ton U X 4.5 Processing Conversion conversion to UF6 (Tolba 1985) 4.72E+04 gal/ton U X 1.3 Processing Enrichment enrichment (Tolba 1985) 2.64E+05 gal/ton UF6enr X 3.9 Processing Enrichment enrichment by gas centrifuge (NETL 2012b) 7.43E+03 gal/ton U308 X 3.2 Processing Enrichment enrichment by gas centrifuge (Schneider et al.

2010) 3.47E+06 gal/ton UF6enr X 51 Processing Enrichment enrichment by gaseous diffusion (NETL 2012b) 2.64E+05 gal/ton U308 X 120 Processing Enrichment enrichment by gaseous diffusion (Schneider et al.

2010) 1.36E+05 gal/ton UO2 X 0.59 Processing Fuel Fabrication fuel fabrication (NETL 2012b) 4.03E+03 gal/ton U308 X 1.8 Processing Fuel Fabrication fuel fabrication (Schneider et al.

2010) 3.02E+04 gal/ton U X 0.85 Processing Fuel Fabrication fuel fabrication (Tolba 1985) 5.23E+00 gal/MWh 5.2 Processing Milling milling (DOE 1983) 4.34E+05 gal/ton U X 12 Processing Milling milling (Tolba 1985) 3.21E+05 gal/ton U X 9 Processing Milling milling (Tolba 1985) 3.12E+03 gal/ton U308 X 1.4 End of life Fuel Management 40-year storage as UF6, conversion

to DU308, disposal as DUCRETE (Schneider et al.

2010) 5.02E+00 gal/MWh 5 End of life Fuel Management spent fuel disposal (Yucca Mountain,

hypothetical) (Fthenakis and

Kim 2010) 7.24E+02 gal/MWh 720 End of life Fuel Management spent fuel recycling (proposed) (NETL 2012b)

aConverted into common units of gal/ton where possible, e.g. from liters to gallons, and into similar, alternative units (as reported) where not possible with available information bUF6nat = natural UF6; UF6enr = enriched UF6 cHarmonized to common performance parameters shown in Table 1; relevant parameters vary according the original units

Page 14: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-14

Table A-8: Collected Estimates of Water Consumption for the Coal Power Plant Equipment Life Cycle Water Use Reported

Parameters Capacity Factor

Harmonized by:b Harmonized Water Consumption (gal/MWh)

Category Additional Details about Estimate

Reference Reported

Valuea Thermal

efficiency Capacity Factor

Primary Technologyc

1.30E+01 13 Upstream (construction only) (Harto et al. 2010)

2.50E+01 25 Upstream (construction only) (Harto et al. 2010)

1.58E+00 0.85 X 1.6 Upstream SC+CCS dust suppression, CCS retrofit (construction only)

(NETL 2010e)

1.49E+00 0.80 X 1.4 Upstream IGCC+CCS dust suppression, CCS retrofit (construction only)

(NETL 2010c)

8.85E-01 0.85 X 0.89 Upstream SC dust suppression (construction only)

(NETL 2010e)

5.89E-01 0.80 X 0.55 Upstream IGCC dust suppression (construction only)

(NETL 2010c)

5.56E-01 0.56 Upstream PC+CCS dust suppression, CCS retrofit (construction only)

(NETL 2010b)

3.52E-01 0.70 X X 0.32 Upstream IGCC @39.6% efficiency (construction only)

(Gorokhov et al. 2000)

1.01E-01 0.70 X X 0.11 Upstream IGCC @45.4% efficiency (construction only)

(Gorokhov et al. 2000)

3.17E-02 0.80 X 0.03 Downstream IGCC (decommissioning only) (NETL 2010c) 3.43E-02 0.85 X 0.034 Downstream SC (decommissioning only) (NETL 2010e) 3.96E-02 0.80 X 0.037 Downstream IGCC+CCS CCS retrofit (decommissioning

only) (NETL 2010c)

3.17E-02 0.85 X 0.032 Downstream SC+CCS CCS retrofit (decommissioning only)

(NETL 2010e)

2.88E-03 0.75 X 0.0025 Downstream PC diesel fuel used (decommissioning only)

(NETL 2010b)

5.00E-04 0.75 X 0.00044 Downstream PC+CCS diesel fuel used (decommissioning only)

(NETL 2010b)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency and capacity factor, shown in Table 1 cPC = pulverized coal, sub-critical; SC = pulverized coal, super-critical; IGCC = integrated gasification combined cycle; CCS = carbon capture and sequestration

Page 15: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-15

Table A-9: Collected Estimates of Water Withdrawals for the Coal Power Plant Equipment Life Cycle Water Use Reported Parameters

Capacity Factor Harmonized by:b Harmonized Water

Withdrawal (gal/MWh) Category Additional Details about

Estimate Reference

Reported Valuea

Thermal efficiency

Capacity Factor

Primary Technologyc

1.32E+00 1.3 Upstream PC (raw materials only) (Inhaber 2004) 1.06E+00 1.1 Upstream PC (raw materials only) (Inhaber 2004) 1.19E+01 X 12 Upstream PC @35% efficiency

(construction only) (Fthenakis and

Kim 2010) 2.91E+00 X 2.9 Upstream PC @35% efficiency

(construction only) (Fthenakis and

Kim 2010) 2.10E+00 0.80 X 2 Upstream IGCC+CCS dust suppression

(construction only) (NETL 2010e)

2.09E+00 0.85 X 2.1 Upstream SC+CCS dust suppression (construction only)

(NETL 2010e)

1.45E+00 0.85 X 1.5 Upstream SC dust suppression (construction only)

(NETL 2010e)

1.16E+00 0.80 X 1.1 Upstream IGCC dust suppression (construction only)

(NETL 2010c)

5.58E-01 0.56 Upstream PC+CCS (construction only) (NETL 2010b) 3.73E-01 0.70 X X 0.34 Upstream IGCC @39.6% efficiency

(construction only) (Gorokhov et al.

2000) 1.03E-01 0.70 X X 0.11 Upstream IGCC @45.4% efficiency

(construction only) (Gorokhov et al.

2000) 3.70E-02 0.80 X 0.035 Downstream IGCC (decommissioning only) (NETL 2010c) 3.96E-02 0.85 X 0.04 Downstream SC (decommissioning only) (NETL 2010e) 4.23E-02 0.80 X 0.04 Downstream IGCC+CCS CCS retrofit

(decommissioning only) (NETL 2010c)

3.43E-02 0.85 X 0.034 Downstream SC+CCS CCS retrofit (decommissioning only)

(NETL 2010e)

3.12E-03 0.75 X 0.0028 Downstream PC diesel fuel used (decommissioning only)

(NETL 2010b)

5.49E-04 0.75 X 0.00048 Downstream PC+CCS diesel fuel used (decommissioning only)

(NETL 2010b)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency and capacity factor, shown in Table 1 cPC = pulverized coal, sub-critical; SC = pulverized coal, super-critical; IGCC = integrated gasification combined cycle; CCS = carbon capture and sequestration

Page 16: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-16

Table A-10: Collected Estimates of Water Consumption for the Natural Gas Power Plant Equipment Life Cycle Water Use Reported Parameters

Capacity Factor Harmonized

by:b Harmonized Water

Consumption (gal/MWh) Category Additional Details about Estimate Reference

Reported

Valuea Capacity Factor

Primary Technologyc

7.60E-01 0.85 X 0.76 Upstream CC+CCS dust suppression, CCS retrofit (construction only)

(NETL 2010d)

3.94E-01 0.85 X 0.39 Upstream CC dust suppression (construction only)

(NETL 2010d)

1.51E-02 0.85 X 0.015 Downstream CC+CCS (decommissioning only) (NETL 2010d)

1.17E-02 0.85 X 0.012 Downstream CC (decommissioning only) (NETL 2010d)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency and capacity factor, shown in Table 1 cCC = combined cycle; CCS = carbon capture and sequestration

Table A-11: Collected Estimates of Water Withdrawals for the Natural Gas Power Plant Equipment Life Cycle Water Use Reported Parameters

Capacity Factor Harmonized

by:b Harmonized Water

Withdrawal (gal/MWh) Category Additional Details about Estimate Reference

Reported Valuea

Capacity Factor

Primary Technologyc

2.64E-01 0.26 Upstream (raw materials only) (Inhaber 2004)

1.32E-01 0.13 Upstream (raw materials only) (Inhaber 2004)

9.96E-01 0.85 X 1 Upstream CC+CCS dust suppression, CCS retrofit (construction only)

(NETL 2010d)

6.10E-01 0.85 X 0.61 Upstream CC dust suppression (construction only)

(NETL 2010d)

1.56E-02 0.85 X 0.016 Downstream CC+CCS (decommissioning only) (NETL 2010d)

1.22E-02 0.85 X 0.012 Downstream CC (decommissioning only) (NETL 2010d)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency and capacity factor, shown in Table 1 cCC = combined cycle; CCS = carbon capture and sequestration

Page 17: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-17

Table A-12: Collected Estimates of Water Withdrawals for the Nuclear Power Plant Equipment Life Cycle Water Use Harmonized Water Withdrawal (gal/MWh)b Category Additional Details about Estimate Reference

Reported Valuea 2.64E-01 0.26 Upstream raw materials (steel, concrete, aluminum, glass, and copper) (Inhaber 2004) 1.32E-01 0.13 Upstream raw materials (steel, concrete, aluminum, glass, and copper) (Inhaber 2004)

aAs reported, converted into common units of gal/MWh bAvailable data do not allow harmonization, so harmonized values match reported values

Table A-13: Collected Estimates of Water Consumption for the CSP Power Plant Equipment Life Cycle Water Use Reported Parameters Harmonized by:b Harmonized

Water Consumption (gal/MWh)

Category Additional Details about Estimate

Reference Reported

Valuea Units Solar-to-

electric efficiency

Solar Irradiation

(kWh/m2/yr)

Solar-to-electric

efficiency

Solar Irradiation

1.34E+02 gal/MWh 16.0% 2724 X X 160 Upstream Manufacturing, construction, and

transportation

(Burkhardt et al. 2011)

1.39E+02 gal/MWh 15.0% 2724 X X 160 Upstream Manufacturing, construction, and

transportation

(Burkhardt et al. 2011)

2.00E+01 gal/MWh 20 Upstream Construction only (Harto et al. 2010)

8.00E+01 gal/MWh 80 Upstream Construction only (Harto et al. 2010)

4.17E+07 gal/400 MW plant X 1.4 Upstream Soil grading for construction only

(BrightSource Energy 2007)

5.54E+08 gal/375 MW plant X 19 Upstream Construction only (BLM 2011) 6.64E+01 gal/MWh 14.3% 2940 X X 77 Upstream Materials,

manufacturing, and construction

(NETL 2012c)

2.02E+00 gal/MWh 16.0% 2724 X X 2.4 Downstream Dismantling + disposal

(Burkhardt et al. 2011)

2.10E+00 gal/MWh 15.0% 2724 X X 2.4 Downstream Dismantling + disposal

(Burkhardt et al. 2011)

aAs reported, converted into common units of gal/MWh where possible without assumption, or gal/plant bHarmonized to common performance parameters for solar-to-electric efficiency and solar irradiation, shown in Table 1

Page 18: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-18

Table A-14: Collected Estimates of Water Withdrawals for the CSP Power Plant Equipment Life Cycle Water Use Reported Parameters Harmonized by:b Harmonized Water

Withdrawal (gal/MWh) Category Additional Details about

Estimate Reference

Reported Valuea

Solar-to-electric efficiency

Solar Irradiation (kWh/m2/yr)

Solar-to-electric efficiency

Solar Irradiation

1.32E+00 1.3 Upstream Raw materials (steel, concrete, aluminum, glass, and copper)

(Inhaber 2004)

8.27E+01 14.3% 2940 X X 97 Upstream Materials, manufacturing, and construction

(NETL 2012c)

1.06E+00 1.1 Upstream Raw materials (steel, concrete, aluminum, glass, and copper)

(Inhaber 2004)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for solar-to-electric efficiency and solar irradiation, shown in Table 1

Table A-15: Collected Estimates of Water Consumption for the Geothermal Power Plant Equipment Life Cycle Water Use Reported

Lifetime (years)

Harmonized by:b

Harmonized Water Consumption (gal/MWh)

Category Additional Details about Estimate Reference

Reported Valuea

Lifetime Primary Detail

2.23E+00 25 X 1.9 Upstream flash Materials, manufacturing, and construction

(NETL 2012a)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for lifetime, shown in Table 1

Table A-16: Collected Estimates of Water Withdrawals for the Geothermal Power Plant Equipment Life Cycle

Water Use Reported Parameters

Harmonized by:b

Harmonized Water Withdrawal (gal/MWh)

Category Additional Details about Estimate Reference

Reported Valuea

Lifetime (years) Lifetime Primary Detail

2.65E-01 0.26 Upstream Raw materials only (Inhaber 2004)

1.32E-01 0.13 Upstream Raw materials only (Inhaber 2004)

3.81E+00 30 X 3.8 Upstream EGS Construction (drilling and cementation); 3.8km well; 6041 MWh annual production

(Frick et al. 2010)

4.72E+00 30 X 4.7 Upstream EGS Construction (drilling and cementation); 4.7km well; 6041 MWh annual production

(Frick et al. 2010)

3.00E+00 30 X 3 Upstream EGS Construction (drilling and cementation); 3.8km well; 7679 MWh annual production

(Frick et al. 2010)

3.71E+00 30 X 3.7 Upstream EGS Construction (drilling and cementation); 4.7km well; 7679 MWh annual production

(Frick et al. 2010)

Page 19: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-19

1.00E+01 10 Upstream EGS Construction (including drilling) (Clark et al. 2011)

1.00E+01 10 Upstream EGS Construction (including drilling) (Clark et al. 2011)

2.86E+00 25 X 2.4 Upstream flash Materials, manufacturing, and construction (NETL 2012a)

1.00E+00 1 Upstream binary Construction (including drilling) (Clark et al. 2011)

1.00E+00 1 Upstream flash Construction (including drilling) (Clark et al. 2011)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for lifetime, shown in Table 1

Table A-17: Collected Estimates of Water Consumption for the PV Power Plant Equipment Life Cycle

Water Use Reported Parameters Harmonized Water

Consumption (gal/MWh)b

Category Additional Details about Estimate

Reference Reported Valuea

Units Module Efficiency

Solar Irradiation

(kWh/m2/yr)

Lifetime (years)

Performance Ratio

Primary Detailc

8.00E+04 gal/day, 140 MW

produced per year

5.1 Upstream other (a-Si)

manufacturing (Genesee County Economic

Development Center 2011)

2.30E+05 gal/day, 690 MW

produced per year

7.3 Upstream other (CIGS)

manufacturing (Genesee County Economic

Development Center 2011)

1.90E+05 gal/day, 170 MW

capacity per year

10 Upstream c-Si manufacturing (Genesee County Economic

Development Center 2011)

1.53E+02 gal/MWh 14.0% 2190 30 210 Upstream c-Si quartz mining+cell manufacturing+other

manufacturing

(Harto et al. 2010)

5.82E+01 gal/MWh 14.0% 2190 30 81 Upstream c-Si quartz mining+cell manufacturing+other

manufacturing

(Harto et al. 2010)

aAs reported, converted into common units of either gal/MWh or per power plant unit bHarmonized to common parameters for module efficiency, solar irradiation, lifetime, and performance ratio, shown in Table 1, where relevant reported parameters are available cc-Si = crystalline silicon; a-Si = amorphous silicon; CIGS = copper indium gelenium selenide

Page 20: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-20

Table A-18: Collected Estimates of Water Withdrawals for the PV Power Plant Equipment Life Cycle Water Use Reported Parameters Harmonized

Water Withdrawal (gal/MWh)b

Category Additional Details about Estimate

Reference Reported Valuea

Units Module Efficiency

Solar Irradiation

(kWh/m2/yr)

Lifetime (years)

Performance Ratio

Primary Detailc

1.08E+00 gal/MWh 14.0% 900 25 93% 0.59 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

5.73E-01 gal/MWh 14.0% 1800 25 87% 0.59 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

8.93E-01 gal/MWh 14.0% 900 25 86% 0.46 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

4.83E-01 gal/MWh 14.0% 1800 25 79% 0.45 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

9.27E+00 gal/MWh 14.0% 900 25 92% 5.1 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

4.94E+00 gal/MWh 14.0% 1800 25 86% 5 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

8.03E-01 gal/MWh 14.0% 900 25 88% 0.42 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

4.28E-01 gal/MWh 14.0% 1800 25 83% 0.42 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

1.73E+00 gal/MWh 14.0% 900 25 62% 0.64 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

9.19E-01 gal/MWh 14.0% 1800 25 53% 0.58 Downstream

c-Si (m-Si) decomissioning (Frankl et al. 2005)

1.08E+00 gal/MWh 13.0% 900 25 93% 0.58 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

5.73E-01 gal/MWh 13.0% 1800 25 83% 0.55 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

8.93E-01 gal/MWh 13.0% 900 25 86% 0.45 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

4.83E-01 gal/MWh 13.0% 1800 25 79% 0.45 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

9.27E+00 gal/MWh 13.0% 900 25 92% 5 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

4.94E+00 gal/MWh 13.0% 1800 25 86% 5 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

8.03E-01 gal/MWh 13.0% 900 25 88% 0.41 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

4.28E-01 gal/MWh 13.0% 1800 25 83% 0.41 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

1.73E+00 gal/MWh 13.0% 900 25 62% 0.62 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

Page 21: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-21

9.19E-01 gal/MWh 13.0% 1800 25 53% 0.57 Downstream

c-Si (p-Si) decomissioning (Frankl et al. 2005)

2.80E+05 gal/day, 140 MW produced per year

18 Downstream

other (a-Si) manufacturing (Genesee County

Economic Development Center 2011)

2.38E+01 gal/2.14 m2 panel

6.9% 4.3 Upstream

other (a-Si) manufacturing (Pacca et al. 2006)

7.93E+01 gal/m2 module

9.0% 18 Upstream

other (CdTe) manufacturing (cleaning, chemical solutions, and other

uses)

(Fthenakis and Kim 2006)

4.50E+05 gal/day, 280 MW produced per year

14 Upstream

other (CdTe) manufacturing (Genesee County

Economic Development Center 2011)

3.30E-01 gal/m2 module

9.0% 0.074 Upstream

other (CdTe) manufacturing (Raugei et al. 2005a)

7.50E+05 gal/day, 690 MW produced per year

24 Upstream

other (CIGS) manufacturing (Genesee County

Economic Development Center 2011)

7.05E-01 gal/m2 laminate

10.7% 0.15 Upstream

other (CIS) manufacturing (Jungbluth et al. 2009)

4.41E+01 gal/m2 module

10.7% 9.4 Upstream

other (CIS) manufacturing (Jungbluth et al. 2009)

2.60E+01 gal/0.5 m2 module

10.7% 11 Upstream

other (CIS) manufacturing (Jungbluth et al. 2009)

3.30E-01 gal/m2 module

11.0% 0.07 Upstream

other (CIS) manufacturing (Raugei et al. 2007)

6.50E+05 gal/day, 170 MW capacity per year

34 Upstream

c-Si manufacturing (Genesee County

Economic Development Center 2011)

1.06E+00 gal/MWh 1.1 Upstream

c-Si raw materials (steel, concrete,

aluminum, glass, and copper)

(Inhaber 2004)

7.40E+00 gal/MWh 7.4 Upstrea c-Si raw materials (steel, (Inhaber 2004)

Page 22: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-22

m concrete, aluminum, glass,

and copper) 2.05E+04 gal/4.3m2

panel 23.3% 500 Upstrea

m other (GaAs) manufacturing

(>99% is for cooling)

(Mohr et al. 2007)

1.81E+04 gal/3.5m2 panel

28.5% 440 Upstream

other (InGaP/GaAs)

manufacturing (>99% is for

cooling)

(Mohr et al. 2007)

3.70E+04 gal/6.5m2 panel

15.5% 910 Upstream

other (InGaP) manufacturing (Meijer et al. 2003)

5.55E+04 gal/4.0m2 panel

25.0% 1400 Upstream

other (InGaP/p-Si)

manufacturing (Meijer et al. 2003)

3.72E+02 gal/1.2m2 module

14.0% 56 Upstream

c-Si (m-Si) manufacturing (sawing, cleaning,

cooling)

(de Wild-Scholten and Alsema 2006)

1.68E+02 gal/MWh 14.0% 900 25 92% 92 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

8.93E+01 gal/MWh 14.0% 1800 25 86% 91 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

9.01E+01 gal/MWh 14.0% 1800 25 87% 93 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

1.65E+02 gal/MWh 14.0% 900 25 88% 86 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

8.80E+01 gal/MWh 14.0% 1800 25 83% 87 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

1.84E+02 gal/MWh 14.0% 900 25 86% 94 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

9.96E+01 gal/MWh 14.0% 1800 25 79% 93 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

2.77E+02 gal/MWh 14.0% 900 25 62% 100 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

1.48E+02 gal/MWh 14.0% 1800 25 53% 93 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

Page 23: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-23

1.69E+02 gal/MWh 14.0% 900 25 93% 93 Upstream

c-Si (m-Si) manufacturing + construction

combined

(Frankl et al. 2005)

4.12E+00 gal/156 cm2 cell

14.7% 50 Upstream

c-Si (m-Si) manufacturing (cooling)

(Lenzen 2008)

3.70E-01 gal/0.5m2 panel

11.0% 1440 20 73% 0.16 Upstream

c-Si (m-Si) manufacturing (Paoli et al. 2008)

8.08E-01 gal/200 cm2

module

5.0% 34 Upstream

other (polymer PV on glass substrate)

manufacturing (substrate cleaning)

(Roes et al. 2009)

3.72E+02 gal/1.25 m2

module

13.2% 59 Upstream

c-Si (p-Si) manufacturing (sawing, cleaning,

cooling)

(de Wild-Scholten and Alsema 2006)

2.15E+02 gal/MWh 13.0% 900 25 86% 110 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.96E+02 gal/MWh 13.0% 900 25 92% 100 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.04E+02 gal/MWh 13.0% 1800 25 86% 100 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.97E+02 gal/MWh 13.0% 900 25 93% 110 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.05E+02 gal/MWh 13.0% 1800 25 83% 100 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.93E+02 gal/MWh 13.0% 900 25 88% 99 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.03E+02 gal/MWh 13.0% 1800 25 83% 100 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.17E+02 gal/MWh 13.0% 1800 25 79% 110 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

3.30E+02 gal/MWh 13.0% 900 25 62% 120 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

1.76E+02 gal/MWh 13.0% 1800 25 53% 110 Upstream

c-Si (p-Si) manufacturing + construction

(Frankl et al. 2005)

5.55E+04 gal/6.9m2 panel

14.5% 1600 Upstream

c-Si (p-Si) manufacturing (Meijer et al. 2003)

8.45E-01 gal/1m2 quantum dot solar

cells

2.5% 0.83 Upstream

other (quantum dot PV)

manufacturing (Sengul 2009)

3.51E+02 gal/1.2m2 module

11.2% 62 Upstream

other (ribbon-Si) manufacturing (sawing, cleaning,

cooling)

(de Wild-Scholten and Alsema 2006)

aAs reported, converted into common units of either gal/MWh or per power plant unit

Page 24: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-24

bHarmonized to common parameters for module efficiency, solar irradiation, lifetime, and performance ratio, shown in Table 1, where relevant reported parameters are available cc-Si = crystalline silicon; m-Si = mono-crystalline silicon; p-Si = poly-crystalline silicon; a-Si = amorphous silicon; CdTe = cadmium telluride; CIGS = copper indium gelenium selenide; CIS = copper indium selenice; GaAs = gallium arsenide; InGaP = indium gallium phosphide

Table A-19: Collected Estimates of Water Consumption for the Wind Power Plant Equipment Life Cycle

Water Use Reported Parameters Harmonized Water Consumption (gal/MWh)b

Category Additional Details about Estimate Reference Reported Valuea

Capacity Factor Primary Detail

2.18E-01 0.46 0.25 Downstream offshore 2.5MW, caisson foundation, 25km from coast

(Chataignere and Le Boulch 2003)

1.86E-01 0.46 0.21 Downstream offshore 2.5MW, caisson foundation, 25km from coast

(Chataignere and Le Boulch 2003)

2.18E-01 0.46 0.25 Downstream offshore 2.5MW, caisson foundation, 40km from coast

(Chataignere and Le Boulch 2003)

2.18E-01 0.46 0.25 Downstream offshore 2.5MW, monopile foundation, 25km from coast

(Chataignere and Le Boulch 2003)

2.47E-01 0.46 0.28 Downstream offshore 2.5MW, tripod foundation, lattice, 40km from coast

(Chataignere and Le Boulch 2003)

2.46E-07 0.29 2.3E-07 Downstream onshore 0.6MW, deep foundation (Chataignere and Le Boulch 2003)

1.70E+00 0.29 1.6 Downstream onshore 0.6MW, deep foundation (Chataignere and Le Boulch 2003)

1.70E+00 0.29 1.6 Downstream onshore 0.6MW, shallow foundation (Chataignere and Le Boulch 2003)

2.85E-01 0.34 0.32 Downstream onshore 2.5MW, deep foundation (Chataignere and Le Boulch 2003)

2.85E-01 0.46 0.44 Downstream onshore 4.5MW, concrete tower (Chataignere and Le Boulch 2003)

1.80E-01 0.46 0.21 Upstream offshore 2.5MW, caisson foundation, 25km from coast

(Chataignere and Le Boulch 2003)

1.59E-01 0.46 0.18 Upstream offshore 2.5MW, caisson foundation, 25km from coast

(Chataignere and Le Boulch 2003)

1.59E-01 0.46 0.18 Upstream offshore 2.5MW, caisson foundation, 40km from coast

(Chataignere and Le Boulch 2003)

1.59E-01 0.46 0.18 Upstream offshore 2.5MW, monopile foundation, 25km from coast

(Chataignere and Le Boulch 2003)

1.96E-01 0.46 0.23 Upstream offshore 2.5MW, tripod foundation, lattice, 40km from coast

(Chataignere and Le Boulch 2003)

6.49E+00 0.39 6.3 Upstream offshore 3.6MW, U.S. manufacturing, "conventional"

(NETL 2012d)

7.40E+00 0.39 7.2 Upstream offshore 3.5MW, non-U.S. manufacturing, "conventional"

(NETL 2012d)

Page 25: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-25

2.46E-07 0.29 2.3E-07 Upstream onshore 0.6MW, deep foundation (Chataignere and Le Boulch 2003)

2.36E-01 0.34 0.27 Upstream onshore 2.5MW, deep foundation (Chataignere and Le Boulch 2003)

2.36E-01 0.46 0.36 Upstream onshore 4.5MW, concrete tower (Chataignere and Le Boulch 2003)

2.48E+00 0.30 2.5 Upstream onshore 1.5MW, U.S. manufacturing, "conventional"

(NETL 2012d)

4.08E+00 0.30 4.1 Upstream onshore 1.5MW, non-U.S. manufacturing, "conventional"

(NETL 2012d)

2.73E+00 0.30 2.7 Upstream onshore 6.0MW, U.S. manufacturing, "advanced"

(NETL 2012d)

3.87E+00 0.30 3.9 Upstream onshore 6.0MW, non-U.S. manufacturing, "advanced"

(NETL 2012d)

aAs reported, converted into common units of gal/MWh bHarmonized to common parameters for capacity factor, shown in Table 1, where relevant parameters are reported

Table A-20: Collected Estimates of Water Withdrawals for the Wind Power Plant Equipment Life Cycle Water Use Reported

Parameters Harmonized Water

Withdrawal (gal/MWh)b Category Additional Details about Estimate Reference

Reported Valuea

Capacity Factor Primary Detail

3.61E+00 0.46 4.1 Downstream offshore 2.5MW, caisson foundation, 25km from coast (Chataignere and Le Boulch 2003)

3.16E+00 0.46 3.6 Downstream offshore 2.5MW, caisson foundation, 25km from coast (Chataignere and Le Boulch 2003)

3.61E+00 0.46 4.1 Downstream offshore 2.5MW, caisson foundation, 40km from coast (Chataignere and Le Boulch 2003)

3.61E+00 0.46 4.1 Downstream offshore 2.5MW, monopile foundation, 25km from coast (Chataignere and Le Boulch 2003)

4.02E+00 0.46 4.6 Downstream offshore 2.5MW, tripod foundation, lattice, 40km from coast (Chataignere and Le Boulch 2003)

6.45E-02 0.39 0.063 Downstream offshore 3.6MW, U.S. manufacturing, "conventional" (NETL 2012d) 4.51E+00 0.29 4.3 Downstream onshore 0.6MW, deep foundation (Chataignere and Le

Boulch 2003) 2.14E+00 0.29 2.1 Downstream onshore 0.6MW, deep foundation (Chataignere and Le

Boulch 2003) 2.14E+00 0.29 2.1 Downstream onshore 0.6MW, shallow foundation (Chataignere and Le

Boulch 2003) 4.70E+00 0.34 5.3 Downstream onshore 2.5MW, deep foundation (Chataignere and Le

Boulch 2003)

Page 26: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-26

1.29E+00 0.46 2 Downstream onshore 4.5MW, concrete tower (Chataignere and Le Boulch 2003)

1.72E+01 0.46 20 Upstream offshore 2.5MW, caisson foundation, 25km from coast (Chataignere and Le Boulch 2003)

1.72E+01 0.46 20 Upstream offshore 2.5MW, caisson foundation, 25km from coast (Chataignere and Le Boulch 2003)

1.84E+01 0.46 21 Upstream offshore 2.5MW, caisson foundation, 40km from coast (Chataignere and Le Boulch 2003)

2.20E+01 0.46 25 Upstream offshore 2.5MW, monopile foundation, 25km from coast (Chataignere and Le Boulch 2003)

1.82E+01 0.46 21 Upstream offshore 2.5MW, tripod foundation, lattice, 40km from coast (Chataignere and Le Boulch 2003)

1.76E+01 0.46 20 Upstream offshore 2.0MW, (manufacturing, transport, and decommissioning)

(Elsam Engineering A/S 2004)

6.08E+01 0.29 44 Upstream offshore 0.5MW, upstream, based on materials (Fthenakis and Kim 2010)

5.55E+01 0.23 32 Upstream offshore 2.0MW, upstream, based on materials (Fthenakis and Kim 2010)

2.10E+01 0.39 20 Upstream offshore 3.6MW, U.S. manufacturing, "conventional" (NETL 2012d) 2.52E+01 0.39 25 Upstream offshore 3.5MW, non-U.S. manufacturing, "conventional" (NETL 2012d) 1.23E+01 0.46 14 Upstream offshore 3.0MW (Vestas Wind Systems

A/S 2006b) 1.57E+01 0.29 15 Upstream onshore 0.6MW, deep foundation (Chataignere and Le

Boulch 2003) 2.20E+01 0.29 21 Upstream onshore 1.5MW, deep foundation (Chataignere and Le

Boulch 2003) 2.16E+01 0.29 21 Upstream onshore 1.5MW, shallow foundation (Chataignere and Le

Boulch 2003) 1.69E+01 0.34 19 Upstream onshore 2.5MW, deep foundation (Chataignere and Le

Boulch 2003) 1.69E+01 0.46 26 Upstream onshore 4.5MW, concrete tower (Chataignere and Le

Boulch 2003) 1.80E+01 0.32 19 Upstream onshore 2.0MW, (manufacturing and decommissioning) (Elsam Engineering A/S

2004) 4.49E+01 0.25 37 Upstream onshore 0.5MW, (material, manufacturing, and construction) (Fthenakis and Kim

2010) 6.61E+01 0.19 42 Upstream onshore 0.7MW, (material, manufacturing, and construction) (Fthenakis and Kim

2010) 2.36E+01 0.30 24 Upstream onshore 1.5MW, U.S. manufacturing, "conventional" (NETL 2012d) 3.03E+01 0.30 30 Upstream onshore 1.5MW, non-U.S. manufacturing, "conventional" (NETL 2012d) 2.15E+01 0.30 21 Upstream onshore 6.0MW, U.S. manufacturing, "advanced" (NETL 2012d) 2.69E+01 0.30 27 Upstream onshore 6.0MW, non-U.S. manufacturing, "advanced" (NETL 2012d) 7.69E+01 0.30 78 Upstream onshore 0.5MW, average of Vattenfall's fleet (Vattenfall AB 2010)

Page 27: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-27

1.63E+01 0.41 22 Upstream onshore 1.65MW, (material, manufacturing, and transportation); plant with 182 turbines

(Vestas Wind Systems A/S 2006a)

1.17E+01 0.32 12 Upstream onshore 3.0MW, (material, manufacturing, and transportation)

(Vestas Wind Systems A/S 2006b)

3.43E+00 3.4 Upstream (material) (Inhaber 2004) 5.28E-01 0.53 Upstream (material) (Inhaber 2004)

aAs reported, converted into common units bHarmonized to common parameters for capacity factor, shown in Table 1, where relevant parameters are reported

Page 28: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-28

Table A-21: Collected Estimates of Water Consumption for the Coal Power Plant Operations Reported Values Harmonized Water

Consumption (gal/MWh)b Category Reference

Water Use (gal/MWh)a

Thermal Efficiency

Primaryc Cooling technology

5.71E+02 34.4% 560 CFB cooling tower (Cottrell et al. 2003) 2.11E+02 35% 210 CFB open loop

cooling (Gleick 1994)

5.22E+01 39.6% 54 IGCC cooling tower (Gorokhov et al. 2000) 2.93E+01 45.4% 35 IGCC cooling tower (Gorokhov et al. 2000) 7.05E+01 71 IGCC cooling tower (NETL 2007a) 6.72E+01 67 IGCC cooling tower (NETL 2007a) 4.88E+01 49 IGCC cooling tower (NETL 2007a) 4.26E+01 43 IGCC cooling tower (NETL 2007a) 3.72E+02 370 IGCC cooling tower (NETL 2007b) 3.90E+02 390 IGCC cooling tower (NETL 2007b) 3.88E+02 390 IGCC cooling tower (NETL 2007b) 4.39E+02 440 IGCC cooling tower (NETL 2007b) 3.60E+02 360 IGCC cooling tower (NETL 2010a) 3.30E+02 330 IGCC cooling tower (NETL 2010a) 3.18E+02 320 IGCC cooling tower (NETL 2010a) 4.18E+02 420 IGCC cooling tower (NETL 2010c) 5.22E+02 520 IGCC+CCS cooling tower (NETL 2010a) 5.40E+02 540 IGCC+CCS cooling tower (NETL 2010a) 5.58E+02 560 IGCC+CCS cooling tower (NETL 2010a) 6.04E+02 600 IGCC+CCS cooling tower (NETL 2010c) 1.17E+03 37.5% 1300 PC cooling tower (Berry et al. 1998) 4.65E+02 37.6% 510 PC cooling tower (Cottrell et al. 2003) 7.00E+02 700 PC cooling tower (Dziegielewski and

Kiefer 2006) 4.80E+02 480 PC cooling tower (EPRI 2002) 6.87E+02 36% 720 PC cooling tower (Gleick 1994) 1.10E+03 1100 PC cooling tower (Hoffman et al. 2004) 6.64E+02 660 PC cooling tower (NETL 2007b) 4.79E+02 480 PC cooling tower (NETL 2009a) 5.10E+02 510 PC cooling tower (NETL 2010a) 5.53E+02 550 PC cooling tower (NETL 2010b) 5.00E+02 500 PC cooling tower (ORNL and RFF 1994) 1.00E+03 1000 PC cooling tower (ORNL and RFF 1994) 2.00E+02 200 PC cooling tower (SENES Consultants

Limited 2005) 1.10E+03 1100 PC cooling tower (SENES Consultants

Limited 2005) 6.00E+02 600 PC cooling tower (TWDB 2003) 5.41E+02 540 PC cooling tower (WRA 2008) 4.37E+02 440 PC (dry FGD) cooling tower (NETL 2009b) 4.03E+02 37% 440 PC (lignite) cooling tower (Diakoulaki et al. 1997) 3.94E+02 390 PC (no FGD) cooling tower (NETL 2009b) 4.62E+02 460 PC (wet FGD) cooling tower (NETL 2009b) 2.00E+02 200 PC open loop

cooling (Dziegielewski and

Kiefer 2006) 3.00E+02 300 PC open loop

cooling (EPRI 2002)

1.13E+02 37.5% 120 PC open loop cooling

(European Commission 1999)

3.17E+02 35% 320 PC open loop cooling

(Gleick 1994)

1.00E+02 100 PC open loop cooling

(Hoffman et al. 2004)

3.00E+02 300 PC open loop cooling

(SENES Consultants Limited 2005)

Page 29: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-29

1.00E+02 100 PC open loop cooling

(SENES Consultants Limited 2005)

3.50E+02 350 PC open loop cooling

(TWDB 2003)

1.13E+02 110 PC (dry FGD) open loop cooling

(NETL 2009b)

7.10E+01 71 PC (no FGD) open loop cooling

(NETL 2009b)

1.38E+02 140 PC (wet FGD) open loop cooling

(NETL 2009b)

7.00E+02 700 PC pond cooling (Dziegielewski and Kiefer 2006)

1.00E+03 1000 PC pond cooling (Dziegielewski and Thomas 2011)

3.90E+02 390 PC pond cooling (EPRI 2002) 3.00E+02 300 PC pond cooling (SENES Consultants

Limited 2005) 4.80E+02 480 PC pond cooling (SENES Consultants

Limited 2005) 7.79E+02 780 PC (dry FGD) pond cooling (NETL 2009a) 7.79E+02 780 PC (dry FGD) pond cooling (NETL 2009b) 7.37E+02 740 PC (no FGD) pond cooling (NETL 2009a) 7.37E+02 740 PC (no FGD) pond cooling (NETL 2009b) 8.04E+02 800 PC (wet FGD) pond cooling (NETL 2009a) 8.04E+02 800 PC (wet FGD) pond cooling (NETL 2009b) 9.42E+02 940 PC+CCS cooling tower (NETL 2007a) 9.42E+02 940 PC+CCS cooling tower (NETL 2010a) 8.97E+02 900 PC+CCS cooling tower (NETL 2010b) 5.94E+02 590 SC cooling tower (NETL 2007b) 4.90E+02 490 SC cooling tower (NETL 2009a) 4.62E+02 460 SC cooling tower (NETL 2010a) 5.33E+02 530 SC cooling tower (NETL 2010e) 4.96E+02 500 SC (dry FGD) cooling tower (NETL 2009b) 4.58E+02 460 SC (no FGD) cooling tower (NETL 2009b) 5.18E+02 520 SC (wet FGD) cooling tower (NETL 2009b) 1.03E+02 100 SC (dry FGD) open loop

cooling (NETL 2009b)

6.40E+01 64 SC (no FGD) open loop cooling

(NETL 2009b)

1.24E+02 120 SC (wet FGD) open loop cooling

(NETL 2009b)

4.20E+01 42 SC (dry FGD) pond cooling (NETL 2009b) 4.00E+00 4 SC (no FGD) pond cooling (NETL 2009b) 6.40E+01 64 SC (wet FGD) pond cooling (NETL 2009b) 8.46E+02 850 SC+CCS cooling tower (NETL 2010a) 9.07E+02 910 SC+CCS cooling tower (NETL 2010e)

Omitted estimates 1.98E+02 200 (omitted) (mixed) (BLM 2008a) 5.10E+02 510 (omitted) (mixed) (Pasqualetti and Kelley

2007) 4.10E+02 410 (omitted) (mixed) (Rio Carrillo and Frei

2009) 2.00E+02 200 (omitted) (mixed) (Rio Carrillo and Frei

2009) 4.80E+02 480 (omitted) (mixed) (Rio Carrillo and Frei

2009) 2.01E+02 38% 220 (omitted) (mixed) (Tolba 1985)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency, shown in Table 1, where possible with available data cPC = pulverized coal, sub-critical; SC = pulverized coal, super-critical; CFB = circulated fluidized bed; IGCC = integrated gasification combined cycle; CCS = carbon capture and sequestration; FGD = flue gas desulfurization

Page 30: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-30

Table A-22: Collected Estimates of Water Withdrawals for the Coal Power Plant Operations Reported Values Harmonized Water

Withdrawal (gal/MWh)b

Category Reference Water Use

(gal/MWh)a Thermal

Efficiency Primaryc Cooling

technology 2.11E+04 32.7% 20000 CFB open loop

cooling (SECDA 1994)

1.50E+02 45.4% 180 IGCC cooling tower (Gorokhov et al. 2000) 1.51E+02 39.6% 160 IGCC cooling tower (Gorokhov et al. 2000) 6.05E+02 600 IGCC cooling tower (Meridian Corporation

1989) 3.58E+02 360 IGCC cooling tower (NETL 2007a) 3.62E+02 360 IGCC cooling tower (NETL 2007a) 3.75E+02 380 IGCC cooling tower (NETL 2007a) 3.72E+02 370 IGCC cooling tower (NETL 2007b) 3.88E+02 390 IGCC cooling tower (NETL 2007b) 3.90E+02 390 IGCC cooling tower (NETL 2007b) 4.39E+02 440 IGCC cooling tower (NETL 2007b) 3.96E+02 400 IGCC cooling tower (NETL 2010a) 4.20E+02 420 IGCC cooling tower (NETL 2010a) 4.56E+02 460 IGCC cooling tower (NETL 2010a) 5.28E+02 530 IGCC cooling tower (NETL 2010c) 6.78E+03 38.1% 6700 IGCC cooling tower (SECDA 1994) 3.80E+02 380 IGCC cooling tower (SENES Consultants

Limited 2005) 4.79E+02 480 IGCC+CCS cooling tower (NETL 2007a) 4.95E+02 490 IGCC+CCS cooling tower (NETL 2007a) 5.30E+02 530 IGCC+CCS cooling tower (NETL 2007a) 6.42E+02 640 IGCC+CCS cooling tower (NETL 2010a) 6.66E+02 670 IGCC+CCS cooling tower (NETL 2010a) 6.78E+02 680 IGCC+CCS cooling tower (NETL 2010a) 7.42E+02 740 IGCC+CCS cooling tower (NETL 2010c) 1.00E+03 1000 PC cooling tower (Dziegielewski and

Kiefer 2006) 5.50E+02 550 PC cooling tower (EPRI 2002) 6.99E+02 700 PC cooling tower (EPRI and DOE 2006) 1.20E+03 1200 PC cooling tower (Hoffman et al. 2004) 6.70E+02 670 PC cooling tower (Leitner 2002) 5.07E+02 37.4% 550 PC cooling tower (Martins et al. 1998) 1.01E+03 1000 PC cooling tower (Meridian Corporation

1989) 6.78E+02 680 PC cooling tower (NETL 2007a) 6.64E+02 660 PC cooling tower (NETL 2007b) 5.00E+02 500 PC cooling tower (NETL 2009a) 6.42E+02 640 PC cooling tower (NETL 2009a) 6.42E+02 640 PC cooling tower (NETL 2010a) 7.14E+02 710 PC cooling tower (NETL 2010b) 5.00E+02 500 PC cooling tower (SENES Consultants

Limited 2005) 6.00E+02 600 PC cooling tower (SENES Consultants

Limited 2005) 1.20E+03 1200 PC cooling tower (SENES Consultants

Limited 2005) 5.06E+02 510 PC (dry FGD) cooling tower (NETL 2009b) 5.48E+02 43.0% 690 PC (FGD) cooling tower (Krewitt et al. 1997) 5.83E+02 40.1% 680 PC (FGD, lignite) cooling tower (Krewitt et al. 1997) 4.63E+02 460 PC (no FGD) cooling tower (NETL 2009b) 5.31E+02 530 PC (wet FGD) cooling tower (NETL 2009b) 1.94E+03 32.7% 1800 PC (wet FGD) dry cooling (SECDA 1994) 4.40E+04 44000 PC open loop

cooling (Dziegielewski and

Kiefer 2006)

Page 31: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-31

3.50E+04 35000 PC open loop cooling

(EPRI 2002)

3.12E+04 37.5% 34000 PC open loop cooling

(European Commission 1999)

2.06E+04 21000 PC open loop cooling

(Inhaber 2004)

3.77E+04 38000 PC open loop cooling

(Hoffman et al. 2004)

5.70E+04 57000 PC open loop cooling

(ORNL and RFF 1994)

2.34E+04 43.1% 29000 PC open loop cooling

(Pingoud et al. 1999)

2.00E+04 20000 PC open loop cooling

(SENES Consultants Limited 2005)

3.70E+04 37000 PC open loop cooling

(SENES Consultants Limited 2005)

3.77E+04 38000 PC open loop cooling

(SENES Consultants Limited 2005)

5.00E+04 50000 PC open loop cooling

(SENES Consultants Limited 2005)

3.18E+04 38.0% 35000 PC open loop cooling

(Tolba 1985)

2.71E+04 27000 PC (dry FGD) open loop cooling

(NETL 2009b)

2.70E+04 27000 PC (no FGD) open loop cooling

(NETL 2009b)

2.71E+04 27000 PC (wet FGD) open loop cooling

(NETL 2009b)

2.11E+04 23.7% 15000 PC (wet FGD) open loop cooling

(SECDA 1994)

2.40E+04 24000 PC pond cooling (Dziegielewski and Kiefer 2006)

9.00E+02 900 PC pond cooling (Dziegielewski and Thomas 2011)

3.10E+03 3100 PC pond cooling (Dziegielewski and Thomas 2011)

2.57E+04 26000 PC pond cooling (Dziegielewski and Thomas 2011)

4.50E+02 450 PC pond cooling (EPRI 2002) 3.00E+02 300 PC pond cooling (SENES Consultants

Limited 2005) 6.00E+02 600 PC pond cooling (SENES Consultants

Limited 2005) 1.79E+04 18000 PC (dry FGD) pond cooling (NETL 2009b) 1.79E+04 18000 PC (no FGD) pond cooling (NETL 2009b) 1.79E+04 18000 PC (wet FGD) pond cooling (NETL 2009b) 1.33E+03 1300 PC+CCS cooling tower (NETL 2007a) 1.22E+03 1200 PC+CCS cooling tower (NETL 2010a) 1.44E+03 1400 PC+CCS cooling tower (NETL 2010b) 5.94E+02 590 SC cooling tower (NETL 2007a) 5.94E+02 590 SC cooling tower (NETL 2007b) 5.82E+02 580 SC cooling tower (NETL 2010a) 6.70E+02 670 SC cooling tower (NETL 2010e) 6.48E+02 650 SC (dry FGD) cooling tower (NETL 2009b) 6.09E+02 610 SC (no FGD) cooling tower (NETL 2009b) 6.69E+02 670 SC (wet FGD) cooling tower (NETL 2009b) 2.26E+04 23000 SC (dry FGD) open loop

cooling (NETL 2009b)

2.26E+04 23000 SC (no FGD) open loop cooling

(NETL 2009b)

2.26E+04 23000 SC (wet FGD) open loop (NETL 2009b)

Page 32: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-32

cooling 1.50E+04 15000 SC (dry FGD) pond cooling (NETL 2009b) 1.50E+04 15000 SC (no FGD) pond cooling (NETL 2009b) 1.51E+04 15000 SC (wet FGD) pond cooling (NETL 2009b) 1.15E+03 1100 SC+CCS cooling tower (NETL 2007a) 1.10E+03 1100 SC+CCS cooling tower (NETL 2010a) 1.15E+03 1100 SC+CCS cooling tower (NETL 2010e)

Omitted estimates 3.00E+02 300 (omitted) (mixed) (Rio Carrillo and Frei

2009) 8.20E+03 8200 (omitted) (mixed) (Rio Carrillo and Frei

2009) 4.99E+04 50000 (omitted) (mixed) (Rio Carrillo and Frei

2009) 3.65E+04 36000 (omitted) (mixed) (Schaffner et al. 2002) 5.60E+04 56000 (omitted) (mixed) (Schaffner et al. 2002) 1.70E+04 17000 (omitted) (mixed) (Schaffner et al. 2002) 4.76E+04 48000 (omitted) (mixed) (Schaffner et al. 2002)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency, shown in Table 1, where possible with available data cPC = pulverized coal, sub-critical; SC = pulverized coal, super-critical; CFB = circulated fluidized bed; IGCC = integrated gasification combined cycle; CCS = carbon capture and sequestration; FGD = flue gas desulfurization

Table A-23: Collected Estimates of Water Consumption for the Natural Gas Power Plant Operations

Reported Values Harmonized Water Consumption (gal/MWh)b

Category Reference Water Use

(gal/MWh)a Thermal

Efficiency Primaryc Cooling

technology 1.90E+02 190 CC cooling tower (Berry et al. 1998) 2.63E+02 51.6% 270 CC cooling tower (Berry et al. 1998) 4.72E+01 47 CC cooling tower (Diakoulaki et al. 1997) 2.09E+02 210 CC cooling tower (DiFilippo 2003) 2.09E+02 210 CC cooling tower (DiFilippo 2003) 1.80E+02 180 CC cooling tower (EPRI 2002) 2.30E+02 230 CC cooling tower (King et al. 2008) 2.96E+02 300 CC cooling tower (Lamberton et al. 2010) 2.75E+02 280 CC cooling tower (Leitner 2002) 1.30E+02 130 CC cooling tower (NETL 2008) 2.83E+02 280 CC cooling tower (NETL 2007b) 1.30E+02 130 CC cooling tower (NETL 2009b) 1.98E+02 200 CC cooling tower (NETL 2010a) 1.97E+02 200 CC cooling tower (NETL 2010d) 1.80E+02 180 CC cooling tower (SENES Consultants Limited 2005) 2.30E+02 230 CC cooling tower (TWDB 2003) 2.09E+02 210 CC cooling tower (DiFilippo 2003) 2.09E+02 210 CC cooling tower (DiFilippo 2003) 2.09E+02 210 CC cooling tower (DiFilippo 2003) 1.15E+02 120 CC dry cooling (CEC 2008) 2.09E+01 21 CC dry cooling (Khalil et al. 2006) 4.00E+00 4 CC dry cooling (NETL 2008) 4.00E+00 4 CC dry cooling (NETL 2009b) 1.00E+02 100 CC open loop cooling (EPRI 2002)

Page 33: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-33

1.00E+02 100 CC open loop cooling (Feeley et al. 2005) 2.30E+02 230 CC open loop cooling (King et al. 2008) 2.00E+01 20 CC open loop cooling (NETL 2008) 2.00E+01 20 CC open loop cooling (NETL 2009b) 1.00E+02 100 CC open loop cooling (SENES Consultants Limited 2005) 1.00E+02 100 CC open loop cooling (SENES Consultants Limited 2005) 1.50E+02 150 CC open loop cooling (TWDB 2003) 2.40E+02 240 CC pond cooling (NETL 2008) 2.40E+02 240 CC pond cooling (NETL 2009b) 3.78E+02 380 CC+CCS cooling tower (NETL 2010a) 3.78E+02 380 CC+CCS cooling tower (NETL 2010d) 3.40E+02 340 CT n/a (CEC 2008) 5.00E+01 50 CT n/a (King et al. 2008) 5.00E+01 50 CT n/a (King et al. 2008) 9.65E+02 970 Steam cooling tower (CEC 2008) 1.10E+03 1100 Steam cooling tower (Feeley et al. 2005) 6.87E+02 690 Steam cooling tower (Gleick 1994) 7.00E+02 700 Steam cooling tower (King et al. 2008) 9.80E+02 980 Steam cooling tower (TWDB 2003) 7.50E+02 750 Steam cooling tower (TWDB 2003) 5.60E+02 560 Steam cooling tower (TWDB 2003) 6.62E+02 660 Steam cooling tower (WRA 2008) 1.90E+02 190 Steam open loop cooling (CEC 2008) 2.53E+02 37% 280 Steam open loop cooling (DOE 1983) 2.91E+02 290 Steam open loop cooling (Gleick 1994) 3.50E+02 350 Steam open loop cooling (King et al. 2008) 4.10E+02 410 Steam open loop cooling (TWDB 2003) 2.00E+02 200 Steam open loop cooling (TWDB 2003) 2.70E+02 270 Steam pond cooling (TWDB 2003)

Omitted Estimates 4.79E+02 480 (omitted) (mixed) (Rio Carrillo and Frei 2009) 1.81E+02 180 (omitted) (mixed) (Rio Carrillo and Frei 2009) 1.95E+02 200 (omitted) (mixed) (Pasqualetti and Kelley 2007) 4.15E+02 420 (omitted) (mixed) (Pasqualetti and Kelley 2007)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency, shown in Table 1, where possible with available data cCC = combined cycle; CT = combustion turbine; CCS = carbon capture and sequestration Table A-24: Collected Estimates of Water Withdrawals for the Natural Gas Power Plant Operations

Reported Values Harmonized Water Withdrawal (gal/MWh)b

Category Reference Water Use

(gal/MWh)a Thermal

Efficiency Primaryc Cooling

technology 7.48E+02 52% 760 CC cooling tower (Berry et al. 1998) 2.34E+02 230 CC cooling tower (DiFilippo 2003) 2.16E+02 220 CC cooling tower (DiFilippo 2003) 2.50E+02 250 CC cooling tower (EPRI 2002) 2.30E+02 230 CC cooling tower (EPRI 2002) 2.75E+02 280 CC cooling tower (Leitner 2002) 1.50E+02 150 CC cooling tower (NETL 2008) 2.69E+02 270 CC cooling tower (NETL 2007a) 2.83E+02 280 CC cooling tower (NETL 2007b)

Page 34: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-34

2.55E+02 260 CC cooling tower (NETL 2010a) 1.50E+02 150 CC cooling tower (NETL 2009b) 2.54E+02 250 CC cooling tower (NETL 2010d) 2.30E+02 230 CC cooling tower (SENES Consultants Limited 2005) 2.31E+02 230 CC cooling tower (DiFilippo 2003) 2.31E+02 230 CC cooling tower (DiFilippo 2003) 2.51E+02 250 CC cooling tower (DiFilippo 2003) 4.00E+00 4 CC dry cooling (NETL 2008) 4.00E+00 4 CC dry cooling (NETL 2009b) 2.01E+04 54% 21000 CC open loop cooling (Dorland et al. 1997) 1.38E+04 14000 CC open loop cooling (EPRI 2002) 9.01E+03 9000 CC open loop cooling (NETL 2008) 9.01E+03 9000 CC open loop cooling (NETL 2009b) 7.66E+03 48% 7200 CC open loop cooling (SECDA 1994) 2.00E+04 20000 CC open loop cooling (SENES Consultants Limited 2005) 7.50E+03 7500 CC open loop cooling (SENES Consultants Limited 2005) 5.95E+03 6000 CC pond cooling (NETL 2008) 5.95E+03 6000 CC pond cooling (NETL 2009b) 4.87E+02 490 CC+CCS cooling tower (NETL 2007a) 5.06E+02 510 CC+CCS cooling tower (NETL 2010a) 5.05E+02 510 CC+CCS cooling tower (NETL 2010d) 4.25E+02 430 CT n/a (CEC 2008) 1.21E+03 1200 Steam cooling tower (CEC 2008) 1.20E+03 1200 Steam cooling tower (Feeley et al. 2005) 3.50E+04 35000 Steam open loop cooling (CEC 2008) 3.19E+04 38% 37000 Steam open loop cooling (Tolba 1985)

Omitted Estimates 4.99E+04 50000 (omitted) (mixed) (Rio Carrillo and Frei 2009) 3.61E+03 3600 (omitted) (mixed) (Rio Carrillo and Frei 2009) 2.38E+02 47% 220 (omitted) (mixed) (Raugei et al. 2005b)

aAs reported, converted into common units of gal/MWh bHarmonized to common performance parameters for thermal efficiency, shown in Table 1, where possible with available data cCC = combined cycle; CT = combustion turbine; CCS = carbon capture and sequestration

Table A-25: Collected Estimates of Water Consumption for the Nuclear Power Plant Operations

Reported Water Consumption (gal/MWh)a

Additional Details about Estimate Reference Cooling technology

890 cooling tower (boiling water reactor) (DOE 1983) 820 cooling tower (pressurized water reactor) (DOE 1983) 800 cooling tower generation weighted average from

EIA 767 (Dziegielewski and Kiefer

2006) 720 cooling tower (EPRI 2002) 580 cooling tower (gas cooled reactor) (Gleick 1994) 850 cooling tower (light water reactor) (Gleick 1994) 620 cooling tower (NETL 2009b) 720 cooling tower cooling only (SENES Consultants Limited

2005) 610 cooling tower (WRA 2008) 400 open loop cooling weighted average from EIA 767 (Dziegielewski and Kiefer

2006) 400 open loop cooling (EPRI 2002) 100 open loop cooling (Hoffman et al. 2004) 140 open loop cooling (NETL 2009b) 400 open loop cooling cooling only (SENES Consultants Limited

2005) 500 pond cooling generation weighted average from

EIA 767 (Dziegielewski and Kiefer

2006) 720 pond cooling (EPRI 2002) 720 pond cooling cooling only (SENES Consultants Limited

2005)

Page 35: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-35

400 pond cooling cooling only (SENES Consultants Limited 2005)

Omitted Estimates 790 (mixed) AZ data, detailed report not

available (Pasqualetti and Kelley 2007)

720 (mixed) data compiled from multiple reports

(Rio Carrillo and Frei 2009)

410 (mixed) data compiled from multiple reports

(Rio Carrillo and Frei 2009)

400 (mixed) data compiled from multiple reports

(Rio Carrillo and Frei 2009)

aDue to a lack of relevant data, operations estimates for nuclear power were not harmonized.

Table A- 26: Collected Estimates of Water Withdrawals for the Nuclear Power Plant Operations Reported Water Withdrawal

(gal/MWh)a Cooling

technology Additional Details about Estimate Reference

2600 cooling tower (Dziegielewski and Kiefer 2006)

950 cooling tower (EPRI 2002) 1300 cooling tower (boiling water reactor) (Meridian Corporation 1989) 1100 cooling tower (NETL 2009b) 800 cooling tower cooling only (SENES Consultants Limited

2005) 1100 cooling tower cooling only (SENES Consultants Limited

2005) 1100 cooling tower (NETL 2008)

52000 open loop cooling (pressurized water reactor) cooling only

(AXPO Nuclear Energy 2008)

48000 open loop cooling (Dziegielewski and Kiefer 2006)

43000 open loop cooling (EPRI 2002) 46000 open loop cooling (Hoffman et al. 2004) 31000 open loop cooling (NETL 2009b) 39000 open loop cooling (heavy water reactor) process and

cooling water (SECDA 1994)

48000 open loop cooling (boiling water reactor) cooling only (Schaffner et al. 2002) 60000 open loop cooling cooling only (SENES Consultants Limited

2005) 54000 open loop cooling cooling only (SENES Consultants Limited

2005) 23000 open loop cooling (NETL 2008) 59000 open loop cooling (light water reactor) (Tolba 1985) 44000 open loop cooling (boiling water reactor) (Vattenfall AB 2007) 13000 pond cooling (Dziegielewski and Kiefer

2006) 1100 pond cooling (EPRI 2002) 1100 pond cooling cooling only (SENES Consultants Limited

2005) 500 pond cooling cooling only (SENES Consultants Limited

2005) Omitted Estimates

60000 (mixed) data compiled from multiple reports (Rio Carrillo and Frei 2009) 20000 (mixed) data compiled from multiple reports (Rio Carrillo and Frei 2009) 500 (mixed) data compiled from multiple reports (Rio Carrillo and Frei 2009)

aDue to a lack of relevant data, operations estimates for nuclear power were not harmonized.

Page 36: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-36

Table A-27: Collected Estimates of Water Consumption for the CSP Power Plant Operations Reported Water Consumption

(gal/MWh)a Category Additional Details about

Estimate Reference

Primary Cooling technology

5 Dish Stirling n/a (CEC 2008) 4.4 Dish Stirling n/a (Leitner 2002)

1000 Fresnel n/a (DOE 2008) 850 Power tower cooling tower (EERE and EPRI 1997) 760 Power tower cooling tower (Leitner 2002) 810 Power tower cooling tower (Sargent & Lundy LLC

2003) 740 Power tower cooling tower (Stoddard et al. 2006) 860 Power tower cooling tower (Viebahn et al. 2008) 26 Power tower dry cooling (cooling and washing) (BrightSource Energy

2007) 90 Power tower hybrid cooling (DOE 2008)

250 Power tower hybrid cooling (DOE 2008) 830 Trough cooling tower (BLM 2011) 1100 Trough cooling tower (BLM 2011) 1100 Trough cooling tower (Burkhardt et al. 2011) 990 Trough cooling tower (Cohen et al. 1999) 1000 Trough cooling tower (Cohen et al. 1999) 990 Trough cooling tower (Cohen et al. 1999) 820 Trough cooling tower (Cohen et al. 1999) 820 Trough cooling tower (Cohen et al. 1999) 560 Trough cooling tower (EERE and EPRI 1997) 1100 Trough cooling tower (Gleick 1994) 850 Trough cooling tower operations, maintanence and

cooling water (Harto et al. 2010)

970 Trough cooling tower (Kelly 2006) 770 Trough cooling tower (Khalil et al. 2006) 900 Trough cooling tower (Khalil et al. 2006) 860 Trough cooling tower (Kustcher and Buys

2006) 770 Trough cooling tower (Leitner 2002) 810 Trough cooling tower (Sargent & Lundy LLC

2003) 1200 Trough cooling tower (Solar Millennium LLC

2008) 780 Trough cooling tower (Stoddard et al. 2006) 1900 Trough cooling tower (Turchi et al. 2010) 850 Trough cooling tower (Viebahn et al. 2008) 740 Trough cooling tower (Viebahn et al. 2008) 860 Trough cooling tower (WorleyParsons 2009a) 1000 Trough cooling tower (WorleyParsons 2009b) 950 Trough cooling tower (WorleyParsons 2010) 950 Trough cooling tower (Turchi 2010) 110 Trough dry cooling (BLM 2010) 42 Trough dry cooling (BLM 2011) 55 Trough dry cooling (BLM 2011)

140 Trough dry cooling (Burkhardt et al. 2011) 79 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 32 Trough dry cooling (NETL 2012c) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 40 Trough dry cooling (Khalil et al. 2006)

Page 37: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-37

130 Trough dry cooling (Solar Millennium LLC 2008)

70 Trough dry cooling (Turchi et al. 2010) 89 Trough dry cooling (all operating uses) (FWS 2010) 45 Trough dry cooling (all operating uses) (FWS 2011) 43 Trough dry cooling (WorleyParsons 2009a) 71 Trough dry cooling (WorleyParsons 2009a) 67 Trough dry cooling (WorleyParsons 2010)

110 Trough hybrid cooling (DOE 2008) 350 Trough hybrid cooling (DOE 2008) 340 Trough hybrid cooling (WorleyParsons 2009a)

aDue to a lack of relevant data, operations estimates for CSP were not harmonized.

Table A-28: Collected Estimates of Water Withdrawals for the CSP Power Plant Operations Reported Water Withdrawal (gal/MWh)a Category Reference

Primary Cooling technology 740 Power tower cooling tower (Stoddard et al. 2006) 1100 Trough cooling tower (Gleick 1994) 860 Trough cooling tower (WorleyParsons 2009a) 79 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 78 Trough dry cooling (Kelly 2006) 43 Trough dry cooling (WorleyParsons 2009a) 71 Trough dry cooling (WorleyParsons 2009b) 67 Trough dry cooling (WorleyParsons 2010) 33 Trough dry cooling (NETL 2012c)

340 Trough hybrid cooling (WorleyParsons 2009a) aDue to a lack of relevant data, operations estimates for CSP were not harmonized.

Table A-29: Collected Estimates of Water Consumption for the Geothermal Power Plant Operations

Reported Water Consumption (gal/MWh)a Category Reference Primary Cooling technology

220 Binary hybrid cooling (Kustcher and Costenaro 2002) 700 Binary hybrid cooling (Kozubal and Kustcher 2003) 270 Binary dry cooling (Clark et al. 2011) 630 Binary dry cooling (Mishra et al. 2011) 290 Binary dry cooling (Mishra et al. 2011) 720 EGS dry cooling (Clark et al. 2011) 290 EGS dry cooling (Clark et al. 2011) 11 Flash n/a (NETL 2012a) 19 Flash n/a (CEC 2008) 10 Flash n/a (Clark et al. 2011)

360 Flash n/a (Adee and Moore 2010) 5 Flash n/a (Kagel et al. 2007)

Omitted Estimates (all include produced water) 3600 Binary cooling tower (EERE 2006) 4000 Binary cooling tower (Gleick 1994) 1700 Binary cooling tower (Kozubal and Kustcher 2003) 2600 Binary cooling tower (Mishra et al. 2011) 1800 Binary cooling tower (Mishra et al. 2011) 3100 Binary cooling tower (Mishra et al. 2011) 2000 Binary cooling tower (Mishra et al. 2011) 3600 EGS cooling tower (EERE 2006)

Page 38: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-38

1200 EGS cooling tower (EERE and EPRI 1997) 4000 EGS cooling tower (Gleick 1994) 1700 EGS cooling tower (Kozubal and Kustcher 2003) 220 EGS hybrid cooling (Kustcher and Costenaro 2002) 2100 Flash cooling tower (Layton and Morris 1980) 3100 Flash cooling tower (Layton and Morris 1980) 2600 Flash cooling tower (Mishra et al. 2011) 3000 Flash cooling tower (Mishra et al. 2011) 1800 Steam cooling tower Gleick

aDue to a lack of relevant data, operations estimates for geothermal were not harmonized. Table A-30: Collected Estimates of Water Withdrawals for the Geothermal Power Plant Operations

Reported Water Withdrawal (gal/MWh)a Category Reference Primary Cooling technology

11 Flash n/a (NETL 2012a) 25 Flash n/a (CEC 2008)

Omitted Estimates (all include produced water) 12000 Binary (EERE and EPRI 1997) 7400 Binary cooling tower (Frick et al. 2010) 6300 Binary cooling tower (Frick et al. 2010) 5000 Binary cooling tower (Frick et al. 2010) 9100 Binary cooling tower (Frick et al. 2010) 8400 Binary cooling tower (Frick et al. 2010) 3300 Binary cooling tower (Frick et al. 2010) 3000 Binary cooling tower (Mishra et al. 2011) 2000 Binary cooling tower (Mishra et al. 2011) 2900 Binary cooling tower (Mishra et al. 2011) 2000 Binary cooling tower (Mishra et al. 2011) 3000 Flash cooling tower (Mishra et al. 2011) 950 Flash cooling tower (Tolba 1985)

aDue to a lack of relevant data, operations estimates for geothermal were not harmonized. Table A-31: Collected Estimates of Water Withdrawals for the PV Power Plant Operations

Reported Water Withdrawal (gal/MWh)a

Category Additional Details about Estimate Reference

21 Flat panel cleaning and other uses (BLM 2011) 26 Flat panel cleaning and other uses (estimate appears

constrained by precision) (Gleick 1994)

6 Flat panel based on cost data (economic input/output LCA-based assessment)

(Harto et al. 2010)

20 Flat panel based on cost data (economic input/output LCA-based assessment)

(Harto et al. 2010)

7.7 Flat panel cleaning (actual data, from Arizona Public Service company solar site)

(Khalil et al. 2006)

4.4 Flat panel cleaning (assumed same as dish Stirling) (Leitner 2002) 1 Flat panel (listed as less than 1, claiming primary data) (Pasqualetti and Kelley

2007) 4.6 Flat panel cleaning and other uses (estimated for

Environmental Impact Statement) (Aspen Environmental

Group 2011a) 3.7 Flat panel cleaning and other uses (estimated for

Environmental Impact Statement) (Aspen Environmental

Group 2011b) 34 Concentrated PV cleaning only (Khalil et al. 2006) 26 Concentrated PV cleaning, once per month (experiment, low

water estimate) (Sahm et al. 2005)

24 Concentrated PV cleaning, actual UNLV site usage (Sahm et al. 2005) 78 Concentrated PV cleaning, once per month (experiment, high

water estimate) (Sahm et al. 2005)

aDue to a lack of relevant data, operations estimates for geothermal were not harmonized.

Page 39: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-39

Table A-32: Collected Estimates of Water Consumption for the Wind Power Plant Operations

Reported Water Consumption (gal/MWh)a

Category Additional Details about Estimate Reference

0.038 Offshore maximum maintenance estimate (Chataignere and Le Boulch 2003) 0.015 Offshore minimum maintenance estimate (Chataignere and Le Boulch 2003) 0.03 Offshore tripod foundation, lattice tower (Chataignere and Le Boulch 2003) 1.2 Offshore (Elsam Engineering A/S 2004)

3.00E-08 Onshore deep foundation, tubular tower (Chataignere and Le Boulch 2003) 0.068 Onshore "conventional" technology (NETL 2012d) 0.018 Onshore "advanced" technology (NETL 2012d) 2.2 Offshore "conventional" technology (NETL 2012d) 1.4 Onshore deep foundation, tubular tower (Chataignere and Le Boulch 2003) 1.4 Onshore shallow foundation, tubular tower (Chataignere and Le Boulch 2003)

0.049 Onshore deep foundation, tubular tower, maximum maintenance estimate

(Chataignere and Le Boulch 2003)

0.049 Onshore concrete tubular tower (Chataignere and Le Boulch 2003) 1.2 Onshore (Elsam Engineering A/S 2004) 1 Onshore cleaning (American Wind Energy

Association (AWEA) 1996) aDue to a lack of relevant data, operations estimates for geothermal were not harmonized.

Table A-33: Collected Estimates of Water Withdrawals for the Wind Power Plant Operations

Reported Water Withdrawal (gal/MWh)a

Category Additional Details about Estimate

Reference

0.016 Omitted (combined types) (Vattenfall AB 2010) 1.4 Offshore maximum

maintenance estimate (Chataignere and Le Boulch 2003)

0.73 Offshore minimum maintenance estimate

(Chataignere and Le Boulch 2003)

1.5 Onshore deep foundation, tubular tower

(Chataignere and Le Boulch 2003)

0.36 Onshore "conventional" technology

(NETL 2012d)

0.1 Onshore "advanced" technology (NETL 2012d) 2.8 Offshore "conventional"

technology (NETL 2012d)

1.9 Onshore deep foundation, tubular tower

(Chataignere and Le Boulch 2003)

1.8 Onshore shallow foundation, tubular tower

(Chataignere and Le Boulch 2003)

1.7 Onshore deep foundation, tubular tower,

maximum maintenance estimate

(Chataignere and Le Boulch 2003)

1.5 Onshore concrete tubular tower (Chataignere and Le Boulch 2003) 3.50E-05 Onshore Vestas Wind Systems A/S

1 Onshore cleaning (American Wind Energy Association (AWEA) 1996) aDue to a lack of relevant data, operations estimates for geothermal were not harmonized.

Page 40: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-40

A.4 Results: Approach for Construction of Figure 6

To calculate the impact from the use of alternative estimates of harmonization parameters on life cycle water use, we a) determine which stages each factor affects, b) determine endpoints of the range of each parameter represented in the literature cited in the article, and c) adjust our preferred, selected estimates for the water consumption factors for each life cycle stage by these endpoints as shown in equations 2 and 3 in the article. Original, non-transformed values are reported in Table SD-34, and the results of each of these steps are listed in Table SD-35. The final three columns of Table SD-35 are shown in Figure 6; the baseline values also correspond to those shown in Figure 4. For example, we calculate the life cycle water consumption associated with natural gas combined cycle power plant with recirculating cooling towers when thermal efficiency is as low as 41%, instead of the 51% shown in Table 1, as follows (with values shown in the table below):

1𝑔𝑎𝑙𝑀𝑊ℎ

�𝑃𝑃∗ �

51%41%

�+ �4𝑔𝑎𝑙𝑀𝑊ℎ

�𝐹𝐶∗ �

51%41%

�+ �2 + �51%41%

� ∗208𝑔𝑎𝑙𝑀𝑊ℎ �

𝑂𝑝=

267𝑔𝑎𝑙𝑀𝑊ℎ

(SD-3)

Table A-34: Baseline consumption factors for life cycle stages in gal/MWh

Operations

Generation Technology Power Plant Fuel Cycle Fixeda Variableb Coal 1 22 90 440 Natural Gas 1 4 2 208 Nuclear 1 56 30 690 CSP 160 n/a 50 840 Geothermal 2 n/a 0 290 PV 94 n/a 2.5 3.5 Wind 1 n/a 0 1 aReported as "Other water consumed in generation" in DOE (2012), p. 166, as opposed to water reported to be used for cooling. bDefined as the total operations water use estimate minus the fixed operations usage estimate.

Table A-35: Variability in life cycle water consumption factors due to variability in parameters

Parameter [units vary] Life Cycle [gal/MWh]

Generation Technologya Parameter

Stages Effectedb

Low Water

Baseline

High Water

Low Water

Baseline

High Water

Coal Capacity Factor PP 95% 85% 34% 553 553 555 Coal Lifetime PP 40 30 15 553 553 554 Coal Fuel Heat Content FC 31 21.01 5.2 546 553 620 Coal Thermal Efficiency All 46 35.4 23 446 553 803 Natural Gas Fuel Heat Content FC 1083 1031 979 215 215 215 Natural Gas Capacity Factor PP 90% 85% 36% 215 215 216 Natural Gas Lifetime PP 50 30 15 215 215 216 Natural Gas Thermal Efficiency All 60% 51% 41% 183 215 267 Nuclear Capacity Factor PP 93% 85% 65% 777 777 777 Nuclear Lifetime PP 60 40 25 777 777 778 Nuclear Thermal Efficiency All 36% 33% 30% 715 777 852 CSP Lifetime PP 40 30 25 1010 1050 1082 CSP Solar Irradiation All 2865 2400 1825 888 1050 1365 CSP Solar-to-electric

Efficiency All 19% 15% 12% 839 1050 1313 Geothermal Lifetime PP 40 30 25 292 292 292 PV Solar-to-electric

Efficiency All 16% 13% 12% 81 100 105

Page 41: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-41

PV Performance Ratio All 100% 80% 75% 80 100 107 PV Lifetime PP 30 30 20 100 100 147 PV Solar Irradiation All 2143 1700 900 79 100 189 Wind Lifetime PP 100 20 10 1 2 3 Wind Capacity Factor PP 71% 30% 11% 1 2 4 aCoal = pulverized coal (sub-critical) with recirculating cooling tower; Natural Gas = combined cycle with recirclating cooling tower; Nuclear = nuclear with recirculating cooling tower; CSP = parabolic trough with recirculating cooling tower; Geothermal = binary with dry cooling technology; PV = Flat panel crystalline silicon ; Wind = on-shore wind bPP = power plant; FC = fuel cycle; All = power plant, fuel cycle, and operations

A.5 References for Water Use Estimates

Abbey, D. (1979). Water Use Alternatives for Navajo Energy Production. Navajo Energy and Environmental Technology Training Conference, Tsaile, AZ, Los Alamos Scientific Laboratory: 15pp.

Adee, S. and S. L. K. Moore (2010). The Power of Water: In the American Southwest, the Energy Problem Is Water. IEEE Spectrum 47(6): 30-39.

American Wind Energy Association (AWEA). (1996). Wind Energy and the Environment. Retrieved April 20, 2012, from www.awea.org/faq/wwt_environment.html.

Aspen Environmental Group (2011a). Final Environmental Impact Report: California Valley Solar Ranch Conditional Use Permit and Twisselman Conditional Use Permit and Reclamation Plan. DRC2008-00097, DRC2009-00004. San Luis Obispo, CA, County of San Luis Obispo, Department of Planning and Building. Volume 1 of 2: Environmental Analysis.

Aspen Environmental Group (2011b). Final Environmental Impact Report: Topaz Solar Farm Conditional Use Permit. DRC2008-00009. San Luis Obispo, CA, County of San Luis Obispo, Department of Planning and Building. Volume 1 of 2: Environmental Analysis.

AXPO Nuclear Energy (2008). Environmental Product Declaration: Beznau Nuclear Power Plant. Baden: 21pp.

Berry, J. E., M. R. Holland, P. R. Watkiss, R. Boyd and W. Stephenson (1998). Power Generation and the Environment - a Uk Perspective. ExternE: Externalities of Energy. Luxembourg, European Commission, Directorate-General XII. 20: 275 pp.

BLM (2008a). Draft Environmental Impact Statement for the Ely Energy Center. NV-040-09-001 EIS. Ely, Nevada, U.S. Department of the Interior, Bureau of Land Management (BLM), Ely District Office.

BLM (2008b). Final Environmental Impact Statement for the West Antelope II Coal Lease Application. WYW163340. Casper, Wyoming, U.S. Department of the Interior, Bureau of Land Management (BLM), Casper Field Office.

BLM (2010). Plan Amendment/Final Eis for the Genesis Solar Energy Project. DOI-BLM-CA-060-0010-0015-EIS. Palm Springs, California, U.S. Department of the Interior, Bureau of Land Management (BLM), Palm Springs South Coast Field Office.

BLM (2011). Sonoran Solar Energy Project Update: Project Focused on Reduced Water Use: Pv Technology. Phoenix, Arizona, U.S. Department of the Interior, Bureau of Land Management (BLM), Lower Sonoran Field Office.

BrightSource Energy (2007). Ivanpah Solar Electric Generating System Application for Certification (Afc). Docket Number: 07-AFC-5C (Compliance Proceeding); 07-AFC-5 (Application for Certification). Sacramento, CA, California Energy Commission: 31pp.

Burkhardt, J. J., G. A. Heath and C. S. Turchi (2011). Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key Design Alternatives. Environmental Science & Technology 45(6): 2457-2464.

Page 42: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-42

CEC (2008). 2007 Environmental Performance Report of California's Electrical Generation System: Final Staff Report. CEC-700-2007-016-SF, California Energy Commission (CEC): 100pp.

Chataignere, A. and D. Le Boulch (2003). Wind Turbine (Wt) Systems: Final Report. ECLIPSE: Environmental and Ecological Life Cycle Inventories for Present and Future Power Systems in Europe 110pp.

Chesapeake Energy (2012a). Water Use in Barnett Deep Shale Gas Exploration: 2pp. Chesapeake Energy (2012b). Water Use in Deep Shale Gas Exploration: 2pp. Chesapeake Energy (2012c). Water Use in Eagle Ford Deep Shale Gas Exploration: 2pp. Chesapeake Energy (2012d). Water Use in Haynesville Deep Shale Gas Exploration: 2pp. Chesapeake Energy (2012e). Water Use in Marcellus Deep Shale Gas Exploration: 2pp. Chesapeake Energy (2012f). Water Use in Niobrara Deep Shale Gas Exploration: 2pp. Clark, C., C. Harto, J. Sullivan and M. Wang (2011). Water Use in the Development and Operation of

Geothermal Power Plants. ANL/EVS/R-10/5. Oak Ridge, TN, Argonne National Laboratory (ANL): 74pp.

Cohen, G. E., D. W. Kearney and G. J. Kolb (1999). Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants. SAND99-1290. Albuquerque, NM, Sandia National Laboratory: 186pp.

Colorado Oil and Gas Conservation Commission (COGCC) (2012). Water Sources and Demand for the Hydraulic Fracturing of Oil and Gas Wells in Colorado from 2010 through 2015. Colorado Division of Water Resources, Colorado Water Conservation Board and Colorado Oil and Gas Conservation Commission (COGCC): 9pp.

Cottrell, A., J. Nunn, A. Urfer and L. Wibberley (2003). Systems Assessment of Electricity Generation Using Biomass and Coal in Cfbc: Technology Assessment Report 24. Pullenvale, Qld., Australia, Cooperative Research Centre for Coal in Sustainable Development: 21pp.

de Wild-Scholten, M. J. and E. A. Alsema (2006). Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic Module Production. Life-Cycle Analysis Tools for "Green" Materials and Process Selection. Materials Research Society Symposium Proceedings, 28-30 November, 2006. S. Papasavva and V. Fthenakis. Boston, MA, Materials Research Society. 895: 59-71.

Diakoulaki, D., S. Mirasgentis, E. Koukios, N. Diamantidis, C. Stamos, J. Kollas and N. Beloyannis (1997). External Costs of Electricity Generation in Greece. ExternE: Externalities of Energy. Luxembourg, European Commission, Directorate-General XII. 20: 267pp.

DiFilippo, M. N. (2003). Use of Degraded Water Sources as Cooling Water in Power Plants. C. E. C. Public Interest Energy Research Program (PIER), EPRI.

Doctor, R. D., J. C. Molburg, N. F. Brockmeier, L. manfredo, V. Gorokhov, M. Ramezan and G. J. Stiegel (2001). Life-Cycle Analysis of a Shell Gasification-Based Multi-Product System with Co2 Recovery. First National Conference on Carbon Sequestration, May 15-17, 2001. Argonne, IL, Argonne National Laboratory: 28pp.

DOE (1983). Energy Technology Characterizations Handbook: Environmental Pollution and Control Factors. Washington, D.C., U.S. Department of Energy (DOE).

DOE (2008). Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation. Report to Congress. Washington, D.C., U.S. Department of Energy (DOE): 35pp.

DOE (2012). Sunshot Vision Study. Washington, D.C., U.S. Department of Energy (DOE): 320pp. Dones, R., C. Bauer, R. Bolliger, B. Burger, M. F. Emmenegger, R. Frischknecht, T. Heck, N. Jungbluth

and A. Röder (2004). Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and Other Ucte Countries. ecoinvent report No. 5. Dübendorf, Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories: 174pp.

Dorland, C., H. M. A. Jansen, R. S. J. Tol and D. Dodd (1997). Externe National Implementation: The Netherlands. ExternE: Externalities of Energy. Luxembourg, European Commission, Directorate-General XII. 20: 225pp.

Page 43: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-43

Dziegielewski, B. and J. C. Kiefer (2006). U.S. Water Demand, Supply and Allocation: Trends and Outlook. 2007-R-3. Alexandria, VA, U.S. Army Corps of Engineers, Institute for Water Resources: 54pp.

Dziegielewski, B. and T. Thomas (2011). Future Water Demands and Coal Development Potential in Kaskaskia River Basin in Illinois. Final Technical Report DEV 08-1, Illinois Clean Coal Institute: 25pp.

EERE. (2006). Geothermal Technologies Program: Geothermal Faqs. Retrieved September 20, 2012, from http://www1.eere.energy.gov/geothermal/faqs.html.

EERE and EPRI (1997). Renewable Energy Technology Characterizations. TR-109496. Washington, D.C., and Palo Alto, CA, Energy Efficiency and Renewable Energy (EERE), US Department of Energy, and the Electric Power Research Institute (EPRI): 283pp.

Elsam Engineering A/S (2004). Life Cycle Assessment of Offshore and Onshore Sited Wind Farms. 200128. Frederica, Denmark, Elsam Engineering A/S: 68pp.

EPRI (2002). Water & Sustainability (Volume 3): U.S. Water Consumption for Power Production--the Next Half Century. 1006786. Palo Alto, CA, Electric Power Research Institute (EPRI): 57pp.

EPRI and DOE (2006). Program on Technology Innovation: Water Resources for Thermoelectric Power Generation: Produced Water Resources, Wet-Surface Air Cooling, and Warmf Decision Support Framework. 1014487. Palo Alto, CA, Electric Power Research Institute (EPRI) and U.S. Department of Energy (DOE): 322pp.

European Commission (1999). National Implementation. ExternE: Externalities of Energy. Luxembourg, European Commission, Directorate-General XII. 20: 534pp.

Evans, R., P. Roe and J. Joy (2003). Water Use and Sustainable Development in Coal Mining - a Case Study from Central Queensland. Minerals Council of Australia's Sustainable Development 03 Conference. Brisbane, Australia: 11pp.

Feeley, T. J., III, L. Green, J. T. Murphy, J. Hoffman and B. A. Carney (2005). Department of Energy/Office of Fossil Energy's Power Plant Water Management R&D Program. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 18pp.

Frankl, P., E. Menichetti, M. Raugei, S. Lombardelli and G. Prennushi (2005). Final Report on Technical Data, Costs and Life Cycle Inventories of Pv Applications. NEEDS: New Energy Externalities Developments for Sustainability, Ambiente Italia: 81pp.

Frick, S., M. Kaltschmitt and G. Schroder (2010). Life Cycle Assessment of Geothermal Binary Power Plants Using Enhanced Low-Temperature Reservoirs. Energy 35(5): 2281-2294.

Fthenakis, V. and H. C. Kim (2006). Energy Use and Greenhouse Gas Emissions in the Life Cycle of Cdte Photovoltaics. Life-Cycle Analysis Tools for "Green" Materials and Process Selection, Materials Research Society Symposium 2006. S. Papasavva and V. Fthenakis. Boston, MA, Materials Research Society. 895: 83-88.

Fthenakis, V. and H. C. Kim (2010). Life-Cycle Uses of Water in U.S. Electricity Generation. Renewable and Sustainable Energy Reviews 14(7): 2039-2048.

FWS (2010). Memorandum: Section 7 Biological Opinion on the Blythe Solar Power Plant, Riverside County, California. Carlsbad, CA, U.S. Department of the Interior, Fish and Wildlife Service (FWS): 46pp.

FWS (2011). Memorandum: Section 7 Biological Opinion on the Palen Solar Power Plant, Riverside County, California. Carlsbad, CA, U.S. Department of the Interior, Fish and Wildlife Service (FWS): 49pp.

GAO (2012). Oil and Gas: Information on Shale Resources, Development, and Environmental and Public Health Risks. GAO-12-732. Washington, D.C., U.S. Government Accountability Office (GAO): 86pp.

Genesee County Economic Development Center (2011). SEQRA Review of Western New York Science & Technology Advanced Manufacturing Park (Stamp), Industry Requirements and Environmental,

Page 44: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-44

Health & Safety Report, Generic Environmental Impact Statement. Batavia, Genesee County Economic Development Center: 46pp.

Gleick, P. H. (1994). Water and Energy. Annual Review of Energy and the Environment 19(1): 267-299. Gorokhov, V., L. Manfredo, M. Ramezan and J. Ratafia-Brown (2000). Life Cycle Assessment of Igcc:

Systems Phase II Report. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 162pp.

Ground Water Protection Council and ALL Consulting (2009). Modern Shale Gas Development in the United States: A Primer, U.S. Department of Energy, Office of Fossil Energy and National Energy Technology Laboratory: 96pp.

Harto, C., R. Meyers and E. Williams (2010). Life Cycle Water Use of Low-Carbon Transport Fuels. Energy Policy 38: 4933-4944.

Hoffman, J., S. Forbes and T. Feeley (2004). Estimating Freshwater Needs to Meet 2025 Electricity Generating Capacity Forecasts. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 12pp.

Hsu, D. D., P. O’Donoughue, V. Fthenakis, G. A. Heath, H. C. Kim, P. Sawyer, J.-K. Choi and D. E. Turney (2012). Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization. Journal of Industrial Ecology 16: S122-S135.

IEA (2012). Golden Rules for a Golden Age of Gas: World Energy Outlook Special Report on Unconventional Gas. WEO-2012. Paris, France, International Energy Agency (IEA): 143pp.

Inhaber, H. (2004). Water Use in Renewable and Conventional Electricity Production. Energy Sources 26: 309-322.

Jiang, M., W. Michael Griffin, C. Hendrickson, P. Jaramillo, J. VanBriesen and A. Venkatesh (2011). Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas. Environmental Research Letters 6: 034014 (034019pp).

Joint Institute for Strategic Energy Analysis (JISEA) (2012). Natural Gas and the Transformation of the U.S. Energy Sector: Electricity. NREL/TP-6A50-55538. J. Logan, G. Heath, E. Paranhoset al. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL).

Jungbluth, N., M. Stucki and R. Frischknecht (2009). Photovoltaics Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. ecoinvent report No. 6-XII. R. Dones. Dubendorf, Switzerland, Ecoinvent: Swiss Centre for Life Cycle Inventories: 181pp.

Kagel, A., D. Bates and K. Gawell (2007). A Guide to Geothermal Energy and the Environment. Washington, D.C., Geothermal Energy Association: 75pp.

Kelly, B. (2006). Nexant Parabolic Trough Solar Power Plant Systems Analysis: Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection. NREL/SR-550-40163. Golden, CO, National Renewable Energy Laboratory: 22pp.

Khalil, I., A. Sahm and R. Boehm (2006). Wet or Dry Cooling. Proceedings of ISEC 2006, International Solar Energy Conference, July 8-13, 2006, Denver, CO: 8pp.

King, C., I. Duncan and M. Webber (2008). Water Demand Projections for Power Generation in Texas. Austin, TX, Texas Water Development Board: 90pp.

Kozubal, E. and C. Kustcher (2003). Analysis of a Water-Cooled Condenser in Series with an Air-Cooled Condenser for a Proposed 1-MW Geothermal Power Plant. International Collaboration for Geothermal Energy in the Americas: Proceedings of the Geothermal Resources Council 2003 Annual Meeting, 12-15 October 2003, Morelia, Michoacan, Mexico. GRC Transactions, Vol. 27, Davis, CA, Geothermal Resources Council: 587-591.

Krewitt, W., P. Mayerhofer, R. Friedrich, A. Trukenmuller, T. Heck, A. Grebmann, F. Raptis, F. Kaspar, J. Sachau, K. Rennings, et al. (1997). Externe National Implementation: Germany. ExternE: Externalities of Energy. Luxembourg, European Commission, Directorate-General XII. 20: 189pp.

Page 45: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-45

Kustcher, C. and A. Buys (2006). Analysis of Wet/Dry Hybrid Cooling for a Parabolic Trough Power Plant. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 44pp.

Kustcher, C. and D. Costenaro (2002). Assessment of Evaporative Cooling Enhancement Methods for Air-Cooled Geothermal Power Plants. NREL/CP-550-32394. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 9pp.

Lamberton, M., D. Newman, S. Eden and J. Gelt (2010). The Water-Energy Nexus. Arroyo. Tuscon, AZ, Water Resources Research Center, The University of Arizona. 2010: 12pp.

Layton, D. W. and W. F. Morris (1980). Geothermal Power Production: Accidental Fluid Releases, Waste Disposal, and Water Use. 73rd Annnual Meeting of the American Institute of Chemical Engineers, Chicago, IL, November 16-20, 1980, Lawrence Livermore Laboratory: 32pp.

Leitner, A. (2002). Fuel from the Sky: Solar Power's Potential for Western Energy Supply. NREL/SR-550-32160. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 175pp.

Lenzen, M. (2008). Life Cycle Energy and Greenhouse Gas Emissions of Nuclear Energy: A Review. Energy Conversion and Management 49: 2178-2199.

Martins, A., M. Fernandes, V. Rodrigues and T. Ramos (1998). The National Implementation in the Eu of the Externe Accounting Framework: Implementation in Portugal of the Externe Accounting Framework. ExternE: Externalities of Energy. Luxembourg, European Commission, Directorate-General XII. 20: 204 pp.

Mavis, J. (2003). Water Use in Industries of the Future: Mining Industry. Industrial Water Management: A Systems Approach. C. M. Hill. New York, NY, Center for Waste Reduction Technologies, American Institute of Chemical Engineers: 48-52.

Meijer, A., M. A. J. Huijbregts, J. J. Schermer and L. Reijnders (2003). Life-Cycle Assessment of Photovoltaic Modules: Comparison of Mc-Si, Ingap and Ingap/Mc-Si Solar Modules. Progress in Photovoltaics: Research and Applications 11(4): 275-287.

Meridian Corporation (1989). Energy System Emissions and Materiel Requirements. Alexandria, VA, Meridian Corporation: 34pp.

Mishra, G. S., W. E. Glassley and S. Yeh (2011). Realizing the Geothermal Electricity Potential--Water Use and Consequences. Environmental Research Letters 6: 8pp.

Mohr, N. J., J. J. Schermer, M. A. J. Huijbregts, A. Meijer and L. Reijnders (2007). Life Cycle Assessment of Thin-Film Gaas and Gainp/Gaas Solar Modules. Progress in Photovoltaics: Research and Applications 15(2): 163-179.

Mudd, G. M. and M. Diesendorf (2009). Response to Comment on "Sustainability of Uranium Mining and Milling: Toward Quantifying Resources and Eco-Efficiency". Environmental Science & Technology 43(10): 3969-3970.

NETL (2007a). Cost and Performance Baseline for Fossil Energy Plants. DOE/NETL-2007/1281. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL). Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 1: 494pp.

NETL (2007b). Power Plant Water Usage and Loss Study, 2007 Update. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 89pp.

NETL (2008). Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements, 2008 Update. DOE/NETL-400/2008/1339. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 108pp.

NETL (2009a). Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements, 2009 Update. DOE/NETL-400/2009/1339. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 68pp.

NETL (2009b). Existing Plants, Emissions and Capture - Setting Water-Energy R&D Program Goals. DOE/NETL-2009/1372. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 21pp.

Page 46: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-46

NETL (2009c). NETL Life Cycle Inventory Data – Unit Process: Underground Mine, Illinois No. 6 Bituminous Coal, Operation. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL).

NETL (2010a). Cost and Performance Baseline for Fossil Energy Plants. DOE/NETL-2010/1397. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL). Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2: 600pp.

NETL (2010b). Life Cycle Analysis: Existing Pulverized Coal (EXPC) Power Plant. DOE/NETL-403-110809. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 112pp.

NETL (2010c). Life Cycle Analysis: Integrated Gasification Combined Cycle (Igcc) Power Plant. DOE/NETL-403/110209. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 108pp.

NETL (2010d). Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant. DOE/NETL-403-110509. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 151pp.

NETL (2010e). Life Cycle Analysis: Supercritical Pulverized Coal (Scpc) Power Plant. DOE/NETL-403-110609. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 108pp.

NETL (2010f). NETL Life Cycle Inventory Data – Unit Process: Natural Gas Sweetening. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL).

NETL (2010g). NETL Life Cycle Inventory Data – Unit Process: Uranium Open Pit Mining and Milling, Operation. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL).

NETL (2012a). Role of Alternative Energy Sources: Geothermal Technology Assessment. DOE/NETL-2012/1531. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 37pp.

NETL (2012b). Role of Alternative Energy Sources: Nuclear Technology Assessment. DOE/NETL-2011/1502. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 67pp.

NETL (2012c). Role of Alternative Energy Sources: Solar Thermal Technology Assessment. DOE/NETL-2012/1532. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 33pp.

NETL (2012d). Role of Alternative Energy Sources: Wind Technology Assessment. DOE/NETL-2012/1531. Pittsburgh, PA, U.S. Department of Energy, National Energy Technology Laboratory (NETL): 37pp.

Nicot, J.-P., A. K. Hebel, S. M. Ritter, S. Walden, R. Baier, P. Galusky, J. Beach, R. Kyle, L. Symank and C. Breton (2011). Current and Projected Water Use in the Texas Mining and Oil and Gas Industry. Austin, TX, Texas Water Development Board (TWDB): 357pp.

Noble Energy Inc. and CSU (2012). Lifecycle Analysis of Water Use and Intensity of Noble Energy Oil and Gas Recovery in Wattenberg Field of Northern Colorado. Fort Collins, CO, Noble Energy, Inc., and Colorado State University (CSU): 121pp.

ORNL and RFF (1994). Estimating Externalities of Coal Fuel Cycles. External Costs and Benefits of Fuel Cycles. R. Lee. Oak Ridge, TN, Oak Ridge National Laboratory (ORNL) and Resources for the Future (RFF): 719pp.

Pacca, S., D. Sivaraman and G. Keoleian (2006). Life Cycle Assessment of the 33 Kw Photovoltaic System on the Dana Building at the University of Michigan: Thin Film Laminates, Multi-Crystalline Modules, and Balance of System Components. CSS05-09. Ann Arbor, University of Michigan, Center for Sustainable Systems: 116pp.

Page 47: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-47

Palmer, R., I. James and R. Hirsch (1977). Comparative Assessment of Water Use and Environmental Implications of Coal Slurry Pipelines. Open-File Report 77-698. Reston, VA, U.S. Geological Survey (USGS): 29pp.

Paoli, C., P. Vassallo and M. Fabiano (2008). Solar Power: An Approach to Transformity Evaluation. Ecological Engineering 34(3): 191-206.

Pasqualetti, M. and S. Kelley (2007). The Water Costs of Electricity in Arizona. Phoenix, Arizona, Arizona State University, School of Geographical Sciences: 2pp.

Pingoud, K., H. Malkki, M. Wihersaari, M. Hongisto, S. Siitonen, A. Lehtila, M. Johansson, P. Pirila and T. Otterstrom (1999). Externe National Implementation: Finland. ExternE: Externalities of Energy. VTT Publications 381. Luxembourg, European Commission, Directorate-General XII: 131pp.

Raugei, M., S. Bargigli and S. Ulgiati (2005a). Energy and Life Cycle Assessment of Thin Film Cdte Photovoltaic Modules. Siena, Italy, Energy and Environment Research Unit, Department of Chemistry, University of Siena: 4pp.

Raugei, M., S. Bargigli and S. Ulgiati (2005b). A Multi-Criteria Life Cycle Assessment of Molten Carbonate Fuel Cells (Mcfc): A Comparison to Natural Gas Turbines. International Journal of Hydrogen Energy 30(2): 123-130.

Raugei, M., S. Bargigli and S. Ulgiati (2007). Life Cycle Assessment and Energy Pay-Back Time of Advanced Photovoltaic Modules: Cdte and Cis Compared to Poly-Si. Energy 32(8): 1310-1318.

Rio Carrillo, A. M. and C. Frei (2009). Water: A Key Resource in Energy Production. Energy Policy 37(11): 4303-4312.

Roes, A. L., E. A. Alsema, K. Blok and M. K. Patel (2009). Ex-Ante Environmental and Economic Evaluation of Polymer Photovoltaics. Progress in Photovoltaics 17(6): 372-393.

Sahm, A., A. Gray, R. Boehm and K. Stone (2005). Cleanliness Maintenance for an Amonix Lens System. ISEC2005-76036. Orlando, FL, Proceedings of ISEC2005 2005 International Solar Energy Conference, August 6-12, 2005: 6pp.

Sargent & Lundy LLC (2003). Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. NREL/SR-550-34440. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 344pp.

Schaffner, B., K. Persson, U. Nilsson and J. Peterson (2002). Environmental and Health Impacts of Electricity Generation: A Comparison of the Environmental Impacts of Hydropower with Those of Other Generation Technologies, International Energy Agency (IEA): 221pp.

Schneider, E., B. Carlsen and E. Tavrides (2010). Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle. INL/EXT-10-20652. Idaho Falls, ID, U.S. Department of Energy (DOE), Idaho National Laboratory: 131pp.

SECDA (1994). Levelized Cost and Full Fuel Cycle Environmental Impacts of Saskatchewan's Electric Supply Options. T800-94-004. Saskatoon, Saskatchewan, Canada, Saskatchewan Energy Conservation and Development Authority: 205pp.

SENES Consultants Limited (2005). Methods to Assess the Impacts on the Natural Environment of Generation Options. Richmond Hill, Ontario (Canada), Prepared by SENES Consultants for the Ontario Power Authority: 166pp.

Sengul, H. (2009). Life Cycle Analysis of Quantum Dot Semiconductor Materials. Chicago, University of Illinois. PhD Thesis: 255pp.

Solar Millennium LLC (2008). Updated Plan of Development, Amargosa - Farm Road Solar Project. NVN-84359. Las Vegas, NV, U.S. Department of Interior, Bureau of Land Management (BLM): 121pp.

Spath, P. L., M. K. Mann and D. L. Kerr (1999). Life Cycle Assessment of Coal Fired Power Production. NREL/TP-570-25119. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 172pp.

Statistics Canada (2012a). Industrial Water Use: 2007. 16-401-X. Ottawa, Canada, Statistics Canada: Environment Accounts and Statistics Division: 61pp.

Page 48: Life Cycle Water Use for Electricity Generation: A Review ...iopscience.iop.org/1748-9326/8/1/015031/media/erl454478suppdata.pdf · Life Cycle Water Use for Electricity Generation:

SD-48

Statistics Canada (2012b). Industrial Water Use: 2009. 16-401-X. Ottawa, Canada, Statistics Canada: Environment Accounts and Statistics Division: 61pp.

Stoddard, L., J. Abiecunas and R. O'Connell (2006). Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California. NREL/SR-550-39291. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 69pp.

Tolba, M. K. (1985). The Environmental Impacts of Production and Use of Energy. Part IV - the Comparative Assessment of the Environmental Impacts of Energy Sources, Phase 1 - Comparative Data on the Emissions, Residuals and Health Hazards of Energy Sources. Energy Report Series. ERS 14-85. Nairobi, Kenya, United Nations Environment Programme: 544pp.

Turchi, C. (2010). Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (Sam). NREL/TP-550-47605. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 108pp.

Turchi, C. S., M. J. Wagner and C. F. Kustcher (2010). Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses. NREL/TP-550-49468. Golden, CO, U.S. Department of Energy, National Renewable Energy Laboratory (NREL): 102pp.

TWDB (2003). Power Generation Water Use in Texas for the Years 2000 through 2060: Final Report. Austin, TX, Texas Water Development Board (TWDB): 141pp.

TWDB (2007). Northern Trinity/Woodbine Gam Assessment of Groundwater Use in the Northern Trinity Aquifer Due to Urban Growth and Barnett Shale Development. Austin, TX, Texas Water Development Board (TWDB): 50pp.

TWDB (2012). Water for Texas 2012 State Water Plan. Austin, TX, Texas Water Development Board (TWDB): 299pp.

van Engelenburg, B. C. W. and E. Nieuwlaar (1992). Environmental Aspects of Energy Supply: Conventional and Future Options. Utrecht, The Netherlands, University of Utrecht: 117pp.

Vattenfall AB (2007). Vattenfall Ab Generation Nordic Certified Environmental Product Declaration, Epd, of Electricity from Forsmark Nuclear Power Plant. S-P-00026. Stockholm, Sweden, Vattenfall: 4pp.

Vattenfall AB (2010). Vattenfall Wind Power Certified Environmental Product Declaration Epd of Electricity from Vattenfall's Wind Farms. S-P-00183. Stockholm, Sweden, Vattenfall: 51pp.

Vestas Wind Systems A/S (2006a). Life Cycle Assessment of Electricity Produced from Onshore Sited Wind Power Plants Based on Vestas V82-1.65 MW Turbines. Denmark, Vestas Wind Systems A/S: 77pp.

Vestas Wind Systems A/S (2006b). Life Cycle Assessment of Offshore and Onshore Sited Wind Power Plants Based on Vestas V90-3.0 MW Turbines. Denmark, Vestas Wind Systems A/S: 60pp.

Viebahn, P., S. Kronshage and F. Trieb (2008). Final Report on Technical Data, Costs, and Life Cycle Inventories of Solar Thermal Power Plants. Project No: 502687, New Energy Externalities Developments for Sustainability. Project Co-funded by the European Commission within the Sixth Framework Programme (2002-2006): 95pp.

WorleyParsons (2009a). Analysis of Wet and Dry Condensing 125 MW Parabolic Trough Power Plants. North Sydney, Australia, WorleyParsons.

WorleyParsons (2009b). Beacon Solar Energy Project Dry Cooling Evaluation. FPLS-0-LI-450-0001 Rev B. North Sydney, Australia, WorleyParsons: 18pp.

WorleyParsons (2010). Material Input for Life Cycle Assessment Task 5 Subtask 2: O&M Schedules. North Sydney, Australia, WorleyParsons.

WRA (2008). A Sustainable Path: Meeting Nevada's Water and Energy Demands. Boulder, CO, Western Resource Advocates (WRA): 44pp.