life cycle of oil and gas fields 1 in 1 the 1 mississippi 1 river 1 delta: 1 a 1 review 1 ·...

30
Water 2020, 12, 1492; doi:10.3390/w12051492 www.mdpi.com/journal/water Review Life Cycle of Oil and Gas Fields in the Mississippi River Delta: A Review John W. Day 1, *, H. C. Clark 2 , Chandong Chang 3 , Rachael Hunter 4, * and Charles R. Norman 5 1 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX 77005, USA; [email protected] 3 Department of Geological Sciences, Chungnam National University, Daejeon 34134, Korea; [email protected] 4 Comite Resources, Inc., P.O. Box 66596, Baton Rouge, LA 70896, USA 5 Charles Norman & Associates, P.O. Box 5715, Lake Charles LA 70606, USA; [email protected] * Correspondence: [email protected] (J.W.D.); [email protected] (R.H.) Received: 20 April 2020; Accepted: 20 May 2020; Published: 23 May 2020 Abstract: Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water. Changes in surface hydrology are related to canal dredging and spoil placement. As canal density increases, the density of natural channels decreases. Interconnected canal networks often lead to saltwater intrusion. Spoil banks block natural overland flow affecting exchange of water, sediments, chemicals, and organisms. Lower wetland productivity and reduced sediment input leads to enhanced surficial subsidence. Spoil banks are not permanent but subside and compact over time and many spoil banks no longer have subaerial expression. Fluid withdrawal from O&G formations leads to induced subsidence and fault activation. Formation pore pressure decreases, which lowers the lateral confining stress acting in the formation due to poroelastic coupling between pore pressure and stress. This promotes normal faulting in an extensional geological environment like the MRD, which causes surface subsidence in the vicinity of the faults. Induced reservoir compaction results in a reduction of reservoir thickness. Induced subsidence occurs in two phases especially when production rate is high. The first phase is compaction of the reservoir itself while the second phase is caused by a slow drainage of pore pressure in bounding shales that induces timeȬdelayed subsidence associated with shale compaction. This second phase can continue for decades, even after most O&G has been produced, resulting in subsidence over much of an oil field that can be greater than surface subsidence due to altered hydrology. Produced water is water brought to the surface during O&G extraction and an estimated 2 million barrels per day were discharged into Louisiana coastal wetlands and waters from nearly 700 sites. This water is a mixture of either liquid or gaseous hydrocarbons, high salinity (up to 300 ppt) water, dissolved and suspended solids such as sand or silt, and injected fluids and additives associated with exploration and production activities and it is toxic to many estuarine organisms including vegetation and fauna. Spilled oil has lethal and subȬlethal effects on a wide range of estuarine organisms. The cumulative effect of alterations in surface hydrology, induced subsidence, and toxins interact such that overall impacts are enhanced. Restoration of coastal wetlands degraded by O&G activities should be informed by these impacts.

Upload: others

Post on 15-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

ȱȱ

Waterȱ2020,ȱ12,ȱ1492;ȱdoi:10.3390/w12051492ȱ www.mdpi.com/journal/waterȱ

Reviewȱ

LifeȱCycleȱofȱOilȱandȱGasȱFieldsȱinȱtheȱMississippiȱRiverȱDelta:ȱAȱReviewȱJohnȱW.ȱDayȱ1,*,ȱH.ȱC.ȱClarkȱ2,ȱChandongȱChangȱ3,ȱRachaelȱHunterȱ4,*ȱandȱCharlesȱR.ȱNormanȱ5ȱ1ȱ DepartmentȱofȱOceanographyȱandȱCoastalȱSciences,ȱLouisianaȱStateȱUniversity,ȱBatonȱRouge,ȱ ȱ

LAȱ70803,ȱUSAȱ2ȱ DepartmentȱofȱEarth,ȱEnvironmentalȱandȱPlanetaryȱScience,ȱRiceȱUniversity,ȱHouston,ȱTXȱ77005,ȱUSA;ȱ

[email protected]ȱ3ȱ DepartmentȱofȱGeologicalȱSciences,ȱChungnamȱNationalȱUniversity,ȱDaejeonȱ34134,ȱKorea;ȱ

[email protected]ȱ4ȱ ComiteȱResources,ȱInc.,ȱP.O.ȱBoxȱ66596,ȱBatonȱRouge,ȱLAȱ70896,ȱUSAȱ5ȱ CharlesȱNormanȱ&ȱAssociates,ȱP.O.ȱBoxȱ5715,ȱLakeȱCharlesȱLAȱ70606,ȱUSA;ȱ[email protected]ȱ*ȱ Correspondence:ȱ[email protected]ȱ(J.W.D.);ȱ[email protected]ȱ(R.H.)ȱ

Received:ȱ20ȱAprilȱ2020;ȱAccepted:ȱ20ȱMayȱ2020;ȱPublished:ȱ23ȱMayȱ2020ȱ

Abstract:ȱOilȱandȱgasȱ(O&G)ȱactivityȱhasȱbeenȱpervasiveȱinȱtheȱMississippiȱRiverȱDeltaȱ(MRD).ȱHereȱweȱreviewȱtheȱlifeȱcycleȱofȱO&GȱfieldsȱinȱtheȱMRDȱfocusingȱonȱtheȱproductionȱhistoryȱandȱresultingȱenvironmentalȱ impactsȱandȱ showȱhowȱcumulativeȱ impactsȱaffectȱcoastalȱecosystems.ȱ Individualȱfieldsȱcanȱlastȱ40–60ȱyearsȱandȱmostȱwellsȱareȱinȱtheȱfinalȱstagesȱofȱproduction.ȱProductionȱincreasedȱrapidlyȱ reachingȱaȱpeakȱaroundȱ1970ȱandȱ thenȱdeclined.ȱProducedȱwaterȱ laggedȱO&GȱandȱwasȱgenerallyȱhigherȱduringȱdecliningȱO&Gȱproduction,ȱmakingȱupȱaboutȱ70%ȱofȱtotalȱliquids.ȱMuchȱofȱtheȱwetlandȱlossȱinȱtheȱdeltaȱisȱassociatedȱwithȱO&Gȱactivities.ȱTheseȱhaveȱcontributedȱinȱthreeȱmajorȱwaysȱtoȱwetlandȱlossȱincludingȱalterationȱofȱsurfaceȱhydrology,ȱinducedȱsubsidenceȱdueȱtoȱfluidsȱremovalȱandȱfaultȱactivation,ȱandȱtoxicȱstressȱdueȱtoȱspilledȱoilȱandȱproducedȱwater.ȱChangesȱ inȱsurfaceȱhydrologyȱareȱrelatedȱtoȱcanalȱdredgingȱandȱspoilȱplacement.ȱAsȱcanalȱdensityȱincreases,ȱtheȱdensityȱ ofȱ naturalȱ channelsȱ decreases.ȱ Interconnectedȱ canalȱ networksȱ oftenȱ leadȱ toȱ saltwaterȱintrusion.ȱ Spoilȱ banksȱ blockȱ naturalȱ overlandȱ flowȱ affectingȱ exchangeȱ ofȱ water,ȱ sediments,ȱchemicals,ȱ andȱ organisms.ȱ Lowerȱ wetlandȱ productivityȱ andȱ reducedȱ sedimentȱ inputȱ leadsȱ toȱenhancedȱsurficialȱsubsidence.ȱSpoilȱbanksȱareȱnotȱpermanentȱbutȱsubsideȱandȱcompactȱoverȱtimeȱandȱmanyȱspoilȱbanksȱnoȱlongerȱhaveȱsubaerialȱexpression.ȱFluidȱwithdrawalȱfromȱO&Gȱformationsȱleadsȱtoȱinducedȱsubsidenceȱandȱfaultȱactivation.ȱFormationȱporeȱpressureȱdecreases,ȱwhichȱlowersȱtheȱ lateralȱ confiningȱ stressȱ actingȱ inȱ theȱ formationȱ dueȱ toȱ poroelasticȱ couplingȱ betweenȱ poreȱpressureȱandȱstress.ȱThisȱpromotesȱnormalȱfaultingȱinȱanȱextensionalȱgeologicalȱenvironmentȱlikeȱtheȱ MRD,ȱ whichȱ causesȱ surfaceȱ subsidenceȱ inȱ theȱ vicinityȱ ofȱ theȱ faults.ȱ Inducedȱ reservoirȱcompactionȱresultsȱinȱaȱreductionȱofȱreservoirȱthickness.ȱInducedȱsubsidenceȱoccursȱinȱtwoȱphasesȱespeciallyȱwhenȱproductionȱrateȱisȱhigh.ȱTheȱfirstȱphaseȱisȱcompactionȱofȱtheȱreservoirȱitselfȱwhileȱtheȱsecondȱphaseȱ isȱcausedȱbyȱaȱslowȱdrainageȱofȱporeȱpressureȱinȱboundingȱshalesȱthatȱ inducesȱtimeȬdelayedȱ subsidenceȱassociatedȱwithȱ shaleȱ compaction.ȱThisȱ secondȱphaseȱ canȱ continueȱ forȱdecades,ȱevenȱafterȱmostȱO&Gȱhasȱbeenȱproduced,ȱresultingȱinȱsubsidenceȱoverȱmuchȱofȱanȱoilȱfieldȱthatȱ canȱbeȱgreaterȱ thanȱ surfaceȱ subsidenceȱdueȱ toȱalteredȱhydrology.ȱProducedȱwaterȱ isȱwaterȱbroughtȱ toȱ theȱ surfaceȱduringȱO&Gȱextractionȱandȱanȱestimatedȱ2ȱmillionȱbarrelsȱperȱdayȱwereȱdischargedȱintoȱLouisianaȱcoastalȱwetlandsȱandȱwatersȱfromȱnearlyȱ700ȱsites.ȱThisȱwaterȱisȱaȱmixtureȱofȱ eitherȱ liquidȱ orȱ gaseousȱ hydrocarbons,ȱ highȱ salinityȱ (upȱ toȱ 300ȱ ppt)ȱwater,ȱ dissolvedȱ andȱsuspendedȱsolidsȱsuchȱasȱsandȱorȱsilt,ȱandȱinjectedȱfluidsȱandȱadditivesȱassociatedȱwithȱexplorationȱandȱproductionȱ activitiesȱ andȱ itȱ isȱ toxicȱ toȱmanyȱ estuarineȱorganismsȱ includingȱvegetationȱ andȱfauna.ȱSpilledȱoilȱhasȱ lethalȱandȱ subȬlethalȱ effectsȱonȱ aȱwideȱ rangeȱofȱ estuarineȱorganisms.ȱTheȱcumulativeȱeffectȱofȱalterationsȱinȱsurfaceȱhydrology,ȱinducedȱsubsidence,ȱandȱtoxinsȱinteractȱsuchȱthatȱoverallȱ impactsȱ areȱ enhanced.ȱRestorationȱofȱ coastalȱwetlandsȱdegradedȱbyȱO&Gȱ activitiesȱshouldȱbeȱinformedȱbyȱtheseȱimpacts.ȱ

Page 2: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 2ȱ ofȱ 30ȱ

Keywords:ȱ oilȱ andȱ gasȱ production;ȱ producedȱ water;ȱ oilȱ andȱ gasȱ wetlandȱ impacts;ȱ inducedȱsubsidence;ȱwetlandȱrestorationȱ�

1.ȱIntroductionȱ

TheȱfirstȱsuccessfulȱoilȱwellȱwasȱdrilledȱinȱLouisianaȱinȱ1901ȱinȱsouthwesternȱLouisiana,ȱinȱtheȱJenningsȱfieldȱandȱmarkedȱtheȱbeginningȱofȱoilȱandȱgasȱ(O&G)ȱproductionȱinȱLouisianaȱthat,ȱbyȱtheȱmidȬ20thȱcentury,ȱwasȱtheȱstate’sȱprimaryȱindustryȱ[1].ȱProductionȱofȱpetroleumȱhasȱbeenȱwidespreadȱinȱ theȱMississippiȱRiverȱDeltaȱ (MRD)ȱandȱ thereȱ isȱaȱdenseȱnetworkȱofȱpipelinesȱbothȱ inshoreȱandȱoffshoreȱ(Figureȱ1).ȱHydrocarbonȱextractionȱinȱtheȱMRDȱnecessitatedȱtheȱdredgingȱofȱcanalsȱthroughȱwetlandsȱandȱwaterbodiesȱforȱnavigation,ȱpipelines,ȱandȱO&Gȱextraction.ȱAsȱcanalsȱwereȱdredged,ȱspoilȱmaterialȱfromȱcanalsȱwasȱplacedȱonȱtheȱsideȱofȱcanalsȱpartiallyȱimpoundingȱwetlands;ȱalteringȱnaturalȱ hydrologyȱ andȱ salinity;ȱ decreasingȱ nutrient,ȱ organicȱ matter,ȱ andȱ sedimentȱ exchange;ȱchangingȱvegetationȱcompositionȱandȱreducingȱvegetationȱproductivityȱ(e.g.,ȱ[2–5]).ȱ

ToȱunderstandȱtheȱimpactsȱofȱO&GȱactivityȱonȱMRDȱwetlands,ȱitȱisȱimportantȱtoȱrecognizeȱthatȱwetlandȱdegradationȱinȱO&Gȱfieldsȱoccurredȱmuchȱmoreȱrapidlyȱ(decades)ȱthanȱtheȱnaturalȱdeltaicȱcycle,ȱwhichȱ tookȱplaceȱoverȱ centuriesȱ toȱmillenniaȱ [5–10].ȱNaturallyȬoccurringȱgeologicȱ faulting,ȱsedimentȱcompaction,ȱtheȱdeltaȱlobeȱcycle,ȱvariabilityȱinȱriverȱdischarge,ȱglobalȱseaȬlevelȱchange,ȱtidalȱexchange,ȱwaveȱerosion,ȱandȱstormsȱsuchȱasȱhurricanesȱandȱfrontalȱpassagesȱhaveȱshapedȱtheȱMRDȱlandscapeȱforȱthousandsȱofȱyearsȱ[5–15].ȱHowever,ȱ inȱ lessȱthanȱaȱcentury,ȱmoreȱthanȱ30,000ȱkmȱofȱcanalsȱwereȱdredgedȱinȱtheȱMRDȱ[16–18],ȱcausingȱdramaticȱwetlandȱlossȱ(e.g.,ȱ[9])ȱdueȱtoȱcumulativeȱeffectsȱ[4,19]ȱofȱalteredȱsurfaceȱhydrology,ȱinducedȱsubsidenceȱandȱfaultȱactivationȱ[20],ȱandȱtoxicityȱofȱproducedȱwaterȱandȱspilledȱoilȱ[21–23].ȱ ȱ

ȱ

Figureȱ 1.ȱ (a)ȱ Mapȱ ofȱ oilȱ andȱ gasȱ pipelinesȱ inȱ coastalȱ Louisianaȱ(http://www.dnr.louisiana.gov/assets/docs/oilgas/data/SLA_Pipelines.pdf)ȱandȱ(b)ȱtheȱdistributionȱofȱoilȱandȱgasȱwellȱpermitsȱissuedȱbetweenȱ1900ȱandȱ2017ȱthatȱwereȱ‘plugged’ȱorȱ‘abandoned’ȱasȱofȱ2017ȱinȱtheȱ14ȱcoastalȱparishesȱ[18].ȱ

Page 3: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 3ȱ ofȱ 30ȱ

OurȱobjectiveȱinȱthisȱpaperȱisȱtoȱreviewȱtheȱliteratureȱonȱtheȱlifeȱcycleȱofȱO&GȱfieldsȱinȱtheȱMRDȱbyȱ(1)ȱdescribingȱtheȱproductionȱhistoryȱofȱhydrocarbonsȱandȱproducedȱwaterȱandȱ(2)ȱreviewingȱtheȱimpactsȱofȱsurfaceȱalterations,ȱinducedȱsubsidence,ȱandȱtoxicȱmaterials.ȱAlthough,ȱtheseȱimpactsȱhaveȱbeenȱwellȱdocumented,ȱtheirȱinteractingȱaffectsȱhaveȱbeenȱlessȱwellȱaddressed.ȱThus,ȱanȱimportantȱobjectiveȱ isȱ toȱ considerȱ theirȱ cumulativeȱ andȱ indirectȱ impactsȱ onȱ coastalȱ ecosystems,ȱ especiallyȱwetlands,ȱinȱtheȱMRDȱandȱtoȱshowȱhowȱthisȱinformationȱinformsȱrestoration.ȱ ȱ

2.ȱProductionȱHistoryȱofȱOilȱandȱGasȱFieldsȱ

Hydrocarbonȱ extractionȱ hasȱ occurredȱ inȱ theȱMRDȱ forȱ overȱ aȱ century.ȱProductionȱ increasedȱrapidlyȱandȱthenȱdeclinedȱasȱreservesȱwereȱdepletedȱandȱfluidȱoutputȱwasȱdominatedȱbyȱproducedȱwaterȱ(Figuresȱ2ȱandȱ3).ȱThisȱisȱtrueȱforȱtheȱoverallȱproductionȱhistoryȱandȱforȱindividualȱfieldsȱthatȱwereȱactiveȱforȱ30–50ȱyearsȱorȱmore.ȱ

ȱFigureȱ2.ȱAnnualȱoilȱandȱgasȱproductionȱinȱsouthernȱLouisianaȱbetweenȱ1945ȱandȱ2019.ȱDataȱsource:ȱ(http://www.dnr.louisiana.gov/assets/TAD/OGTables/Table03.pdf).ȱ

WetlandȱlossȱinȱcoastalȱLouisianaȱhasȱbeenȱquantifiedȱ[19,24,25].ȱResearchersȱhaveȱusedȱdifferentȱproxiesȱofȱfieldȱdevelopmentȱtoȱcorrelateȱthisȱlandȱlossȱwithȱspecificȱoilȱandȱgasȱactivitiesȱ[26–29].ȱTheȱauthorsȱ ofȱ [30]ȱ reportedȱ theȱ highestȱ ratesȱ ofȱ wetlandȱ lossȱ inȱ theȱ MRDȱ correlatedȱ withȱ peakȱhydrocarbonȱproductionȱ(Figureȱ3).ȱInȱ[18]ȱitȱwasȱreportedȱthatȱtheȱannualȱnumberȱofȱwellȱdrillingȱpermits,ȱ aȱproxyȱ forȱproduction,ȱ correlatedȱwithȱwetlandȱ lossȱ ratesȱ (Figureȱ 4).ȱ Inȱ thisȱpaperȱweȱinvestigateȱtheȱfactorsȱcontributingȱtoȱtheseȱrelationships.ȱ

Page 4: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 4ȱ ofȱ 30ȱ

ȱFigureȱ3.ȱCompositeȱhistoriesȱofȱfluidȱproductionȱfromȱoilȱandȱgasȱfieldsȱandȱwetlandȱlossȱinȱsouthȱLouisiana.ȱProductionȱdataȱfromȱtheȱLouisianaȱDepartmentȱofȱNaturalȱResourcesȱandȱtheȱPI/DwightsȱPLUSȱdatabaseȱ [31].ȱWetlandȱ lossȱvaluesȱwereȱdeterminedȱbyȱ [32]ȱ andȱ JohnȱBarrasȱ (unpublishedȱdata).ȱ Theseȱ historicalȱ data,ȱ integratedȱ acrossȱ theȱ deltaȱ plain,ȱ showȱ closeȱ temporalȱ andȱ spatialȱcorrelationsȱbetweenȱratesȱofȱwetlandȱlossȱandȱratesȱofȱfluidȱproductionȱ[30].ȱNoteȱthatȱ“water”ȱinȱtheȱlegendȱrefersȱtoȱproducedȱwater.ȱ

ȱFigureȱ4.ȱTheȱnumberȱofȱoilȱandȱgasȱpermitsȱissuedȱannuallyȱandȱlandȱlossȱratesȱ[18].ȱ

Althoughȱindividualȱfieldsȱshowȱaȱsimilarȱpatternȱofȱproductionȱhistoryȱandȱwetlandȱloss,ȱtheyȱdifferȱinȱsomeȱdetailsȱasȱillustratedȱforȱfourȱdifferentȱfieldȱcomplexesȱ(Figureȱ5)ȱthatȱproducedȱO&Gȱoverȱ 4–6ȱ decades.ȱ Theȱ Bullyȱ Campȱ andȱ Madisonȱ Bayȱ areaȱ hadȱ increasedȱ producedȱ waterȱdevelopmentȱ inȱ theȱ secondȱhalfȱofȱ theirȱproductionȱhistory.ȱPeakȱwaterȱproductionȱ inȱ theȱBayouȱRambioȱandȱDuLargeȱfieldsȱcoincidedȱwithȱpeakȱgasȱinȱthisȱregionȱthatȱhadȱrelativelyȱlowȱoilȱcapture.ȱWaterȱproductionȱwasȱalsoȱhighȱinȱtheȱsecondȱhalfȱofȱtheȱproductionȱhistoryȱofȱthisȱarea.ȱTheȱpatternȱofȱwaterȱproductionȱinȱtheȱPointeȱauȱChienȱstudyȱareaȱwasȱsimilarȱtoȱgasȱproductionȱinȱtheȱsecondȱhalfȱofȱtheȱoilȱfieldȱlife.ȱInȱeachȱexampleȱthough,ȱtheȱproductionȱofȱoil,ȱgas,ȱandȱproducedȱwaterȱvariedȱoverȱtheȱfieldȱlifeȬcycle,ȱeachȱfieldȱbegan,ȱpeaked,ȱthenȱgraduallyȱdepletedȱoverȱdecades.ȱAllȱfieldsȱcombineȱtoȱyieldȱtheȱoverallȱhistoryȱofȱtheȱcoastalȱzoneȱ(Figuresȱ2ȱandȱ3).ȱAllȱfourȱfieldsȱillustrateȱtheȱconceptȱofȱaȱdevelopmentȱcycleȱ thatȱ includesȱaȱrunȬupȱ toȱpeakȱproductionȱ followedȱbyȱaȱgradualȱdecreaseȱtoȱtotalȱabandonment.ȱIndividualȱfieldsȱandȱtheȱaggregateȱofȱallȱfieldsȱfollowȱaȱsimilarȱlifeȱ

Page 5: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 5ȱ ofȱ 30ȱ

cycle.ȱ Theseȱ patternsȱ haveȱ importantȱ implicationsȱ forȱ theȱ impactsȱ ofȱ hydrocarbonȱ extractionȱ onȱcoastalȱecosystems,ȱespeciallyȱwetlands,ȱ forȱ threeȱmainȱ reasons.ȱFirst,ȱdredgingȱofȱcanalsȱ leadsȱ toȱsevereȱalterationȱofȱsurfaceȱhydrologyȱthatȱimpactsȱcoastalȱwetlands.ȱSecond,ȱextractionȱofȱfluidsȱ(oil,ȱgas,ȱ andȱwater)ȱ leadsȱ toȱ changesȱ inȱ poreȱ pressureȱ thatȱ resultȱ inȱ inducedȱ subsidenceȱ andȱ faultȱactivation.ȱThird,ȱaccidentalȱspillsȱandȱintentionalȱreleasesȱofȱoilȱandȱproducedȱwaterȱcauseȱtoxicityȱstressesȱ thatȱdegradeȱ coastalȱ ecosystems.ȱTheseȱ factorsȱ areȱdiscussedȱ inȱmoreȱdetailȱbelow,ȱ afterȱwhichȱweȱshowȱhowȱcumulativeȱandȱinteractingȱimpactsȱmultiplyȱtheȱindividualȱimpacts.ȱ ȱ

ȱ

Figureȱ5.ȱProductionȱhistoryȱofȱselectedȱoilȱandȱgasȱfieldsȱinȱtheȱMississippiȱdelta.ȱUpperȱleft—BullyȱCamp;ȱupperȱright—BayouȱRambioȱandȱDeLargeȱfields;ȱ lowerȱ left—MadisonȱBayȱfieldȱarea;ȱlowerȱright—PointeȱauȱChienȱstudyȱareaȱ[30].ȱNoteȱthatȱ“water”ȱinȱtheȱlegendsȱrefersȱtoȱproducedȱwater.ȱ

3.ȱPatternsȱofȱWetlandȱLossȱandȱOilȱandȱGasȱActivitiesȱ

Fromȱ1930ȱtoȱ2010ȱaboutȱaȱquarterȱ(aboutȱ5000ȱkm2)ȱofȱMRDȱcoastalȱmarshesȱwereȱlost,ȱmostlyȱbyȱ conversionȱ toȱopenȱwaterȱ [33,34]ȱwithȱ twoȱgeneralȱpatternsȱ (Figureȱ6).ȱWetlandȱ lossȱhasȱbeenȱpervasiveȱacrossȱtheȱcoastȱwithȱhighȱlossȱnearȱtheȱmouthȱofȱtheȱMississippiȱRiver,ȱinȱtheȱBaratariaȱandȱTerrebonneȱbasins,ȱandȱ inȱtheȱChenierȱPlain.ȱTwoȱareasȱstandȱoutȱwithȱmuchȱ lessȱ loss.ȱOneȱ isȱtheȱcentralȱ coastȱ thatȱ receivesȱ inputȱ fromȱ theȱAtchafalayaȱRiver,ȱwhichȱ carriesȱaboutȱaȱ thirdȱofȱ totalȱMississippiȱRiverȱdischarge,ȱthatȱflowsȱ intoȱshallowȱbaysȱandȱwetlandsȱoverȱaȱwideȱarcȱalongȱtheȱcentralȱLouisianaȱcoast.ȱTheȱotherȱzoneȱisȱonȱtheȱnortheasternȱflankȱofȱtheȱdeltaȱinȱtheȱseawardȱreachesȱofȱtheȱPontchartrainȱestuary.ȱ ȱ

Page 6: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 6ȱ ofȱ 30ȱ

ȱ ȱFigureȱ6.ȱWetlandȱlossȱinȱcoastalȱLouisianaȱfromȱ1932ȱtoȱ2016.ȱRedȱandȱyellowȱareasȱhaveȱhighȱlandȱlossȱrates.ȱNoteȱthatȱlandȱlossȱisȱlowȱinȱtheȱcentralȱcoastȱandȱinȱtheȱnortheasternȱflankȱofȱtheȱdelta.ȱ(Source:ȱ [33,34]ȱ Theȱmapȱ canȱ beȱ downloadedȱ atȱ https://pubs.usgs.gov/sim/3381/sim3381.pdfȱ forȱdetailedȱ examinationȱ ofȱ specificȱ areasȱ ofȱ change.ȱ Seeȱ alsoȱhttps://pubs.er.usgs.gov/publication/sim3381).ȱ

AȱnumberȱofȱstudiesȱhaveȱdiscussedȱtheȱcausesȱofȱwetlandȱlossȱandȱaddressedȱtheȱroleȱofȱO&Gȱactivitiesȱinȱthisȱlossȱ(Tableȱ1).ȱO&Gȱactivitiesȱreduceȱforcesȱleadingȱtoȱwetlandȱsustainabilityȱ(e.g.,ȱsedimentation,ȱaccretion,ȱvegetationȱbiomassȱproduction)ȱandȱenhanceȱforcesȱleadingȱtoȱdeteriorationȱ(e.g.,ȱincreasedȱsubsidence,ȱsaltwaterȱintrusion,ȱvegetationȱdecline,ȱtoxicityȱstresses).ȱO&Gȱimpactsȱonȱwetlandsȱ areȱ bothȱ directȱ andȱ indirect.ȱ Directȱ lossȱ isȱ dueȱ bothȱ toȱ canalȱ dredgingȱ andȱ spoilȱplacement,ȱwhileȱindirectȱimpactsȱincludeȱalterationȱofȱsurfaceȱhydrology,ȱinducedȱsubsidence,ȱandȱintroductionȱofȱtoxicȱsubstances.ȱDirectȱimpactsȱareȱreportedȱtoȱhaveȱcausedȱbetweenȱ6%ȱandȱ70%ȱorȱmoreȱlandȱlossȱwhileȱindirectȱimpactsȱhaveȱcausedȱbetweenȱ20%ȱandȱ80%ȱorȱmoreȱofȱwetlandȱlossȱ(Tableȱ1).ȱ ȱ

Tableȱ1.ȱEstimatesȱofȱtheȱpercentageȱofȱwetlandȱlossȱcausedȱbyȱallȱoilȱandȱgasȱactivitiesȱ(overall)ȱorȱbyȱdirectȱorȱindirectȱimpactsȱofȱoilȱandȱgasȱactivities.ȱ

LocationȱTimeȱPeriodȱ

OverallȱImpactsȱ(%ȱWetlandȱLoss)ȱ

DirectȱImpactsȱ(%ȱWetlandȱLoss)ȱ

IndirectȱImpactsȱ(%ȱWetlandȱLoss)ȱ

Sourceȱ

CoastalȱLouisianaȱ

1931–1967ȱ ȱ 69ȱ ȱ [35]ȱ

CoastalȱLouisianaȱ

ȱ 45ȱ ȱ ȱ [36]ȱ

CoastalȱLouisianaȱ

ȱ ȱ 10–69ȱ ȱ [37]ȱ

CoastalȱLouisianaȱ

ȱ ȱ 10ȱ upȱtoȱ80ȱ [38]ȱ

CoastalȱLouisianaȱ

1955–1978ȱ ȱ 10ȱ 48–97ȱ [39]ȱ

MississippiȱRiverȱDeltaicȱPlainȱ

1955/56–1978ȱ

ȱ 25–39ȱ ȱ [40]ȱ

CoastalȱLouisianaȱ

1932–1990ȱMajorityȱofȱlossesȱdueȱtoȱ

canalsȱȱ ȱ [18,26,27]ȱ ȱ

Page 7: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 7ȱ ofȱ 30ȱ

CoastalȱLouisianaȱ

1955–1978ȱ 20–60ȱ 14–16ȱ 20–60ȱ [16]ȱ

CoastalȱLouisianaȱ

1955–1978ȱ ȱ 16ȱ ȱ [41]ȱ

CoastalȱLouisianaȱ

1955–1978ȱ ȱ 6.6ȱ ȱ [42]ȱ

CoastalȱLouisianaȱ

1955–1978ȱ ȱ 16ȱ 30–59ȱ [43]ȱ

BretonȱSoundȱ

1933–1990ȱ 68ȱ ȱ ȱ [9]ȱ

BaratariaȱBasinȱ

1933–1990ȱ 72ȱ ȱ ȱ [9]ȱ

MermentauȱBasinȱ

1933–1990ȱ 35ȱ ȱ ȱ [9]ȱ

MississippiȱRiverȱDeltaicȱPlainȱ

1930–1990ȱ 33.2ȱ 10.8ȱ 22.4ȱ [24,25]ȱ

Wetlandȱlossȱpatternsȱareȱgenerallyȱsimilarȱtoȱtemporalȱpatternsȱofȱproductionȱ(Figureȱ7).ȱTheȱdifferentȱstudiesȱwereȱdoneȱusingȱdifferentȱmethodsȱandȱrepresentȱdifferentȱconceptualizationsȱofȱtheȱdeltaȱandȱsubȬareasȱsampled.ȱRegardlessȱofȱtheȱproxyȱusedȱtoȱdescribeȱtheȱoilȱandȱgasȱlifeȬcycle,ȱtheȱrelationȱtoȱlandȱlossȱisȱunmistakable.ȱTheȱratesȱofȱlandȱlossȱdifferȱbecauseȱtheyȱareȱforȱdifferentȱareasȱ(e.g.,ȱtotalȱcoastȱvs.ȱdeltaicȱandȱChenierȱplains)ȱandȱforȱdifferentȱtimeȱperiodsȱandȱtheȱstudyȱmethods,ȱthoughȱsimilar,ȱareȱnotȱtheȱsameȱ[32,34,44].ȱPeakȱlossȱoccurredȱgenerallyȱbetweenȱ1960ȱandȱ1980.ȱTheȱcurveȱforȱtotalȱO&GȱproductionȱisȱsharperȱthanȱthatȱofȱlandȱlossȱlikelyȱbecauseȱofȱdelayedȱimpactsȱofȱO&Gȱasȱwellȱasȱotherȱcausesȱofȱlandȱlossȱ(e.g.,ȱisolationȱfromȱriverineȱinput,ȱedgeȱerosion,ȱhurricaneȱimpacts).ȱ ȱ

ȱ

��

���

���

���

���

���

���

���

���

���

��

��

��

��

���

���

���

���

���� ���� ���� ���� ����

6RXWK�/RXLVLDQD�2LO�DQG�*DV�3URGXFWLRQ��2LO�EEOV �����

��*DV�PFI �����

/DQG�/RVV�5

DWH��NP��\HDU�

%ULWVFK�DQG�'XQEDU�����'HOWD�FKDQJH�UDWH

%ULWVFK�DQG�'XQEDU�����&KHQLHU�FKDQJHUDWH%ULWVFK�DQG�'XQEDU�����7RWDO�&RDVWFKDQJH�UDWH%DUUDV�HW�DO������'HOWDFKDQJH�UDWH

�%DUUDV�HW�DO�����&KHQLHU�FKDQJH�UDWH

%DUUDV�HW�DO������7RWDO&RDVW�FKDQJH�UDWH

%DUUDV�GHOWD�KXUULFDQHV

Page 8: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 8ȱ ofȱ 30ȱ

Figureȱ7.ȱOilȱandȱgasȱproductionȱandȱ landȱ lossȱstudiesȱforȱcoastalȱLouisiana.ȱLossȱvaluesȱareȱfromȱ[32,34,44]ȱwhereȱrateȱvaluesȱrepresentȱanȱaverageȱoverȱtheȱtimeȱintervalȱshown.ȱProductionȱdataȱareȱfromȱLouisianaȱDepartmentȱofȱNaturalȱResources.ȱTheseȱhistoricalȱdataȱ showȱ closeȱ temporalȱandȱspatialȱcorrelationsȱbetweenȱratesȱofȱwetlandȱlossȱandȱratesȱofȱhydrocarbonȱproduction.ȱ

4.ȱIndirectȱImpactsȱofȱOilȱandȱGasȱExplorationȱandȱProductionȱonȱCoastalȱLouisianaȱWetlandsȱ

4.1.ȱAlterationȱofȱSurfaceȱHydrologyȱDueȱtoȱCanalȱDredgingȱandȱSpoilȱPlacementȱ

MRDȱwetlandsȱareȱdependentȱonȱsheetȱflowȱforȱexchangeȱofȱwater,ȱsediments,ȱandȱnutrientsȱtoȱsustainȱwetlandȱhealth.ȱUnimpededȱwetlandȱhydrologyȱfacilitatesȱalternatingȱfloodingȱandȱdrainingȱofȱwetlands.ȱCanalsȱ andȱ spoilȱ banksȱ areȱ linearȱ andȱ intersecting,ȱ andȱ spoilȱ banksȱ areȱ higherȱ inȱelevationȱthanȱsurroundingȱwetlandsȱandȱnormalȱhighȱtidesȱ[4,9,15,45].ȱPlacementȱofȱdredgeȱspoilȱimpoundsȱwetlands,ȱreducingȱorȱeliminatingȱsurfaceȱwaterȱexchangeȱandȱtidalȱinfluence,ȱreducingȱsedimentȱdepositionȱontoȱwetlands,ȱimpedingȱtheȱexchangeȱofȱmaterialsȱ(e.g.,ȱnutrients,ȱsediments,ȱorganisms)ȱ betweenȱ semiȬimpoundedȱ marshesȱ andȱ theȱ surroundingȱ marsh,ȱ andȱ increasingȱinundationȱdurationȱwhileȱdecreasingȱinundationȱfrequencyȱ[2,4,16,46–50].ȱSpoilȱbanksȱtrapȱwater,ȱincreasingȱwaterȱloggingȱandȱdecreasingȱdrainage,ȱsedimentȱaccretion,ȱandȱvegetationȱproductivityȱ(Figureȱ8)ȱ[4,15,16,19,46,48,51–63].ȱAsȱsurfaceȱflowȱisȱminimizedȱbyȱspoilȱbanks,ȱwaterȱmayȱonlyȱbeȱintroducedȱ intoȱ impoundedȱwetlandsȱwhenȱwaterȱ levelsȱareȱ elevatedȱduringȱ frontalȱpassagesȱorȱmajorȱstorms.ȱ ȱ

ȱFigureȱ8.ȱTotalȱhoursȱflooded,ȱforȱoneȱmonth,ȱatȱaȱreferenceȱmarshȱwithȱaȱnaturalȱbermȱandȱaȱpartiallyȱimpoundedȱareaȱwhereȱaboutȱ75%ȱofȱtheȱnaturalȱbermȱhadȱbeenȱreplacedȱbyȱaȱdredgedȱcanalȱspoilȱbank,ȱGoldenȱMeadowȱoilȱandȱgasȱfieldȱsouthȱofȱNewȱOrleans,ȱLAȱ[52].ȱTheȱdashedȱlineȱshowsȱwhatȱtheȱrelationshipȱwouldȱbeȱifȱthereȱwereȱnoȱpartialȱimpoundment.ȱ

Dueȱtoȱspoilȱbanks,ȱaccretionȱinȱunȬimpoundedȱmarshesȱmayȱbeȱupȱtoȱfiveȱtimesȱhigherȱthanȱthatȱinȱ impoundedȱ marshesȱ [3,57,61,64–67].ȱ Canalsȱ alsoȱ promoteȱ saltwaterȱ intrusionȱ intoȱ wetlandsȱpreviouslyȱisolatedȱfromȱdirectȱexchangeȱwithȱhigherȱsalinityȱwatersȱ[2,4,27,47,48,68–71].ȱIncreasesȱinȱsalinityȱcauseȱchangesȱinȱvegetationȱcompositionȱandȱreducedȱproductivityȱand/orȱdeathȱofȱfreshȱandȱlowȱsalinityȱmarshȱspeciesȱandȱleadȱtoȱformationȱofȱopenȱwaterȱ[53,71–73].ȱIntroductionȱofȱsaltwaterȱincreasesȱsulfateȱconcentrations,ȱwhichȱcanȱbeȱreducedȱtoȱsulfidesȱinȱanaerobicȱsoils,ȱthatȱstressesȱandȱcausesȱmortalityȱtoȱlowȱsalinityȱwetlandȱvegetationȱ[73]ȱandȱrapidȱdecompositionȱandȱcollapseȱofȱsoilȱorganicȱmatterȱandȱsoilȱstructureȱpeatsȱ[74].ȱReducedȱvegetationȱproductivityȱandȱvegetationȱdeathȱexacerbateȱ landȱ lossȱbecauseȱplantȱrootsȱbindȱsoilsȱandȱ increaseȱsoilȱstrength.ȱWhenȱrootsȱdie,ȱtheȱwetlandȱrapidlyȱlosesȱelevationȱandȱisȱmoreȱvulnerableȱtoȱerosionȱ[74,75].ȱ

Overȱtime,ȱcanalsȱwidenȱasȱaȱresultȱofȱspoilȱbankȱundercutting,ȱerosion,ȱandȱcollapseȱcausingȱadditionalȱwetlandȱlossȱ[45,46].ȱLocalizedȱsubsidenceȱalongȱpipelineȱcanalsȱoccursȱalongȱtheȱflanksȱofȱspoilȱbanksȱwhenȱtheȱweightȱofȱtheȱspoilȱdepressesȱtheȱsurfaceȱofȱtheȱmarshȱandȱleadsȱtoȱtheȱformationȱ

Page 9: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 9ȱ ofȱ 30ȱ

ofȱlinearȱpondsȱbehindȱtheȱspoilȱbanksȱdueȱtoȱsubsidenceȱfromȱtheȱweightȱofȱtheȱspoil,ȱtrappingȱofȱwaterȱatȱtheȱbaseȱofȱspoilȱbanksȱandȱblockingȱofȱsedimentȱinputȱ[76].ȱTheȱauthorsȱofȱ[77]ȱdocumentedȱsoilȱ compactionȱbeneathȱ spoilȱbanksȱ createdȱmoreȱ impenetrableȱ soilsȱ thatȱ reducedȱgroundȱwaterȱmovement.ȱ Theseȱ processesȱ isolateȱ theȱ wetlandȱ behindȱ theȱ spoilȱ bankȱ fromȱ bothȱ aboveȬȱ andȱbelowgroundȱwaterȱexchange.ȱ

O&Gȱ canalsȱareȱdeep,ȱ straightȱ channelsȱwhileȱnaturalȱwaterwaysȱareȱprimarilyȱ shallowȱandȱsinuousȱ tidalȱ channelsȱ [4].ȱAsȱ canalȱdensityȱ increasesȱ inȱanȱarea,ȱ theȱdensityȱofȱnaturalȱ channelsȱdecreasesȱbecauseȱcanalsȱpreferentiallyȱcaptureȱwaterȱflowȱfromȱnaturalȱchannelsȱ(Figureȱ9)ȱ[37,52]ȱinȱaȱprocessȱ termedȱ ‘channelȱ theft’,ȱbecauseȱdeep,ȱstraightȱcanalsȱ transportȱwaterȱmoreȱefficientlyȱthanȱnaturalȱshallowȱandȱsinuousȱchannelsȱ[50].ȱ ȱ

ȱFigureȱ9.ȱTheȱrelationshipȱbetweenȱcanalȱdensityȱandȱtheȱdensityȱofȱnaturalȱchannels.ȱTheȱdataȱareȱaveragesȱofȱreplicateȱ1Ȭkm2ȱgridsȱ(numbersȱshownȱbyȱsymbol)ȱinȱtheȱregionȱofȱLeeville,ȱLA,ȱaȱsalineȱmarshȱareaȱ[37].ȱ

Onceȱdredged,ȱspoilȱbanksȱareȱnotȱpermanentȱfeaturesȱandȱhaveȱaȱlifeȱcycleȱofȱtheirȱown.ȱTheyȱdisappearȱoverȱtimeȱdueȱtoȱcompaction,ȱsubsidence,ȱseaȬlevelȱrise,ȱandȱerosion.ȱSpoilȱbanksȱprotectȱremnantȱmarshȱfromȱwaveȱerosionȱandȱasȱspoilȱbanksȱdisappearȱremnantȱmarshȱcanȱbeȱlostȱdueȱtoȱwaveȱattack,ȱleadingȱtoȱfurtherȱwetlandsȱloss.ȱInȱFigureȱ10,ȱsubaerialȱlandȱthatȱdisappearedȱbetweenȱtheȱtwoȱmappingȱdatesȱ(centerȱpanelȱinȱFigureȱ10)ȱinȱtheȱLeevilleȱFieldȱincludesȱbothȱspoilȱbanksȱandȱmarsh.ȱ

Page 10: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 10ȱ ofȱ 30ȱ

ȱFigureȱ10.ȱAerialȱimageryȱofȱaȱportionȱofȱtheȱLeevilleȱoilȱandȱgasȱfieldȱinȱsouthernȱLouisianaȱshowingȱtheȱdisappearanceȱofȱspoilȱbanksȱandȱmarshȱbetweenȱ1998ȱandȱ2017.ȱBayouȱLafourcheȱisȱinȱtheȱupperȱleftȱinȱeachȱofȱtheȱimagesȱ[5].ȱAreasȱdepictedȱinȱredȱinȱimageȱBȱdisappearedȱbetweenȱtheȱtwoȱdates.ȱRedȱlinearȱstripsȱareȱspoilȱbanksȱthatȱdisappeared.ȱGreenȱshowsȱsubaerialȱland,ȱbothȱspoilȱbanksȱandȱmarsh,ȱ thatȱwasȱ stillȱpresentȱ inȱ 2017.ȱTheȱSouthwestȱLouisianaȱCanalȱ atȱ theȱ topȱofȱ imageȱAȱwasȱdredgedȱinȱtheȱlateȱ19thȱcentury.ȱInȱ1998,ȱsomeȱspoilȱbanksȱalongȱtheȱcanalȱwereȱstillȱpresent,ȱbutȱbyȱ2017ȱtheyȱhadȱdisappeared.ȱLouisianaȱhighwayȱ1ȱisȱshownȱatȱtheȱupperȱleftȱinȱimageȱA.ȱByȱ2017,ȱaȱnew,ȱ elevatedȱ highwayȱ wasȱ constructedȱ (whiteȱ linesȱ inȱ Imageȱ C).ȱ Theȱ widthȱ ofȱ imagesȱ isȱapproximatelyȱ2.8ȱkm.ȱ

AsȱO&Gȱcanalsȱareȱsoȱpervasive,ȱitȱhasȱbeenȱsuggestedȱthatȱcanalsȱareȱresponsibleȱforȱpracticallyȱallȱwetlandsȱ loss.ȱForȱ example,ȱ theȱauthorsȱofȱ [18,27]ȱplottedȱ landȱ lossȱ fromȱ15Ȭminȱquadranglesȱagainstȱcanalȱdensityȱandȱconcludedȱthatȱlandȱ lossȱwasȱdirectlyȱrelatedȱtoȱtheȱpercentȱofȱcanalsȱinȱeachȱmap,ȱindicatingȱthatȱalmostȱallȱlandȱlossȱwasȱrelatedȱtoȱcanalsȱ(Figureȱ11).ȱHowever,ȱinȱ[5]ȱandȱ[9]ȱtheȱauthorsȱshowedȱthatȱthisȱapproachȱisȱflawedȱbecauseȱitȱstatisticallyȱrelatesȱallȱlandȱlossȱinȱ15Ȭminȱquadranglesȱ(whichȱcoverȱaboutȱ66,000ȱha)ȱtoȱcanalȱdensityȱinȱtheȱquadrangleȱevenȱwhenȱitȱisȱneitherȱ spatiallyȱorȱ functionallyȱ relatedȱ toȱ landȱ lossȱpatterns.ȱAdditionally,ȱasȱweȱdiscussȱbelow,ȱinducedȱ subsidenceȱ causesȱ landȱ lossȱ butȱ isȱ notȱ functionallyȱ relatedȱ toȱ surfaceȱ alterationsȱ inȱhydrology.ȱInȱaddition,ȱtoxicȱstressȱdueȱtoȱspilledȱoilȱandȱproducedȱwaterȱcauseȱvegetationȱstressȱandȱmortality.ȱ However,ȱ alteredȱ hydrology,ȱ inducedȱ subsidence,ȱ andȱ toxicȱ compoundsȱ interactȱsynergisticallyȱandȱcauseȱwetlandȱlossȱasȱindicatedȱbyȱtheȱinteractionsȱdemonstratedȱinȱtheȱLeevilleȱfieldȱ(Figureȱ10).ȱ ȱ

Page 11: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 11ȱ ofȱ 30ȱ

ȱFigureȱ11.ȱTheȱlandȱlossȱrateȱfromȱtheȱ1930sȱtoȱ1990ȱandȱcanalȱdensityȱinȱ15Ȭminȱquadrangleȱmaps.ȱTheȱauthorsȱofȱ[18]ȱconcludedȱthatȱthisȱdemonstratesȱthatȱmostȱwetlandsȱlossȱisȱdueȱtoȱcanals.ȱThisȱisȱincorrect,ȱhowever,ȱbecauseȱofȱtheȱlargeȱsizeȱofȱ15Ȭminȱquadrangleȱmapsȱandȱotherȱcausesȱofȱlandȱlossȱdueȱtoȱinducedȱsubsidenceȱandȱtoxicȱstress.ȱ

4.2.ȱOilȱandȱGasȱProductionȱInducedȱSubsidenceȱ

Oil,ȱgas,ȱandȱbrineȱextractionȱdepletesȱtheȱhydrocarbonȱreservoir,ȱoftenȱprecipitously,ȱresultingȱinȱpressureȱdrop,ȱcompaction,ȱandȱfaultȱactivationȱ(usuallyȱreactivation);ȱandȱthisȱchangeȱatȱdepthȱtranslatesȱupward,ȱmanifestingȱatȱtheȱsurfaceȱasȱsubsidenceȱandȱfaulting.ȱThatȱis,ȱwithoutȱpressureȱsupportȱtheȱdepletedȱreservoirȱcollapses,ȱandȱtheȱpressureȱdifferenceȱatȱtheȱnearbyȱassociatedȱfaultȱplaneȱnucleatesȱslippageȱthereȱ[4,20,28,30],ȱ leadingȱtoȱaȱsubtle,ȱandȱsometimesȱdramatic,ȱoverprintȱintegratedȱ withȱ otherȱ O&Gȱ relatedȱ processes.ȱ Observationsȱ generallyȱ confirmȱ theȱ relationshipȱbetweenȱfluidȱproductionȱandȱsubsidenceȱinȱcoastalȱLouisiana:ȱforȱexample,ȱwetlandȱlossȱisȱtypicallyȱhigherȱinȱtheȱvicinityȱofȱoilȱandȱgasȱfieldsȱ[9,20,29,78–83].ȱOnȱtheȱcoastalȱChenierȱPlain,ȱtheȱauthorsȱofȱ[83]ȱsuggestedȱthatȱpaleoȬseaȱlevelȱelevations,ȱverticallyȱoffsetȱbyȱ0.5–1ȱmȱonȱaȱtransectȱnearȱtheȱareaȱofȱmaximumȱoilȱandȱgasȱproduction,ȱwereȱinfluencedȱbyȱthisȱproduction.ȱLocalȱratesȱofȱmeasuredȱsubsidenceȱinȱoilȱandȱgasȱfieldsȱinȱsouthȱcentralȱLouisianaȱ(oftenȱmoreȱthanȱ20ȱmm/year)ȱwereȱmuchȱhigherȱthanȱregionalȱratesȱinȱtheȱMississippiȱRiverȱDeltaȱ(aboutȱ10ȱmm/year)ȱ[84].ȱInȱ[30]ȱtheȱauthorsȱanalyzedȱ relevelingȱ surveys,ȱ remoteȱ images,ȱ subsurfaceȱ maps,ȱ stratigraphicȱ sections,ȱ andȱhydrocarbonȱproductionȱdataȱ inȱrelationȱtoȱwetlandȱlossȱforȱtheȱTerrebonneȬLafourcheȱbasinsȱandȱfoundȱthatȱtheȱhighestȱratesȱofȱsubsidenceȱcoincidedȱwithȱtheȱlocationȱofȱoilȱandȱgasȱfieldsȱ(Figureȱ12)ȱ[30].ȱThisȱstudyȱalsoȱshowedȱthatȱsubsidenceȱratesȱwereȱgreaterȱinȱtheȱlaterȱepochȱ(1982–1993)ȱthanȱtheȱ earlierȱ (1965–1982);ȱ thatȱ is,ȱ subsidenceȱ acceleratedȱ lateȱ inȱ theȱ cycleȱ ofȱO&Gȱ production.ȱ Inȱ[20,30,84]ȱitȱwasȱconcludedȱthatȱtheseȱrapidȱchangesȱwereȱlikelyȱcausedȱbyȱinducedȱsubsidenceȱandȱfaultȱreactivationȱdueȱtoȱoilȱandȱgasȱactivity.ȱ

Page 12: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 12ȱ ofȱ 30ȱ

�Figureȱ12.ȱMapȱshowingȱaverageȱsubsidenceȱratesȱbetweenȱ1965ȱandȱ1993ȱinȱsouthȱLouisiana.ȱAreasȱofȱhighestȱsubsidenceȱratesȱ(>12ȱmm/year;ȱhatchedȱpattern)ȱcorrelateȱcloselyȱwithȱlocationsȱofȱoilȱandȱgasȱfields.ȱLowestȱaverageȱsubsidenceȱratesȱareȱlocatedȱbetweenȱmajorȱproducingȱfieldsȱ[30].ȱ

ElevationȱchangeȱrelatedȱtoȱfaultingȱinȱtheȱMRDȱisȱoftenȱmarkedȱbyȱanȱarcuateȱscarpȱseparatingȱmarshȱandȱwaterȱ[85],ȱwhileȱsubsidenceȱrelatedȱtoȱaȱreservoir’sȱcompactionȱisȱspreadȱoverȱandȱbeyondȱtheȱproductionȱareaȱ(upȱtoȱkilometersȱawayȱfromȱtheȱproducingȱwells)ȱ[20].ȱSubsidenceȱinvolvedȱwithȱO&Gȱfieldsȱtypicallyȱbeginsȱaroundȱtheȱtimeȱofȱpeakȱproductionȱ[84],ȱandȱcontinuesȱforȱanȱextendedȱtimeȱasȱtheȱfieldȱisȱdepleted,ȱoftenȱdecadesȱafterȱpeakȱproductionȱ[29,79,86],ȱthoughȱitȱtooȱreachesȱanȱultimateȱlimitȱ[79,84].ȱ ȱ

Theȱ Mississippiȱ Deltaȱ isȱ particularlyȱ susceptibleȱ toȱ subsidenceȱ andȱ faultingȱ sinceȱ rapidȱdepositionȱofȱsandsȱandȱclaysȱhasȱcreatedȱaȱweak,ȱmetastableȱsituationȱthatȱrespondedȱfromȱearlyȱinȱitsȱgeologicȱhistoryȱwithȱ“landslideȬlike”ȱfaultingȱ(downȱtoȱtheȱcoastȱlistricȱnormalȱfaulting)ȱparallelȱtoȱ theȱ coast,ȱ andȱ thatȱ faultingȱ hasȱ progressedȱupwardȱ asȱdepositionȱ continued—thatȱ is,ȱ growthȱfaultingȱ [14,87–89].ȱ Theȱ sedimentaryȱ sectionȱ developedȱ soȱ rapidlyȱ thatȱ thereȱwasȱ littleȱ timeȱ forȱconsolidation,ȱcementation,ȱorȱinȱmanyȱcases,ȱnormalȱpressureȱequilibration.ȱAtȱtheȱsameȱtime,ȱtheseȱfaultsȱandȱrelatedȱrolloverȱanticlinesȱonȱtheirȱdownthrownȱside,ȱformedȱhydrocarbonȱtraps,ȱtheȱbasisȱforȱmanyȱofȱtheȱpresentȬdayȱO&Gȱfieldsȱonȱtheȱdeltaȱ(Figureȱ13).ȱToȱaddȱcomplexity,ȱtheȱlowȱdensity,ȱeasilyȱdeformedȱLouannȱsaltȱlayerȱthatȱbeganȱnearȱtheȱbaseȱofȱtheȱgeologicȱsectionȱflowedȱupwardȱinȱvariousȱgeometries,ȱcreatingȱsaltȱdomesȱdraggingȱupȱsteeplyȱtiltedȱbeds,ȱfaults,ȱandȱanticlinalȱfeaturesȱthatȱ becameȱhydrocarbonȱ trapsȱ asȱwell.ȱGrowthȱ faultsȱ inȱ theȱdeltaȱmoveȱ episodicallyȱ overȱ theirȱlifetime,ȱandȱalongȱsegmentsȱaȱfewȱkilometersȱinȱlengthȱ(e.g.,ȱ[90]).ȱOverȱtheȱcycleȱofȱMRDȱpetroleumȱdevelopment,ȱaȱnumberȱofȱtheseȱgrowthȱfaultsȱrelatedȱtoȱoilȱandȱgasȱfieldsȱhaveȱbeenȱreactivated,ȱwithȱconsequentȱdisplacementȱandȱsurfaceȱsubsidenceȱonȱtheȱfaultȱdownthrownȱside.ȱTheȱmechanismȱofȱ reactivationȱ alongȱ theseȱ growthȱ faultsȱ isȱ expeditedȱ byȱ aȱ poroelasticȱ reductionȱ ofȱ horizontalȱconfiningȱ stress,ȱwhichȱoccursȱ asȱ aȱ resultȱofȱ theȱ fluidȱwithdrawalȱ andȱ consequentȱporeȱpressureȱdecreaseȱ[91,92].ȱThatȱis,ȱfaultsȱrelatedȱtoȱMRDȱO&Gȱfieldsȱthatȱbreakȱtheȱsurfaceȱtodayȱareȱmostlyȱ

Page 13: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 13ȱ ofȱ 30ȱ

reactivatedȱgrowthȱfaultsȱinvolvedȱwithȱtheȱreservoirsȱbelow—reservoirsȱthatȱtheseȱfaultsȱcreatedȱinȱtheȱfirstȱplace.ȱ ȱ

�Figureȱ 13.ȱ Typicalȱ Mississippiȱ Riverȱ Deltaȱ oilȱ andȱ gasȱ reservoir,ȱ aȱ rolloverȱ anticlineȱ onȱ theȱdownthrownȱ sideȱofȱaȱdownȬtoȬtheȬcoastȱnormalȱ fault.ȱOil,ȱgas,ȱandȱwaterȱproductionȱaffectsȱ theȱsubsurfaceȱinȱandȱaroundȱtheȱproducingȱreservoir.ȱTheȱdepletionȱprocessȱleadsȱtoȱproductionȱinducedȱfaultȱactivation,ȱreservoirȱcompactionȱwithȱadditionalȱcompactionȱofȱboundingȱshalesȱasȱshownȱinȱtheȱsubsurface.ȱTheȱsurfaceȱmanifestationȱofȱtheseȱsubsurfaceȱchangesȱisȱshownȱasȱaȱcompositeȱofȱlandȱlossȱonȱ theȱdownthrownȱsideȱ theȱactivatedȱ faultȱplusȱsubsidenceȱoverȱtheȱcompactedȱoil,ȱgas,ȱandȱwaterȱproducingȱreservoir.ȱ

Theȱ mechanismȱ ofȱ O&Gȱ subsidenceȱ isȱ involvedȱ withȱ theȱ collapseȱ ofȱ theȱ reservoirȱ itself.ȱSubsidenceȱhappensȱwhenȱproductionȱofȱoil,ȱgas,ȱandȱwaterȱ(andȱsometimesȱsand)ȱreducesȱreservoirȱsandȱporeȱpressureȱtoȱtheȱpointȱwhereȱitȱcanȱnoȱlongerȱsupportȱtheȱoverburdenȱ[93].ȱThus,ȱtheȱdelta’sȱyoung,ȱ oftenȱ poorlyȱ consolidatedȱ reservoirȱ sands,ȱ sandwichedȱ betweenȱ shales,ȱ oftenȱ undergoȱcompactionȱ withȱ productionȱ drainageȱ andȱ thisȱ deformationȱ isȱ transferredȱ toȱ theȱ surfaceȱ asȱ aȱsubsidenceȱ bowlȱ form.ȱ Theȱ authorsȱ ofȱ [94]ȱ modeledȱ thisȱ reservoirȱ compactionȱ andȱ surfaceȱdeformationȱprocessȱusingȱtheȱconceptȱofȱaȱnucleusȬofȬstrainȱ(theȱimpactedȱreservoir),ȱtogetherȱwithȱanȱelasticallyȱdeformingȱhalfȬspaceȱ(theȱgeologicȱsectionȱabove),ȱspreadingȱtheȱeffectȱandȱreducingȱtheȱdisplacementȱtoȱproduceȱaȱhaloȬlikeȱeffectȱinȱandȱaroundȱtheȱO&Gȱfield.ȱInȱ[79]ȱtheȱauthorsȱusedȱthisȱconceptȱalongȱwithȱ1982–1993ȱepochȱrelevelingȱatȱtheȱLeeville,ȱGoldenȱMeadow,ȱCutȱOff,ȱandȱValentineȱfieldsȱandȱtheȱauthorsȱofȱ[95]ȱmodeledȱtheȱLapeyrouseȱfieldȱ(Figureȱ12).ȱAtȱLapeyrouse,ȱmodelingȱmatchedȱtheȱmeasuredȱrelevelingȱwhenȱaȱreactivatedȱdownȬtoȬtheȬcoastȱgrowthȱfaultȱwasȱaddedȱtoȱtheȱdeformationȱofȱtheȱcompactedȱdiscȱreservoirȱsand.ȱThisȱreservoirȱcompactionȱsubsidenceȱprocessȱisȱfoundȱinȱfieldsȱalongȱtheȱLouisianaȱcoastȱandȱoftenȱactsȱinȱconcertȱwithȱO&Gȱfieldȱrelatedȱfaulting.ȱ ȱ

Inȱ[29]ȱtheȱauthorsȱconsideredȱtheȱextendedȱtimeframeȱofȱsubsidenceȱwhereȱdisplacementȱrelatedȱtoȱdepletedȱO&Gȱfieldsȱdidȱnotȱstopȱasȱtheȱproductionȱcycleȱended,ȱbutȱacceleratedȱsignificantlyȱforȱdecades.ȱAsȱshownȱinȱFigureȱ14,ȱthisȱstudyȱindicatesȱ(a)ȱgreaterȱsubsidenceȱoverȱtraversedȱO&Gȱfieldsȱ

Page 14: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 14ȱ ofȱ 30ȱ

forȱeachȱepochȱ(panelsȱAȱandȱB),ȱ(b)ȱincreasedȱsubsidenceȱratesȱ(acceleratedȱsubsidence)ȱinȱtheȱlaterȱepochȱ(panelȱC),ȱandȱ(c)ȱareasȱofȱgreatestȱsubsidenceȱandȱratesȱlikelyȱrelatedȱtoȱfaultȱdisplacement.ȱ ȱ

�Figureȱ14.ȱElevationȱchangesȱduringȱepochȱ1ȱ(1965–1982;ȱA)ȱandȱepochȱ2ȱ(1983Ȭ1993;ȱB),ȱandȱtheȱratesȱofȱsubsidenceȱinȱtheȱtwoȱepochsȱ(C).ȱOverȱtheȱentireȱtransect,ȱsubsidenceȱratesȱwereȱgreaterȱinȱepochȱ2ȱthanȱinȱepochȱ1.ȱTheȱyellowȱsquaresȱinȱ(A)ȱandȱ(B)ȱindicateȱanȱarbitrarilyȱselectedȱreferenceȱstationȱapproximatelyȱ 8ȱ kmȱ southȱ andȱ outsideȱ ofȱ theȱ projectedȱ Leevilleȱ (seeȱ Figureȱ 10)ȱ toȱ estimateȱ theȱmagnitudesȱofȱlocalȱproductionȬrelatedȱsubsidenceȱsignalsȱ[29].ȱ

WhileȱpostȱproductionȱtimeȬdependentȱsubsidenceȱisȱintuitivelyȱexpectedȱdueȱtoȱfactorsȱsuchȱasȱslowȱ dissipationȱ ofȱ poreȱ pressureȱ inȱ theȱ reservoirȱ (e.g.,ȱ [96]),ȱ andȱ timeȬdependentȱ creepȱ inȱ theȱreservoirȱ[97],ȱthisȱsubsidenceȱtypicallyȱhappensȱoverȱonlyȱaȱfewȱyears,ȱnotȱdecadesȱafterȱandȱnotȱwithȱacceleration.ȱTheȱauthorsȱofȱ[29]ȱconsideredȱtheȱroleȱofȱtheȱboundingȱshaleȱaboveȱandȱbelowȱtheȱsandȱreservoirȱitselfȱ(Figureȱ15),ȱandȱmodeledȱcompactionȱinȱtheȱValentineȱfieldȱ(Figuresȱ12ȱandȱ14)ȱinȱtwoȱstages,ȱtheȱfirstȱbeingȱporoelasticȱcompactionȱofȱtheȱreservoirȱsandȱduringȱactiveȱproduction,ȱfollowedȱbyȱtheȱtimeȬdelayedȱcompactionȱresultingȱfromȱslowȱporoelasticȱandȱviscoplasticȱcompactionȱofȱtheȱlowȬpermeableȱboundingȱshaleȱasȱincludedȱporeȱwaterȱslowlyȱdrainedȱintoȱtheȱdepletedȱsand.ȱ ȱ

Page 15: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 15ȱ ofȱ 30ȱ

�Figureȱ15.ȱAȱ simpleȱcompactionȱmodelȱofȱ sandȱ reservoirȱembeddedȱwithȱ surroundingȱ shale.ȱ Itȱ isȱassumedȱthatȱduringȱproductionȱstage,ȱporeȱpressureȱdepletionȱinȱaȱsandȱreservoirȱinducesȱporoelasticȱcompaction,ȱandȱafterȱdepletion,ȱaȱslowȱdecreaseȱinȱporeȱpressureȱinȱtheȱboundingȱshaleȱinducesȱshaleȱcompactionȱ inȱ twoȱ independentȱ rheologicalȱmodesȱ (poroelasticȱ andȱ viscoplastic)ȱ (modifiedȱ fromȱ[29]).ȱ

CompactionȱthatȱoccursȱinȱreservoirȬboundingȱshalesȱisȱoftenȱevidencedȱbyȱwellboreȱproblemsȱinȱoverburdenȱformationsȱduringȱandȱafterȱproduction,ȱsuchȱasȱcasingȱdamageȱandȱevenȱshearȱ(e.g.,ȱ[98]).ȱTheseȱstudiesȱandȱothersȱmatchingȱdisplacementȱmeasurementsȱandȱmathematicalȱmodelingȱofȱcausalityȱmechanisms,ȱconfirmȱtheȱimportanceȱofȱoilȱandȱgasȱfieldȱinducedȱsubsidenceȱandȱfaulting.ȱInȱsummary,ȱfaultȱreactivationȱandȱreservoirȱcompactionȱleadȱtoȱinducedȱsubsidenceȱatȱtheȱsurfaceȱthatȱ reflectsȱ both.ȱ Theȱ interactionȱ ofȱ theseȱ elevationȱ changeȱmechanismsȱwithȱ oilȱ andȱ gasȱ fieldȱdevelopmentȱisȱanȱimportantȱpartȱofȱlandȱlossȱinȱtheȱMRD.ȱ ȱ

5.ȱToxicȱImpactsȱofȱProducedȱWaterȱandȱSpilledȱOilȱ ȱ

Producedȱwaterȱ fromȱO&Gȱ fieldsȱ isȱbroughtȱ toȱ theȱsurfaceȱduringȱcrudeȱoilȱandȱnaturalȱgasȱextractionȱ and,ȱ priorȱ toȱ theȱ USEPAȱ banningȱ surfaceȱ dischargeȱ ofȱ producedȱ waterȱ inȱ 1992,ȱ anȱestimatedȱ2ȱmillionȱbarrelsȱperȱdayȱwereȱdischargedȱintoȱLouisianaȱcoastalȱwetlandsȱfromȱnearlyȱ700ȱsitesȱ[99].ȱItȱisȱbyȱfarȱtheȱlargestȱvolumeȱbyproductȱorȱwasteȱstreamȱassociatedȱwithȱO&Gȱextractionȱandȱisȱaboutȱ10ȱtimesȱmoreȱtoxicȱthanȱoilȱ[100].ȱTheȱfluidȱgenerallyȱincludesȱaȱmixtureȱofȱeitherȱliquidȱorȱgaseousȱhydrocarbons,ȱhighȱsalinityȱwater,ȱradioactiveȱmaterials,ȱdissolvedȱorȱsuspendedȱsolids,ȱsolidsȱsuchȱasȱsandȱorȱsilt,ȱandȱinjectedȱfluidsȱandȱadditivesȱassociatedȱwithȱexploration,ȱdrilling,ȱandȱproductionȱactivitiesȱ(Tableȱ2)ȱ[101,102].ȱ

Tableȱ2.ȱCommonȱcomponentsȱofȱproducedȱwaterȱresultingȱfromȱoilȱandȱgasȱproductionȱ[103].ȱ

Categoryȱ Constituentȱ

MetalsȱAluminum,ȱantimony,ȱarsenic,ȱbarium,ȱboron,ȱcadmium,ȱgold,ȱiron,ȱmercury,ȱchromium,ȱcopper,ȱlead,ȱzinc,ȱnickel,ȱplatinum,ȱsilver,ȱ

strontium,ȱtin,ȱmagnesium,ȱmolybdenum,ȱtitanium,ȱthallium,ȱvanadiumȱNaturallyȱoccurringȱradioactiveȱmaterialsȱ

RadiumȬ226,ȱradiumȬ228ȱ

Monocyclicȱaromaticȱhydrocarbonsȱ

Benzene,ȱbenzoicȱacid,ȱchlorobenzene,ȱdiȬnȬbutylȱphthalate,ȱtoluene,ȱethlybenzene,ȱisopropylbenzene,ȱnȬPropylbenzene,ȱpȬchloroȬmȬcresol,ȱ

xylenesȱPolycyclicȱaromaticȱ

hydrocarbonsȱAcenaphthene,ȱanthracene,ȱbenzo(a)anthracene,ȱcyrsene,ȱ

dibenzothiophenes,ȱfluoranthene,ȱflourene,ȱnapthalene,ȱbenzo(a)pyreneȱ

Page 16: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 16ȱ ofȱ 30ȱ

Miscellaneousȱorganicȱchemicalsȱ

Phenols,ȱbis(2Ȭethylhexyl)phthalate,ȱoilȱandȱgreaseȱ

Miscellaneousȱotherȱcomponentsȱ

Calcium,ȱpotassium,ȱradon,ȱsodiumȱchloride,ȱtotalȱdissolvedȱsolids,ȱammonia,ȱbromides,ȱsulfates,ȱsulfidesȱ

Severalȱ factorsȱ determineȱ theȱ fateȱ andȱ effectsȱ ofȱ producedȱwatersȱ inȱ coastalȱ environmentsȱincludingȱ theȱ volumeȱ andȱ compositionȱ ofȱ theȱ dischargeȱ andȱ theȱ hydrologicȱ andȱ physicalȱcharacteristicsȱofȱtheȱreceivingȱenvironmentȱ[22,104].ȱInȱmanyȱcases,ȱoilȱfieldȱbrineȱwasȱdischargedȱdirectlyȱtoȱwetlandsȱandȱsurfaceȱwatersȱ[105].ȱEnergeticȱstormsȱcanȱmixȱtheȱwaterȱcolumnȱandȱadvectȱproducedȱwaterȱintoȱmarshesȱwhereȱitȱcanȱsignificantlyȱdamageȱvegetation.ȱSpillsȱmayȱalsoȱimpactȱwetlands.ȱInȱ[106]ȱaccidentalȱbrineȱspillsȱbetweenȱ1990ȱandȱ1998ȱwereȱstudied,ȱandȱaȱtotalȱofȱ567ȱbrineȱspillsȱwereȱreportedȱtoȱLDEQ.ȱInȱsitesȱwhereȱproducedȱwaterȱwasȱspilled,ȱacuteȱandȱchronicȱexposureȱaffectedȱ theȱ vegetation.ȱ Theȱ studyȱ authorȱ documentedȱ ecologicalȱ impactsȱ rangingȱ fromȱminorȱvegetationȱdamageȱtoȱtheȱdestructionȱofȱhundredsȱofȱhaȱofȱwetlands.ȱManyȱwetlandsȱwhereȱaȱsingleȱspillȱhadȱoccurredȱhadȱnotȱrecoveredȱupȱ toȱ10ȱyearsȱ laterȱandȱmostȱofȱ theȱwetlandsȱwithȱchronicȱexposureȱwereȱnoȱlongerȱvegetatedȱandȱsomeȱhadȱconvertedȱtoȱopenȱwater.ȱInȱ[105]ȱtheȱformationȱofȱnewȱpondsȱwhereȱproducedȱwaterȱwasȱbeingȱdischargedȱwasȱdocumentedȱandȱtheȱauthorsȱofȱ[23]ȱreportedȱthatȱhalfȱofȱtheȱSpartinaȱalternifloraȱexposedȱtoȱ120ȱmg/Lȱofȱoilȱandȱgrease,ȱwhichȱisȱtheȱnormȱforȱproducedȱwater,ȱdiedȱwithinȱ30ȱdays.ȱ

Salinityȱofȱproducedȱwaterȱrangesȱfromȱaȱfewȱpsuȱtoȱupȱtoȱ300ȱpsuȱ[21,22,102,103].ȱHighȱsalinityȱleadsȱ toȱ theȱdeathȱofȱmostȱplantsȱandȱhasȱbeenȱ linkedȱ toȱwetlandȱ lossȱ [105].ȱ InȱCameronȱParish,ȱLouisiana,ȱnorthȱofȱBlackȱLakeȱandȱtheȱHackberryȱO&Gȱfields,ȱthousandsȱofȱhaȱofȱsawgrassȱmarshȱwereȱkilledȱdueȱtoȱdischargeȱofȱproducedȱwaterȱandȱtheȱareaȱsubsequentlyȱconvertedȱtoȱopenȱwaterȱ[107,108].ȱNaturallyȱoccurringȱradioactiveȱmaterialȱ(NORM),ȱprimarilyȱradiumȬ226ȱandȱradiumȬ228,ȱisȱpresentȱ inȱmuchȱ ofȱ theȱproducedȱwaterȱ inȱ theȱGulfȱ ofȱMexicoȱ [109,110].ȱTheȱ authorsȱ ofȱ [104]ȱreportedȱtotalȱradiumȱactivitiesȱrangedȱfromȱ304ȱtoȱ2312ȱdpm/L.ȱ ȱ

Hydrocarbonsȱareȱalsoȱpresentȱinȱproducedȱwater,ȱbothȱinȱdissolvedȱandȱdispersedȱ(oilȱdroplets)ȱformȱthatȱcanȱinteractȱwithȱtheȱbenthicȱcommunityȱ[103].ȱDispersedȱoilsȱcanȱalsoȱriseȱtoȱtheȱsurfaceȱandȱinterfereȱwithȱtheȱtransferȱofȱoxygenȱfromȱtheȱatmosphereȱintoȱtheȱwater,ȱcoatȱmarineȱmammals,ȱbirdsȱ andȱ fish,ȱ andȱ haveȱ directȱ toxicȱ actionȱ onȱ someȱ organismsȱ [111].ȱWholeȱ effluentȱ toxicityȱassessmentsȱhaveȱreportedȱhighȱtoxicityȱlevelsȱofȱproducedȱwaterȱ[21,112].ȱProducedȱwaterȱhasȱbeenȱshownȱtoȱreduceȱabundanceȱofȱbenthicȱmacroinfaunalȱcommunitiesȱinȱwetlandsȱreceivingȱdischargeȱ[21,99,104,112]ȱoftenȱatȱdistancesȱofȱhundredsȱofȱmȱfromȱdischargeȱsources.ȱ[112].ȱTheȱpresenceȱofȱhighȱ concentrationsȱ ofȱ hydrocarbonsȱ inȱ sedimentsȱ nearȱ dischargeȱ sitesȱ indicatesȱ longȬtermȱaccumulationȱandȱresistanceȱtoȱdegradationȱ[21,22].ȱ

Inȱ[4]ȱtheȱauthorsȱreviewedȱtheȱecologicalȱimpactsȱofȱO&GȱdevelopmentȱonȱcoastalȱecosystemsȱinȱtheȱMississippiȱdelta.ȱOilȱspillsȱhaveȱgeneratedȱsignificantȱimpactsȱdueȱtoȱtheȱtoxicityȱofȱspilledȱoil.ȱEffectsȱonȱplantȱcommunitiesȱincludeȱdisruptionȱofȱplant–waterȱrelationships,ȱdirectȱimpactsȱtoȱplantȱmetabolism,ȱtoxicityȱtoȱlivingȱcells,ȱandȱreducedȱoxygenȱexchangeȱbetweenȱtheȱatmosphereȱandȱtheȱsoil.ȱEffectsȱonȱconsumersȱincludeȱgrowthȱinhibition,ȱreducedȱproduction,ȱalteredȱmetabolicȱsystems,ȱandȱbiomagnificationȱofȱhydrocarbonȱcompounds.ȱTheȱcombinationȱofȱtheseȱfactorsȱincreasesȱplantȱstressȱandȱplantȱdeath.ȱ

6.ȱInteractive,ȱCumulative,ȱandȱIndirectȱImpactsȱofȱOilȱandȱGasȱImpactsȱ

Eachȱ ofȱ theȱ threeȱ typesȱ ofȱ oilȱ andȱ gasȱ activityȱ (alterationȱ ofȱ surfaceȱ hydrology,ȱ inducedȱsubsidence,ȱandȱproductionȱofȱtoxicȱcontaminants)ȱcausesȱsignificantȱimpacts.ȱHowever,ȱwhenȱtheȱeffectsȱofȱallȱthreeȱactivitiesȱinteractȱinȱcumulativeȱandȱindirectȱways,ȱtheȱimpactsȱareȱmuchȱgreater.ȱ

InȱFigureȱ 16,ȱ theȱ impactsȱofȱ eachȱ typeȱofȱ activityȱ areȱ shownȱ separately.ȱTheȱdirectȱ effectȱofȱinducedȱsubsidenceȱisȱaȱlossȱofȱsurfaceȱelevationȱdueȱfaultȱactivationȱand/orȱcompactionȱofȱsubsurfaceȱsedimentsȱdueȱtoȱfluidȱremoval.ȱLossȱofȱsurfaceȱelevationȱleadsȱinȱturnȱtoȱstressedȱwetlandȱvegetation,ȱlowerȱproductivity,ȱandȱultimatelyȱvegetationȱdeathȱandȱwetlandȱloss.ȱ ȱ

Page 17: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 17ȱ ofȱ 30ȱ

Surfaceȱ hydrologicȱ alterationȱ dueȱ toȱ canalsȱ andȱ spoilȱ banksȱ alsoȱ leadsȱ toȱ aȱ lossȱ ofȱ surfaceȱelevationȱdueȱ toȱ aȱ cascadingȱ seriesȱofȱ impactsȱ asȱ shownȱbyȱ theȱ relationshipsȱ inȱFigureȱ 16.ȱDeepȱstraightȱcanalsȱcauseȱtheȱdeteriorationȱofȱnaturalȱtidalȱchannelsȱandȱchangesȱinȱregionalȱhydrologyȱandȱsaltwaterȱintrusion.ȱSpoilȱbanksȱblockȱtidalȱfloodingȱofȱmarshesȱandȱleadȱtoȱincreasedȱinundationȱofȱmarshesȱasȱwellȱasȱreducedȱsedimentȱandȱnutrientȱinputȱtoȱmarshes.ȱTheseȱimpactsȱstressȱmarshesȱsoȱ thatȱ productivityȱ isȱ lowerȱ andȱ organicȱ soilȱ formationȱ isȱ reduced.ȱ Theȱ combinationȱ ofȱ lowerȱsedimentȱinputȱandȱlowerȱorganicȱsoilȱformationȱcausesȱhigherȱshallowȱsubsidenceȱandȱultimatelyȱtoȱvegetationȱdeath.ȱSaltwaterȱintrusionȱandȱvegetationȱdeathȱleadȱtoȱcollapseȱofȱtheȱsoilȱcolumnȱdueȱtoȱrapidȱdecompositionȱofȱsoilȱorganicȱmatter.ȱ ȱ

Toxicȱ impactsȱ areȱdueȱ toȱoilȱ spillsȱandȱproducedȱwaterȱdischargeȱwhichȱ containsȱveryȱhighȱsalinityȱbrinesȱandȱaȱvarietyȱofȱtoxicȱmaterials.ȱTheseȱstressȱvegetationȱandȱcauseȱwetlandȱmortalityȱandȱcollapseȱofȱmarshȱsoilsȱleadingȱtoȱlossȱofȱelevation.ȱ

Thus,ȱ allȱ threeȱ typesȱ ofȱ impactsȱ leadȱ toȱ stressedȱwetlandȱ vegetation,ȱ lossȱ ofȱ elevation,ȱ andȱvegetationȱdeath.ȱTheȱcumulativeȱandȱindirectȱimpactsȱareȱmuchȱgreaterȱthanȱforȱindividualȱimpactsȱactingȱindependently.ȱTheseȱinteractȱwithȱaȱrangeȱofȱenvironmentalȱforcingsȱsuchȱasȱlackȱofȱriverineȱinput,ȱseaȬlevelȱrise,ȱandȱhurricanesȱtoȱexacerbateȱwetlandȱlossȱevenȱfurther.ȱForȱexample,ȱwetlandȱlossȱinȱtheȱregionȱofȱtheȱcentralȱcoastȱimpactedȱbyȱAtchafalayaȱRiverȱdischargeȱisȱmuchȱlowerȱthanȱmostȱofȱtheȱrestȱofȱtheȱcoastȱevenȱinȱareasȱimpactedȱbyȱO&Gȱactivityȱ[74,113].ȱTheȱnetȱeffectȱisȱthatȱO&Gȱactivitiesȱmakeȱwetlandsȱmoreȱsusceptibleȱtoȱotherȱforcingsȱthatȱnegativelyȱaffectȱwetlands.ȱ

Page 18: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 18ȱ ofȱ 30ȱ

ȱ

Figureȱ16.ȱDiagramȱshowingȱ theȱ threeȱgeneralȱ typesȱofȱ impactsȱ fromȱoilȱandȱgasȱactivityȬinducedȱsubsidence,ȱtoxicityȱeffects,ȱandȱalteredȱsurfaceȱhydrologyȱdueȱtoȱcanalsȱandȱspoilȱbanks.ȱTheȱimpactsȱofȱtheseȱactivitiesȱareȱshownȱseparately,ȱandȱimpactsȱshownȱinȱredȱareȱcommonȱtoȱallȱthreeȱactivities.ȱAsȱreducedȱvegetationȱproductivity,ȱlossȱofȱelevation,ȱandȱvegetationȱdeathȱcanȱresultȱfromȱallȱthreeȱactivities,ȱthereȱareȱpervasiveȱcumulativeȱandȱindirectȱimpactsȱthatȱresultȱinȱoverallȱgreaterȱimpactsȱonȱcoastalȱecosystems,ȱespecially,ȱthatȱwouldȱresultȱfromȱtheȱimpactsȱactingȱseparately.ȱ

SuchȱcumulativeȱandȱindirectȱimpactsȱdueȱtoȱO&Gȱproductionȱareȱevidentȱwhenȱimagesȱofȱoilȱfieldsȱareȱviewedȱoverȱtime.ȱTheȱVeniceȱSaltȱDomeȱinȱPlaqueminesȱParishȱandȱtheȱBullyȱCampȱoilȱfieldȱinȱTerrebonneȱParishȱareȱjustȱtwoȱofȱhundredsȱofȱexamplesȱofȱwetlandȱdisappearanceȱoverȱtimeȱinȱcoastalȱLouisianaȱ(Figuresȱ17ȱandȱ18).ȱInȱtheseȱtwoȱfields,ȱpreȬoilȱandȱgasȱactivityȱmapsȱshowȱtheȱpresenceȱofȱsmallȱnaturalȱleveeȱridgesȱandȱextensiveȱunbrokenȱmarsh.ȱInȱbothȱfields,ȱtheȱ1950sȱmapsȱshowȱcanalsȱandȱspoilȱbanksȱbutȱwithoutȱsignificantȱmarshȱloss.ȱOverȱtime,ȱmarshȱlossȱexpandsȱtoȱcoverȱalmostȱtheȱentireȱareaȱofȱtheȱfieldȱandȱspoilȱbanksȱbeginȱtoȱdisappearȱasȱtheyȱsubsideȱbelowȱ

Page 19: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 19ȱ ofȱ 30ȱ

waterȱ level.ȱTheȱwidespreadȱ lossȱofȱwetlandsȱ isȱdueȱ toȱsuchȱcumulativeȱandȱ interactingȱeffectsȱofȱsurfaceȱalterationsȱinȱhydrology,ȱinducedȱsubsidence,ȱandȱtoxicȱeffects.ȱ ȱ

ȱ

Figureȱ17.ȱImagesȱofȱhydrologicȱchangesȱandȱwetlandȱlossȱinȱtheȱVeniceȱfield,ȱPlaqueminesȱParish,ȱLouisianaȱoverȱtime.ȱThisȱoilȱandȱgasȱfieldȱhasȱbeenȱtermedȱtheȱ“wagonȱwheel”ȱbecauseȱofȱtheȱcircularȱcanalsȱandȱspoilȱbanksȱthatȱoutlineȱtheȱsaltȱdomeȱaroundȱwhichȱoilȱandȱgasȱcontainingȱformationsȱwereȱlocated.ȱNoteȱthatȱwetlandȱlossȱoccursȱbothȱinȱtheȱvicinityȱofȱtheȱcanalsȱasȱwellȱasȱthroughoutȱtheȱareaȱofȱtheȱfield.ȱInȱadditionȱtoȱwetlandȱloss,ȱmanyȱofȱtheȱspoilȱbanksȱhaveȱsubsidedȱbelowȱwaterȱlevelȱandȱareȱnoȱlongerȱvisible.ȱTheȱgreenȱhighlightedȱchannelsȱinȱtheȱ1940sȱareȱminorȱdistributaryȱridgesȱthatȱbothȱconveyedȱwaterȱandȱwereȱaȱbarrierȱtoȱhorizontalȱflowȱperpendicularȱtoȱtheseȱridges.ȱ(ImagesȱfromȱUSGSȱtopographicȱmapsȱ(lateȱ1940s)ȱandȱGoogleȱEarth).ȱ

Page 20: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 20ȱ ofȱ 30ȱ

ȱFigureȱ18.ȱImagesȱofȱtheȱBullyȱCampȱoilȱandȱgasȱfieldȱoverȱtime.ȱTheȱyellowȱlineȱdenotesȱanȱownershipȱtractȱ inȱ theȱ fieldȱ andȱ redȱdotsȱ showȱ locationsȱofȱoilȱ andȱgasȱwells.ȱNoteȱ thatȱ landȱ lossȱhasȱbeenȱpervasiveȱoverȱtheȱgeneralȱareaȱofȱtheȱfield.ȱTheȱcentralȱwaterȱbodyȱinȱtheȱ1989ȱimageȱisȱoverȱanȱareaȱofȱsulfurȱproductionȱonȱtheȱtopȱofȱtheȱsaltȱdomeȱunderlyingȱthisȱfield.ȱTheȱnarrowȱblueȱlinesȱinȱtheȱ1935ȱmapȱareȱabandonedȱminorȱdistributaryȱridgesȱthatȱwereȱbreachedȱbyȱcanalsȱ(imagesȱfromȱ[76]).ȱ

7.ȱRestorationȱ

AȱwellȬdesignedȱrestorationȱplanȱshouldȱbeȱbasedȱonȱinformationȱaboutȱtheȱimpactsȱduringȱtheȱlifeȱcycleȱofȱO&Gȱfields.ȱRestorationȱofȱwetlandsȱlostȱdueȱtoȱO&GȱactivitiesȱwillȱinvolveȱaȱsynergisticȱapproachȱthatȱdealsȱwithȱtheȱdamageȱofȱO&Gȱimpactsȱandȱrebuildsȱaȱfunctioningȱcoastalȱwetlandȱsystem.ȱAȱ centralȱ objectiveȱ inȱ restorationȱ isȱ rebuildingȱ elevationȱdueȱ toȱ bothȱ surfaceȱ subsidenceȱcausedȱbyȱalteredȱhydrologyȱandȱ subsurfaceȱ inducedȱ subsidence.ȱSubsurfaceȱ inducedȱ subsidenceȱcannotȱbeȱreversed,ȱsoȱsedimentȱmustȱbeȱaddedȱatȱtheȱsurfaceȱtoȱoffsetȱbothȱsubsurfaceȱandȱsurfaceȱsubsidence.ȱ Optionsȱ forȱ restorationȱ includeȱ (1)ȱ marshȱ creationȱ andȱ restorationȱ usingȱ dredgedȱsedimentsȱ [114–117];ȱ (2)ȱ fullȱuseȱ ofȱ allȱ availableȱ sedimentȱ resourcesȱ includingȱMississippiȱRiver,ȱGIWW,ȱandȱsedimentsȱresuspendedȱduringȱstormsȱ[118,119];ȱandȱ(3)ȱhydrologicȱrestorationȱsuchȱasȱbackfillingȱcanalsȱandȱspoilȱbankȱmanagement,ȱandȱrestorationȱofȱhydrologicȱnetworksȱ [119–123].ȱRebuildingȱnaturalȱleveeȱridgesȱthatȱhaveȱbeenȱseveredȱbyȱcanalsȱcanȱhelpȱrestoreȱnaturalȱhydrologyȱtoȱ preventȱ saltwaterȱ intrusionȱ andȱ reduceȱ increasedȱ hydrologicȱ energyȱ causedȱ byȱmoreȱ directȱconnectionsȱbetweenȱinteriorȱpartsȱofȱtheȱdeltaȱandȱtheȱGulfȱofȱMexico.ȱ

Elevationȱcanȱbeȱbuiltȱupȱbyȱaddingȱdredgedȱmaterialȱtoȱshallowȱwaterȱbodies,ȱsomeȱthatȱwereȱpreviouslyȱwetlands,ȱtoȱanȱelevationȱthatȱwillȱsupportȱmarshȱvegetationȱ[115,124,125].ȱRestorationȱofȱopenȱwaterȱ andȱdegradedȱwetlandȱ areasȱ toȱ sustainableȱmarshȱ areȱ ofȱ tremendousȱ importanceȱ inȱcoastalȱ Louisiana.ȱ Theȱ 2017ȱ CoastalȱMasterȱ Planȱ (CMP)ȱ forȱ restorationȱ ofȱ theȱMississippiȱ deltaȱdedicatesȱnearlyȱ$18ȱbillionȱtoȱmarshȱcreationȱ(theȱlargestȱinvestmentȱinȱaȱsingleȱtypeȱofȱrestorationȱ

Page 21: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 21ȱ ofȱ 30ȱ

project)ȱandȱmanyȱofȱthoseȱprojectsȱincludeȱbothȱaȱshortȬtermȱandȱaȱlongȬtermȱphaseȱ[126].ȱTheȱshortȬtermȱphaseȱfocusesȱonȱimmediateȱactionsȱneededȱtoȱprotectȱvulnerableȱmarshesȱfromȱtheȱproximalȱcausesȱ ofȱ lossȱ (saltwaterȱ intrusion,ȱ erosion,ȱ andȱ otherȱ consequencesȱ ofȱ significantȱ hydrologicȱmodifications)ȱusingȱaȱcombinationȱofȱrestorationȱtechniquesȱ(especiallyȱhydrologicȱrestorationȱandȱmarshȱ creationȱ usingȱ dredgedȱ sediments).ȱ Successfulȱ implementationȱ ofȱ shortȬtermȱ strategiesȱreducesȱratesȱofȱwetlandsȱlossȱandȱprovidesȱtheȱfoundationȱforȱlongerȬtermȱstrategies.ȱTheȱlongȬtermȱphaseȱ focusesȱ onȱwetlandsȱ gainsȱ throughȱMississippiȱRiverȱ sedimentȱ diversionsȱ andȱ captureȱ ofȱsedimentsȱ advectedȱ overȱ theȱmarshȱ surface,ȱwithȱ theȱ intentȱ ofȱ encouragingȱ developmentȱ ofȱ aȱsustainableȱwetlandȱecosystemȱ(https://www.lacoast.gov/new/about/Basin_data/te/Default.aspx).ȱ

Introductionȱ ofȱ sediments,ȱ throughȱ placementȱ ofȱ fillȱmaterialȱ and/orȱ sprayȱ dredging,ȱ isȱ aȱnecessaryȱcomponentȱofȱmarshȱrestorationȱ inȱdegradedȱO&Gȱfieldsȱandȱsedimentȱcanȱbeȱpumpedȱlongȱdistances,ȱasȱisȱtheȱcaseȱforȱmanyȱ2017ȱCMPȱprojectsȱ[127–132].ȱContainmentȱdikesȱareȱutilizedȱtoȱ confineȱ unconsolidatedȱmaterialȱ untilȱ itȱ settlesȱ andȱ dewatersȱ [120].ȱ Thenȱ theseȱ dikesȱ canȱ beȱdegradedȱorȱgappedȱtoȱtheȱsameȱelevationȱasȱtheȱmarshȱplatformȱinȱorderȱtoȱallowȱwaterȱexchangeȱandȱmarshȱ drainage,ȱ toȱ improveȱ productivityȱ andȱ aeration,ȱ andȱ increaseȱ captureȱ ofȱ suspendedȱsedimentsȱthatȱareȱadvectedȱoverȱtheȱmarshȱsurface.ȱ ȱ

Sedimentȱadditionȱ increasesȱmarshȱ surfaceȱelevation,ȱ thusȱ reducingȱ floodȱ stressȱ toȱ theȱplantȱcommunity.ȱTheȱauthorsȱofȱ[114]ȱshowedȱthatȱraisingȱtheȱsurfaceȱofȱaȱdeterioratingȱSpartinaȱalternifloraȱsaltȱmarshȱ byȱ 10ȱ cmȱusingȱdredgeȱ spoilȱ resultedȱ inȱ aȱ twofoldȱ increaseȱ inȱ abovegroundȱ biomassȱproductionȱafterȱtheȱsecondȱgrowingȱseason.ȱInȱ[115]ȱitȱwasȱfoundȱthatȱincreasedȱelevationȱthroughȱtheȱdepositionȱ ofȱ aȱ 2ȱ cmȱ layerȱ ofȱdredgedȱmaterialȱ inȱ aȱdeterioratedȱLouisianaȱmarshȱ increasedȱpercentȱcoverȱofȱS.ȱalternifloraȱthreeȬfoldȱwithinȱoneȱyear.ȱTheȱauthorsȱofȱ[125]ȱstudiedȱdeadȱmarshesȱnearȱLeevilleȱ thatȱwereȱ restoredȱusingȱdredgedȱmaterialȱandȱ foundȱ thatȱsedimentȬslurryȱadditionȱincreasedȱ theȱ elevationȱ ofȱ theȱ marshȱ surfaceȱ andȱ alleviatedȱ stressȱ associatedȱ withȱ excessiveȱinundationȱandȱhighȱsalinity.ȱPrimaryȱproductionȱwasȱhighestȱatȱelevationsȱrangingȱfromȱ29ȱtoȱ36ȱcmȱNAVDȱ88ȱ (12–20ȱcmȱaboveȱambientȱmarsh),ȱandȱdecreasedȱatȱelevationsȱaboveȱ36ȱcmȱNAVDȱ88,ȱwhereȱ primaryȱ productionȱ wasȱ limitedȱ byȱ insufficientȱ floodingȱ andȱ lowȱ nutrientȱ availability.ȱSedimentȱ subsidyȱ increasesȱ soilȱmineralȱmatter,ȱ soilȱ fertility,ȱ andȱmarshȱ elevation,ȱ andȱ therebyȱreducesȱnutrientȱdeficiency,ȱflooding,ȱandȱ interstitialȱsulfideȱstresses,ȱgeneratingȱaȱmoreȱfavorableȱenvironmentȱforȱplantȱgrowthȱandȱpotentially,ȱmarshȱsustainabilityȱ[116,117].ȱ ȱ

Afterȱcontainmentȱdikesȱareȱgapped,ȱrestoredȱmarshȱwillȱhaveȱconnectivityȱwithȱsurroundingȱecosystemȱandȱplantsȱwillȱnaturallyȱrecruitȱtoȱtheȱareaȱorȱtheyȱcanȱbeȱplanted.ȱAlthoughȱtheȱcreatedȱmarshȱwillȱbeȱinitiallyȱhigherȱthanȱsurroundingȱmarshes,ȱitȱwillȱsettleȱandȱhaveȱaȱhigherȱbulkȱdensity.ȱItȱ isȱ likelyȱ thatȱ theseȱ createdȱmarshesȱwillȱhaveȱaȱhigherȱproductivityȱandȱproductionȱofȱorganicȱmatterȱ thanȱ surroundingȱmarshes.ȱ Theȱ plantȱ speciesȱ richnessȱ shouldȱ theȱ sameȱ asȱ surroundingȱmarshes,ȱwhichȱisȱnotȱveryȱhighȱinȱbrackishȱandȱsaltȱmarshesȱofȱcoastalȱLouisianaȱcomparedȱtoȱfreshȱmarshes.ȱPlantȱdiversityȱandȱsoilȱorganicȱmatterȱcontentȱareȱhigherȱ inȱbrackishȱmarshȱthanȱ inȱsaltȱmarsh.ȱ Brackishȱ marshȱ isȱ typicallyȱ dominatedȱ byȱ Spartinaȱ patensȱ (marshhayȱ cordgrass).ȱ Otherȱsignificantȱ associatedȱ speciesȱ includeȱ Distichlisȱ spicataȱ (saltȱ grass),ȱ Schoenoplectusȱ olneyiȱ (threeȬcorneredȱ grass),ȱ S.ȱ robustusȱ (saltȱ marshȱ bulrush),ȱ Eleocharisȱ parvulaȱ (dwarfȱ spikesedge),ȱ Ruppiaȱmaritimaȱ(widgeonȱgrass),ȱPaspalumȱvaginatumȱ(seashoreȱpaspalum),ȱJuncusȱroemerianusȱ(blackȱrush),ȱBacopaȱmonnieriȱ (coastalȱwaterȱhyssop),ȱS.ȱ alternifloraȱ (smoothȱ cordgrass),ȱandȱS.ȱ cynosuroidesȱ (bigȱcordgrass)ȱ[130].ȱSaltȱmarshȱhasȱtheȱleastȱplantȱdiversityȱofȱanyȱmarshȱtype.ȱTheȱcommunityȱisȱoftenȱtotallyȱdominatedȱbyȱsmoothȱcordgrass.ȱSignificantȱassociateȱspeciesȱincludesȱmarshhayȱcordgrass,ȱsaltȱgrass,ȱblackȱrush,ȱandȱBatisȱmaritimaȱ(saltȱwort).ȱ

Aȱtidalȱnetworkȱneedsȱtoȱdevelopȱinȱtheȱrestoredȱmarsh.ȱAllȱrestorationȱplansȱneedȱaȱcomponentȱthatȱfocusesȱonȱnaturalȱhydrologicalȱfunctioning.ȱAȱlargeȬscaleȱrestorationȱprojectȱonȱDelawareȱBayȱindicatedȱthatȱifȱaȱfewȱprimaryȱchannelsȱwereȱdredged,ȱtheȱsystemȱwouldȱnaturallyȱthenȱdevelopȱaȱfullȱtidalȱchannelȱnetworkȱ[130,131].ȱTheȱprojectȱinvolvedȱrestorationȱofȱtidalȱfloodingȱbyȱbreechingȱdikesȱ aroundȱ formerlyȱdikedȱ saltȬhayȱ farmȱ andȱ reȬexcavationȱ ofȱ tidalȱ creeks.ȱHydrologicȱdesignȱoccurredȱ inȱ aȱ “selfȬdesign”ȱ fashionȱ afterȱ onlyȱ initialȱ cutsȱ byȱ constructionȱ ofȱ theȱ largestȱ (classȱ 1)ȱchannels.ȱ ȱ

Page 22: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 22ȱ ofȱ 30ȱ

Spoilȱbankȱandȱcanalȱmanagementȱshouldȱbeȱpartȱofȱaȱrestorationȱplan.ȱSomeȱcanalsȱshouldȱbeȱbackfilledȱasȱmuchȱasȱpossibleȱbyȱpushingȱspoilȱbanksȱbackȱintoȱcanals.ȱAsȱspoilȱbanksȱhaveȱsettledȱandȱorganicȱmatterȱhasȱdecomposed,ȱcanalsȱcannotȱbeȱfullyȱfilledȱinȱusingȱmaterialȱfromȱspoilȱbanks.ȱThus,ȱdredgedȱmaterialȱwillȱhaveȱtoȱbeȱusedȱtoȱfullyȱfillȱcanals.ȱInȱsomeȱcases,ȱspoilȱbanksȱshouldȱbeȱleftȱinȱplaceȱtoȱprotectȱremainingȱmarshesȱfromȱwaveȱattackȱ(seeȱFigureȱ13).ȱ

Afterȱ theȱmarshȱ isȱ restoredȱ andȱ naturalȱ hydrologyȱ hasȱ beenȱ reȬestablished,ȱ fullȱ useȱ ofȱ allȱavailableȱ sedimentsȱ shouldȱ beȱ incorporatedȱ intoȱ theȱ restorationȱ design.ȱ Importantȱ sourcesȱ ofȱsedimentsȱincludeȱMississippi/AtchafalayaȱRiversȱasȱwellȱasȱsmallerȱrivers,ȱsedimentȱdiversions,ȱtheȱGulfȱ IntracoastalȱWaterway,ȱ andȱ sedimentsȱ resuspendedȱ byȱ stormsȱ [118].ȱWaterȱ sourcesȱ withȱappreciableȱlevelsȱofȱnutrientsȱshouldȱbeȱusedȱwhereȱpossibleȱtoȱenhanceȱmarshȱproductionȱincludingȱuplandȱrunoff,ȱagriculturalȱdrainage,ȱandȱtreatedȱmunicipalȱeffluentȱ[133,134].ȱ

Whenȱ planningȱ restorationȱ priorities,ȱ considerationȱ shouldȱ beȱ givenȱ toȱ theȱ moreȱ stableȱunderlyingȱgeologicȱframeworkȱchoices,ȱandȱavoidanceȱofȱthoseȱareasȱstillȱinȱtheȱactivelyȱdegradingȱpartȱofȱtheȱcycle.ȱExamplesȱincludeȱmarshȱconstructionȱonȱtheȱmoreȱstableȱupthrownȱsideȱofȱaȱfault,ȱratherȱthanȱtheȱsubsidenceȱcompactionȱandȱfaultȱaffectedȱO&Gȱfieldȱonȱtheȱdownthrownȱside.ȱTheȱauthorsȱofȱ [14]ȱdiscussedȱ theȱroleȱofȱ faultingȱ inȱwetlandȱ lossȱ inȱ theȱMississippiȱdelta.ȱ Inȱ [135]ȱ theȱauthorsȱpointedȱtoȱfailedȱrestorationȱprojectsȱwhereȱfaultingȱhasȱnotȱbeenȱconsidered.ȱThus,ȱtakingȱintoȱconsiderationȱunderlyingȱgeologyȱcanȱleadȱtoȱmoreȱsuccessfulȱandȱsustainableȱrestoration.ȱ ȱ

Decontaminationȱofȱrestoredȱsitesȱisȱanȱintegralȱpartȱofȱrestoration.ȱInȱmanyȱcases,ȱtoxinsȱcanȱbeȱburiedȱ inȱ placeȱ butȱ inȱ someȱ instancesȱ theȱ contaminantsȱ haveȱ toȱ beȱ removedȱ [4].ȱ Inȱ additionȱ toȱenvironmentalȱ impactsȱassociatedȱwithȱ landȱ lossȱ fromȱO&Gȱproductionȱoperations,ȱ thereȱoftenȱ isȱenvironmentalȱdamageȱtoȱsoilȱandȱgroundwaterȱcontaminationȱthatȱmayȱhaveȱoccurredȱfromȱtheseȱsameȱtypesȱofȱO&Gȱoperations.ȱTheseȱdamagesȱincludeȱcontaminationȱtoȱsoils,ȱgroundwater,ȱandȱinȱsomeȱcasesȱundergroundȱsourcesȱofȱdrinkingȱwater.ȱTheseȱtypesȱofȱdamagesȱrequireȱextensiveȱtestingȱandȱtheȱrestorationȱincludesȱsoilȱtreatmentȱorȱremovalȱandȱtheȱcleanupȱofȱcontaminatedȱfreshwaterȱzones.ȱDealingȱwithȱcontaminationȱcanȱinvolveȱremovalȱofȱtheȱsurfaceȱwaste,ȱexcavationȱofȱ‘hotȱspots’ȱofȱ concentratedȱpollutionȱ (chemicalsȱ ofȱ concern,ȱCOC)ȱ followedȱ byȱ treatmentȱ andȱdisposal,ȱ andȱpumpingȱandȱtreatmentȱofȱcontaminatedȱgroundwaterȱfollowedȱbyȱtreatmentȱorȱsubsurfaceȱinjection.ȱTheȱgoalȱofȱtheȱremediationȱeffortȱisȱtoȱreturnȱtheȱsoilȱandȱgroundwaterȱtoȱagreedȬuponȱstandardsȱsuchȱasȱbackgroundȱ soilȱ standardsȱ containedȱ inȱ theȱLa.ȱDNR/OCȱ regulationsȱknownȱasȱ29Bȱ (theȱsectionȱofȱtheȱrules)ȱandȱtheȱLa.ȱDEQȱRECAPȱ(RiskȱEvaluation/CorrectiveȱActionȱProgram)ȱforȱbothȱsoilȱandȱgroundwater.ȱAȱmixȱofȱtheȱstandardsȱisȱsometimesȱused.ȱTheȱtermȱ ‘agreedȱupon’ȱ isȱusedȱbecauseȱ cleanupȱ isȱ usuallyȱ doneȱ inȱ theȱ contextȱ ofȱ aȱ legalȱ actionȱ withȱ theȱ involvementȱ ofȱ theȱlandownerȬplaintiff,ȱtheȱoilȱcompanies(s),ȱDNR,ȱDEQ,ȱandȱtheȱCourt.ȱTheȱDNRȱ29Bȱ(Titleȱ43,ȱPartȱXIX,ȱstatewideȱorderȱ29B)ȱstandardsȱwere/areȱheavilyȱinfluencedȱbyȱtheȱoilȱandȱgasȱexplorationȱandȱproductionȱindustryȱ(E&P)ȱwhileȱtheȱDEQȱRECAPȱstandardsȱareȱbasedȱonȱriskȱscienceȱ(LACȱ33,ȱ2003;ȱhttps://www.deq.louisiana.gov/assets/docs/Land/RECAP/RECAPfinal.pdf).ȱ RECAPȱ providesȱnumericalȱscreeningȱstandardsȱforȱmanyȱchemicalsȱinȱsoilȱandȱgroundwaterȱandȱthreeȱmanagementȱoptions.ȱInȱmanyȱcases,ȱaddressingȱlandȱlossȱandȱenvironmentalȱcleanupȱmustȱbeȱdoneȱatȱtheȱsameȱtimeȱtoȱfullyȱrestoreȱtheȱland.ȱ

InȱplanningȱforȱrestorationȱofȱdegradedȱwetlandsȱinȱO&Gȱfields,ȱthereȱshouldȱbeȱcoordinationȱwithȱotherȱprojects.ȱForȱexample,ȱbeneficialȱuseȱofȱdredgedȱsediments,ȱwhereȱavailable,ȱcanȱbeȱusedȱtoȱraiseȱelevation.ȱThereȱareȱnumerousȱwetlandȱrestorationȱprojectsȱtakingȱplaceȱinȱtheȱMississippiȱDelta.ȱ Theseȱ includeȱ marshȱ creation,ȱ riverȱ diversions,ȱ hydrologicȱ restoration,ȱ barrierȱ islandȱrestoration,ȱrebuildingȱofȱdistributaryȱridges,ȱandȱshorelineȱprotectionȱ[126,136].ȱRestorationȱofȱtheȱimpactsȱofȱO&Gȱactivitiesȱinvolvesȱtoȱaȱlessorȱorȱgreaterȱdegreeȱallȱofȱtheseȱactivities.ȱForȱexample,ȱwhereȱ sedimentȱ diversionsȱ areȱ plannedȱ inȱ theȱ vicinityȱ ofȱ anȱO&Gȱ fieldȱ thatȱ isȱ beingȱ restored,ȱmaximumȱuseȱofȱdivertedȱsedimentsȱshouldȱbeȱaȱgoalȱofȱtheȱproject.ȱAsȱnotedȱabove,ȱbeneficialȱuseȱofȱsedimentsȱdredgedȱforȱotherȱactivitiesȱsuchȱasȱnavigationȱcanalȱmaintenanceȱshouldȱbeȱconsideredȱforȱmarshȱcreationȱ inȱrestoringȱwetlandsȱdegradedȱbyȱO&Gȱactivities.ȱHydrologicȱrestorationȱandȱnaturalȱleveeȱrestorationȱinȱtheȱvicinityȱofȱaȱrestorationȱprojectȱinȱanȱO&Gȱfieldȱshouldȱbeȱdoneȱinȱaȱ

Page 23: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 23ȱ ofȱ 30ȱ

wayȱthatȱcomplimentsȱtheȱlargerȱefforts.ȱInȱthisȱway,ȱtheȱrestorationȱofȱandȱO&Gȱfieldȱcanȱbeȱdoneȱtoȱincreaseȱbenefitsȱoverȱaȱlargerȱarea.ȱ

8.ȱSummaryȱandȱConclusionsȱ

Oilȱ andȱ gasȱ activityȱ hasȱ beenȱ pervasiveȱ inȱ theȱMississippiȱ deltaȱ andȱ bothȱ productionȱ andȱenvironmentalȱimpactsȱfollowȱaȱpredictableȱlifeȱcycle.ȱThereȱareȱhundredsȱofȱO&GȱfieldsȱinȱcoastalȱLouisiana,ȱ asȱwellȱ asȱ aȱdenseȱ networkȱ ofȱ canalsȱ associatedȱwithȱdrillingȱ access,ȱ navigation,ȱ andȱpipelines.ȱTheȱproductionȱhistoryȱforȱindividualȱfieldsȱcanȱ lastȱ40–60ȱyearsȱwithȱproductionȱrisingȱrapidlyȱtoȱaȱpeakȱaroundȱ1970ȱandȱthenȱdeclining.ȱSinceȱmostȱdrillingȱstartedȱinȱtheȱ1940sȱandȱ1950s,ȱmostȱwellsȱareȱnoȱlongerȱproducingȱorȱareȱinȱtheȱfinalȱstagesȱofȱproductionȱandȱthisȱcycleȱconclusionȱholdsȱtrueȱforȱaggregateȱMRDȱproduction.ȱMostȱfieldsȱhadȱveryȱlowȱlevelsȱofȱproductionȱbyȱtheȱ2000s.ȱProducedȱwaterȱgenerallyȱlaggedȱO&GȱproductionȱandȱwasȱgenerallyȱhigherȱduringȱdecliningȱO&Gȱproduction.ȱ

Oilȱandȱgasȱactivitiesȱhaveȱcontributedȱinȱthreeȱmajorȱwaysȱtoȱenvironmentalȱimpactsȱonȱcoastalȱecosystemsȱandȱspecificallyȱ toȱwetlandȱ loss.ȱTheseȱ includeȱalterationȱofȱsurfaceȱhydrologyȱdueȱ toȱcanalȱ dredgingȱ andȱ spoilȱ placement,ȱ inducedȱ subsidenceȱ andȱ faultȱ reȬactivationȱ dueȱ toȱ fluidsȱwithdrawal,ȱandȱtoxicȱstressȱdueȱtoȱpollutionȱbyȱspilledȱoilȱandȱproducedȱwater.ȱWetlandȱlossȱdueȱtoȱO&Gȱgasȱactivityȱisȱinitiallyȱdueȱmainlyȱtoȱdirectȱimpactsȱofȱcanalȱdredgingȱandȱspoilȱplacement,ȱbutȱgrowsȱoverȱtimeȱdueȱtoȱcumulativeȱandȱinteractiveȱeffects.ȱThisȱwetlandȱlossȱthenȱgrowsȱoverȱtimeȱtoȱencompassȱmuchȱ ofȱ theȱ fieldȱ andȱ adjacentȱ areas.ȱNetworksȱ ofȱ interconnectedȱ canalsȱ formȱ newȱpatternsȱ ofȱwaterȱ flowȱ andȱ oftenȱ leadȱ toȱ saltwaterȱ intrusion.ȱ Interestingly,ȱ spoilȱ banksȱ areȱ notȱnecessarilyȱ aȱpermanentȱ landscapeȱ featureȱ andȱhaveȱ aȱ lifeȱ cycleȱofȱ theirȱown.ȱTheyȱ subsideȱ andȱcompactȱoverȱtimeȱandȱaȱquarterȱtoȱaȱthirdȱofȱspoilȱbanksȱlikelyȱhaveȱnoȱsubaerialȱexpression.ȱ

FluidȱwithdrawalȱfromȱO&Gȱformationsȱleadsȱtoȱinducedȱsubsidenceȱandȱfaultȱactivationȱ[91].ȱInducedȱsubsidenceȱoccursȱinȱtwoȱphases.ȱWithdrawalȱofȱO&Gȱandȱproducedȱwaterȱinduceȱreservoirȱcompactionȱresultingȱinȱaȱreductionȱofȱreservoirȱthickness.ȱAȱslowȱdrainageȱofȱporeȱpressureȱinȱtheȱboundingȱ shaleȱ mainlyȱ dueȱ toȱ waterȱ pumpingȱ inducesȱ timeȬdelayedȱ shaleȱ compactionȱ andȱsubsidenceȱcanȱcontinueȱforȱdecadesȱafterȱmostȱO&Gȱhasȱbeenȱproduced.ȱThisȱresultsȱinȱsubsidenceȱoverȱmuchȱofȱtheȱoilȱfieldsȱthatȱcanȱbeȱgreaterȱthanȱsurfaceȱsubsidenceȱdueȱtoȱalteredȱhydrology.ȱ

ProducedȱwaterȱfromȱO&GȱfieldsȱisȱwaterȱbroughtȱtoȱtheȱsurfaceȱduringȱO&Gȱextractionȱandȱgenerallyȱincludesȱaȱmixtureȱofȱeitherȱliquidȱorȱgaseousȱhydrocarbons,ȱhighȱsalinityȱproducedȱwater,ȱdissolvedȱorȱsuspendedȱsolids,ȱproducedȱsolidsȱsuchȱasȱsandȱorȱsilt,ȱandȱinjectedȱfluidsȱandȱadditivesȱassociatedȱwithȱexplorationȱandȱproductionȱactivities.ȱProducedȱwaterȱhasȱbeenȱshownȱtoȱbeȱtoxicȱtoȱmanyȱestuarineȱorganismsȱincludingȱvegetationȱandȱconsumers.ȱSpilledȱoilȱhasȱbeenȱshownȱtoȱhaveȱlethalȱandȱsubȬlethalȱeffectsȱofȱaȱwideȱrangeȱofȱestuarineȱorganisms.ȱTheȱthreeȱmainȱtypesȱofȱimpactȱofȱO&Gȱactivitiesȱactȱinȱcumulative,ȱsynergistic,ȱandȱindirectȱwaysȱthatȱleadȱtoȱgreaterȱoverallȱimpact.ȱRestorationȱofȱwetlandsȱlostȱdueȱtoȱO&GȱactivitiesȱwillȱinvolveȱaȱsynergisticȱapproachȱthatȱdealsȱwithȱtheȱdamageȱofȱO&Gȱimpactsȱandȱrebuildsȱaȱfunctioningȱcoastalȱwetlandȱsystem.ȱ

Restorationȱ shouldȱ beȱ theȱ finalȱ stageȱ inȱ theȱ lifeȱ cycleȱ ofȱO&Gȱ fields.ȱAȱ centralȱ objectiveȱ ofȱrestorationȱisȱrestoringȱlostȱelevation.ȱOptionsȱforȱrestorationȱincludeȱmarshȱcreationȱandȱrestorationȱusingȱdredgedȱsediments,ȱfullȱuseȱofȱallȱavailableȱsedimentȱresources,ȱandȱhydrologicȱrestoration.ȱDecontaminationȱofȱrestoredȱsitesȱisȱanȱintegralȱpartȱofȱrestoration.ȱ ȱ

AuthorȱContributions:ȱAllȱauthorsȱcontributedȱtoȱtheȱwritingȱofȱthisȱreviewȱmanuscript.ȱAllȱauthorsȱhaveȱreadȱandȱagreedȱtoȱtheȱpublishedȱversionȱofȱtheȱmanuscript.ȱ

Funding:ȱThisȱresearchȱdidȱnotȱreceiveȱanyȱspecificȱgrantȱfromȱfundingȱagenciesȱinȱtheȱpublic,ȱcommercial,ȱorȱnotȬforȬprofitȱsectors.ȱ

Conflictȱ ofȱ Interest:ȱ J.W.D.,ȱH.C.C.,ȱR.G.H.,ȱ andȱC.R.N.ȱ stateȱ thatȱ theyȱ areȱ engagedȱ asȱ expertsȱ inȱ lawsuitsȱregardingȱ theȱ environmentalȱ impactsȱofȱoilȱ andȱgasȱ activityȱonȱ coastalȱ ecosystems.ȱNoȱ fundingȱ fromȱ theseȱactivitiesȱwasȱusedȱforȱtheȱpreparationȱofȱthisȱpaper.ȱ� ȱ

Page 24: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 24ȱ ofȱ 30ȱ

Referencesȱ

1.� Theriot,ȱJ.P.ȱOilfieldȱbattleground:ȱLouisiana’sȱlegacyȱlawsuitsȱinȱhistoricalȱperspective.ȱLa.ȱHist.ȱJ.ȱLa.ȱHist.ȱAssoc.ȱ2016,ȱ57,ȱ403–462.ȱ

2.� Bass,ȱA.S.;ȱTurner,ȱR.E.ȱRelationshipsȱ betweenȱ saltȱmarshȱ lossȱ andȱdredgedȱ canalsȱ inȱ threeȱLouisianaȱestuaries.ȱJ.ȱCoast.ȱRes.ȱ1997,ȱ13,ȱ895–903.ȱ

3.� Cahoon,ȱD.;ȱTurner,ȱR.E.ȱAccretionȱandȱcanalȱimpactsȱinȱaȱrapidlyȱsubsidingȱwetlandȱII.ȱFeldsparȱmarkerȱhorizonȱtechnique.ȱEstuariesȱ1989,ȱ12,ȱ260–268.ȱ

4.� Ko,ȱJ.Y.ȱandȱJ.W.ȱDay.ȱAȱreviewȱofȱecologicalȱimpactsȱofȱoilȱandȱgasȱdevelopmentȱonȱcoastalȱecosystemsȱinȱtheȱMississippiȱDelta.ȱOceanȱCoast.ȱManag.ȱ2004,ȱ47,ȱ597–623.ȱ

5.� Day,ȱJ.;ȱShaffer,ȱG.;ȱCahoon,ȱD.;ȱDeLaune,ȱR.ȱCanals,ȱbackfillingȱandȱwetlandȱlossȱinȱtheȱMississippiȱDelta.ȱEstuar.ȱCoast.ȱShelfȱSci.ȱ2019,ȱdoi:10.1016/j.ecss.2019.106325.ȱ

6.� Gould,ȱH.R.;ȱMcFarlan,ȱE.,ȱJr.ȱGeologicȱhistoryȱofȱtheȱChenierȱPlain,ȱsouthwesternȱLouisiana.ȱTrans.ȱGulfȱCoastȱAssoc.ȱGeol.ȱSoc.ȱ1959,ȱ9,ȱ261–270.ȱ

7.� Penland,ȱS.;ȱSutor,ȱJ.R.ȱTheȱgeomorphologyȱofȱtheȱMississippiȱRiverȱchenierȱplain.ȱMar.ȱGeol.ȱ1989,ȱ90,ȱ231–240.ȱ

8.� Roberts,ȱH.H.ȱDynamicȱchangesȱofȱtheȱholoceneȱMississippiȱriverȱdeltaȱplain:ȱTheȱdeltaȱcycle.ȱJ.ȱCoast.ȱRes.ȱ1997,ȱ13,ȱ605–627.ȱ

9.� Day,ȱJ.W.,ȱJr.;ȱBritsch,ȱL.D.;ȱHawes,ȱS.R.;ȱShaffer,ȱG.P.;ȱReed,ȱD.J.;ȱCahoon,ȱD.ȱPatternȱandȱprocessȱofȱlandȱlossȱinȱtheȱMississippiȱDelta:ȱAȱspatialȱandȱtemporalȱanalysisȱofȱwetlandȱhabitatȱchange.ȱEstuariesȱ2000,ȱ23,ȱ425–438.ȱ

10.� Blum,ȱM.D.;ȱRoberts,ȱH.H.ȱTheȱMississippiȱdeltaȱregion:ȱPast,ȱpresent,ȱandȱfuture.ȱAnnu.ȱRev.ȱEarthȱPlanet.ȱSci.ȱ2012,ȱ40,ȱ655–683.ȱ

11.� Williams,ȱS.J.;ȱPenland,ȱS.;ȱRoberts,ȱH.H.ȱProcessesȱaffectingȱcoastalȱwetlandȱlossȱinȱtheȱLouisianaȱdeltaicȱplain.ȱ InȱProcessesȱ ofȱCoastalȱWetlandsȱ Lossȱ inȱ Louisiana;ȱWilliams,ȱ S.J.;ȱCichon,ȱH.A.,ȱEds.;ȱPresentedȱ atȱCoastalȱZoneȱ’93;ȱUSGSȱOpenȬFileȱReportȱ94Ȭ0275:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ1994;ȱpp.ȱ21–29.ȱ

12.� Kulp,ȱM.A.ȱHoloceneȱStratigraphy,ȱHistory,ȱandȱSubsidence:ȱMississippiȱRiverȱDeltaȱRegion,ȱNorthȬCentralȱGulfȱofȱMexico.ȱPh.D.ȱThesis,ȱUniversityȱofȱKentucky,ȱLexington,ȱKY,ȱUSA,ȱ2000;ȱp.ȱ336.ȱ

13.� Reed,ȱ D.J.ȱ SeaͲlevelȱ riseȱ andȱ coastalȱ marshȱ sustainability:ȱ Geologicalȱ andȱ ecologicalȱ factorsȱ inȱ theȱMississippiȱdeltaȱplain.ȱGeomorphologyȱ2002,ȱ48,ȱ233–243,ȱdoi:10.1016/S0169Ȭ555X(02)00183Ȭ6.ȱ

14.� Gagliano,ȱS.M.;ȱKemp,ȱE.B.;ȱWicker,ȱK.M.;ȱWiltenmuth,ȱK.S.ȱActiveȱGeologicalȱFaultsȱandȱLandȱChangeȱ inȱSoutheasternȱLouisiana,ȱFinalȱReport;ȱContractȱNo.ȱDACWȱ29Ȭ00ȬCȬ0034;ȱCoastalȱEnvironments,ȱInc.,ȱUnitedȱStatesȱArmyȱCorpsȱofȱEngineers:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2003;ȱp.ȱ177.ȱ

15.� Reed,ȱD.J.;ȱWilson,ȱL.ȱCoastȱ2050:ȱAȱnewȱapproachȱtoȱrestorationȱofȱLouisianaȱcoastalȱwetlands.ȱPhys.ȱGeogr.ȱ2004,ȱ25,ȱ4–21.ȱ

16.� Turner,ȱR.E.;ȱCahoon,ȱD.R.ȱ (Eds.)ȱCausesȱ ofȱWetlandȱLossȱ inȱ theȱCoastalȱCentralȱGulfȱ ofȱMexico,ȱVolumeȱ II:ȱTechnicalȱ Narrative;ȱ Contractȱ No.ȱ 14Ȭ12Ȭ0001Ȭ30252.ȱ OCSȱ Study/MMSȱ 87Ȭ0120;ȱ Preparedȱ forȱMineralsȱManagementȱService:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ1987;ȱp.ȱ400.ȱ

17.� USACEȱ (U.S.ȱDeptȱ ofȱ theȱArmyȱCorpsȱ ofȱ Engineers).ȱ 2004.ȱ LouisianaȱCoastalȱAreaȱ (LCA),ȱ LouisianaȱEcosystemȱ Restorationȱ Study,ȱ Finalȱ Volumeȱ 1—LCAȱ Study,ȱ Mainȱ Report.ȱ Availableȱ online:ȱhttp://www.lca.gov/final_report.aspxȱ(accessedȱonȱ20ȱJanuaryȱ2020).ȱ

18.� Turner,ȱ R.E.;ȱMcClenachan,ȱ G.ȱ Reversingȱ wetlandȱ deathȱ fromȱ 35,000ȱ cuts:ȱ Opportunitiesȱ toȱ restoreȱLouisiana’sȱdredgedȱcanals.ȱPLoSȱONEȱ2018,ȱ13,ȱe0207717,ȱdoi:10.1371/journal.pone.0207717.ȱ

19.� Olea,ȱR.A.;ȱColeman,ȱJ.L.,ȱJr.ȱAȱsynopticȱexaminationȱofȱcausesȱofȱlandȱlossȱinȱSouthernȱLouisianaȱasȱrelatedȱtoȱtheȱexploitationȱofȱsubsurfaceȱgeologicȱrsources.ȱJ.ȱCoast.ȱRes.ȱ2014,ȱ30,ȱ1025–1044.ȱ

20.� Morton,ȱR.A.;ȱJ.C.ȱBernier;ȱBarras,ȱJ.A.ȱEvidenceȱofȱregionalȱsubsidenceȱandȱassociatedȱinteriorȱwetlandȱlossȱinducedȱbyȱhydrocarbonȱproduction,ȱGulfȱCoastȱregion,ȱUSA.ȱEnviron.ȱGeol.ȱ2006,ȱ50,ȱ261–274.ȱ

21.� Pe,ȱK.M.ȱAnȱAssessmentȱofȱProducedȱWaterȱImpactsȱtoȱLowȬEnergyȱBrackishȱWaterȱSystemsȱinȱSoutheastȱLouisiana;ȱLouisianaȱDepartmentȱofȱEnvironmentallyȱQuality,ȱWaterȱPollutionȱControlȱDivision:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1990;ȱp.ȱ204.ȱ

22.� Rabalais,ȱN.N.;ȱMcKee,ȱB.A.;ȱReed,ȱD.J.;ȱMeans,ȱJ.C.ȱFateȱandȱeffectsȱofȱproducedȱwaterȱdischargesȱinȱcoastalȱLouisiana,ȱGulfȱofȱMexico,ȱUSA.ȱInȱProducedȱWater;ȱSpringer:ȱBoston,ȱMA,ȱUSA,ȱ1992;ȱpp.ȱ355–369.ȱ

23.� Neto,ȱA.G.;ȱCosta,ȱC.S.B.ȱSurvivalȱandȱgrowthȱofȱtheȱdominantȱsaltȱmarshȱgrassȱSpartinaȱalternifloraȱinȱanȱoilȱindustryȱsalineȱwastewater.ȱInt.ȱJ.ȱPhytoremediationȱ2009,ȱ11,ȱ640–650.ȱ

Page 25: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 25ȱ ofȱ 30ȱ

24.� Penland,ȱS.;ȱWayne,ȱL.;ȱBritsch,ȱL.D.;ȱWilliams,ȱS.J.;ȱBeall,ȱA.D.;ȱButterworth,ȱV.C.ȱGeomorphicȱclassificationȱofȱ coastalȱ landȱ lossȱ betweenȱ 1932ȱ andȱ 1990ȱ inȱ theȱMississippiȱRiverȱ deltaȱ plain,ȱ southeasternȱ Louisiana;ȱU.S.ȱGeologicalȱSurveyȱOpenȬFileȱReportȱ00Ȭ417,ȱ1ȱsheet.ȱUSGS:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2000.ȱ

25.� Penland,ȱS.;ȱWayne,ȱL.;ȱBritsch,ȱL.D.;ȱWilliams,ȱS.J.;ȱBeall,ȱA.D.;ȱButterworth,ȱV.C.ȱProcessȱclassificationȱofȱcoastalȱlandȱlossȱbetweenȱ1932ȱandȱ1990ȱinȱtheȱMississippiȱRiverȱdeltaȱplain,ȱsoutheasternȱLouisiana;ȱU.S.ȱGeologicalȱSurveyȱOpenȬFileȱReportȱ00Ȭ418,ȱ1ȱsheet.ȱUSGS:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2000.ȱ

26.� Turner,ȱR.E.ȱRelationshipȱbetweenȱCanalȱandȱLeveeȱDensityȱandȱCoastalȱLandȱLossȱinȱLouisiana;ȱUSȱFishȱWildlifeȱServiceȱBiologicalȱReportȱ85(14);ȱDepartmentȱofȱInterior:ȱWashington,ȱDC,ȱUSA,ȱ1987;ȱp.ȱ58.ȱ

27.� Turner,ȱR.E.ȱWetlandȱlossȱinȱtheȱNorthernȱGulfȱofȱMexico:ȱMultipleȱworkingȱhypotheses.ȱCoast.ȱEstuar.ȱRes.ȱFed.ȱ1997,ȱ20,ȱ1–13.ȱ

28.� Chan,ȱA.W.;ȱZoback,ȱM.D.ȱTheȱroleȱofȱhydrocarbonȱproductionȱonȱlandȱsubsidenceȱandȱfaultȱreactivationȱinȱtheȱLouisianaȱcoastalȱzone.ȱJ.ȱCoast.ȱRes.ȱ2007,ȱ23,ȱ771–786.ȱ

29.� Chang,ȱ C.;ȱ Mallman,ȱ E.;ȱ Zoback,ȱ M.ȱ TimeȬdependentȱ subsidenceȱ associatedȱ withȱ drainageȬinducedȱcompactionȱinȱGulfȱofȱMexicoȱshalesȱboundingȱaȱseverelyȱdepletedȱgasȱreservoir.ȱAAPGȱBull.ȱ2014,ȱ98,ȱ1145–1159,ȱdoi:10.1306/11111313009.ȱ

30.� Morton,ȱR.A.;ȱBernier,ȱJ.C.;ȱBarras,ȱJ.A.;ȱFerina,ȱN.F.ȱ2005.ȱRapidȱsubsidenceȱandȱhistoricalȱwetlandȱlossȱinȱtheȱsouthȬcentralȱMississippiȱdeltaȱplain:ȱLikelyȱcausesȱandȱ futureȱ implications.ȱU.S.ȱGeologicalȱSurveyȱOpenȬfileȱReportȱ2005–1216.ȱAvailableȱonline:ȱhttp://www.pubs.usgs.gov/of/2005/1216ȱ(accessedȱonȱ6ȱJuneȱ2019).ȱ

31.� IHSȱEnergyȱGroup.ȱPI/DwightsȱPlusȱU.S.ȱProductionȱDataȱonȱCD:ȱAvailableȱfromȱIHSȱEnergyȱGroup,ȱ15ȱInvernessȱWayȱEast,ȱD205;ȱHISȱenergyȱgroup:ȱEnglewood,ȱCO,ȱUSA,ȱ2003.ȱ

32.� Britsch,ȱL.D.;ȱDunbar,ȱJ.B.ȱLandȱlossȱrates:ȱLouisianaȱcoastalȱplain.ȱJ.ȱCoast.ȱRes.ȱ1993,ȱ9,ȱ324–338.ȱ33.� Couvillion,ȱB.;ȱBarras,ȱJ.;ȱSteyer,ȱG.;ȱSleavin,ȱW.;ȱFishcher,ȱM.;ȱH,ȱB.;ȱTrahan,ȱN.;ȱGriffin,ȱB.;ȱHeckman,ȱD.ȱ

LandȱareaȱchangeȱinȱcoastalȱLouisianaȱfromȱ1932ȱtoȱ2010;ȱScientificȱInvestigationsȱMapȱ3164,ȱscaleȱ1,ȱ265,000.ȱU.S.ȱ Geologicalȱ Survey:ȱ Newȱ Orleans,ȱ LA,ȱ USA,ȱ 2011;ȱ 12ȱ p.ȱ Availableȱ online:ȱhttps://pubs.usgs.gov/sim/3381/sim3381.pdfȱ(accessedȱonȱ23ȱJulyȱ2016).ȱ

34.� Couvillion,ȱB.R.;ȱBeck,ȱH.;ȱSchoolmaster,ȱD.;ȱFischer,ȱM.ȱLandȱAreaȱChangeȱinȱCoastalȱLouisianaȱ1932ȱtoȱ2016;ȱScientificȱInvestigationsȱMapȱ3381.ȱU.S.ȱGeologicalȱSurvey:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2017;ȱ16ȱp.ȱPamphlet.ȱ

35.� Gagliano,ȱS.M.;ȱvanȱBeek,ȱ J.L.ȱGeologicȱandȱgeomorphicȱaspectsȱofȱdeltaicȱprocesses,ȱMississippiȱdeltaȱsystem.ȱ InȱHydrologicȱ andȱGeologicȱStudiesȱ ofȱCoastalȱLouisiana;ȱGagliano,ȱS.M.,ȱMuller,ȱR.,ȱLight,ȱP.,ȱAlȬAwady,ȱM.,ȱEds.;ȱLaȱStateȱUniv,ȱCoastalȱStudiesȱInstituteȱandȱDeptȱofȱMarineȱSciences:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1970;ȱVolumeȱI,ȱp.ȱ140.ȱ

36.� Gagliano,ȱS.M.ȱCanals,ȱdredgingȱandȱ landȱ reclamationȱ inȱ theȱLouisianaȱcoastalȱzone.ȱ InȱHydrologicȱ andȱGeologicȱ Studiesȱ ofȱ Coastalȱ Louisiana;ȱ Reportȱ no.ȱ 14;ȱ Centerȱ forȱ Wetlandȱ Resources,ȱ Louisianaȱ StateȱUniversity:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1973;ȱp.ȱ104.ȱ

37.� Craig,ȱN.J.;ȱTurner,ȱR.E.;ȱDay,ȱJ.W.,ȱJr.ȱLandȱlossȱinȱcoastalȱLouisianaȱ(U.S.A.).ȱEnviron.ȱManag.ȱ1979,ȱ3,ȱ133–144.ȱ

38.� Turner,ȱR.E.;ȱCostanza,ȱR.;ȱScaife,ȱW.ȱCanalsȱ andȱ landȱ lossȱ inȱ coastalȱLouisiana.ȱ InȱProceedingsȱofȱ theȱConferenceȱonȱCoastalȱErosionȱandȱWetlandȱModificationȱinȱLouisiana:ȱCauses,ȱconsequences,ȱandȱoptions,ȱ5–7ȱOctoberȱ1981,ȱBatonȱRouge,ȱLA,ȱUSA;ȱpp.ȱ73–84.ȱBoesch,ȱD.F.,ȱEd.;ȱNationalȱCoastalȱEcosystemsȱTeam,ȱOfficeȱofȱBiologicalȱServices,ȱFishȱandȱWildlifeȱService,ȱUSȱDepartmentȱofȱtheȱInterior:ȱWashington,ȱD.C.,ȱUSA,ȱ1982;ȱp.ȱ256.ȱ

39.� Scaife,ȱW.W.;ȱTurner,ȱR.E.;ȱCostanza,ȱR.ȱCoastalȱLouisianaȱ recentȱ landȱ lossȱandȱcanalȱ impacts.ȱEnviron.ȱManag.ȱ1983,ȱ7,ȱ433–442.ȱ

40.� Deegan,ȱL.A.;ȱKennedy,ȱH.M.;ȱNeill,ȱC.ȱNaturalȱfactorsȱandȱhumanȱmodificationsȱcontributingȱtoȱmarshȱlossȱinȱLouisiana’sȱMississippiȱRiverȱdeltaicȱplain.ȱEnviron.ȱManag.ȱ1984,ȱ8,ȱ519–528.ȱ

41.� Turner,ȱR.E.ȱLandscapeȱdevelopmentȱandȱcoastalȱwetlandȱlossesȱinȱtheȱNorthernȱGulfȱofȱMexico.ȱAm.ȱZool.ȱ1990,ȱ30,ȱ89–105.ȱ

42.� Baumann,ȱR.H.;ȱTurner,ȱR.E.ȱDirectȱ impactsȱofȱouterȱ continentalȱ shelfȱactivitiesȱonȱwetlandȱ lossȱ inȱ theȱcentralȱGulfȱofȱMexico.ȱEnviron.ȱGeol.ȱWat.ȱSci.ȱ1990,ȱ15,ȱ189–198.ȱ

43.� Boesch,ȱD.F.;ȱJosselyn,ȱM.N.;ȱMehta,ȱA.J.;ȱMorris,ȱJ.T.;ȱNuttle,ȱW.K.;ȱSimenstad,ȱC.A.;ȱSwift,ȱD.J.P.ȱScientificȱassessmentȱofȱcoastalȱwetlandȱloss,ȱrestorationȱandȱmanagement.ȱJ.ȱCoast.ȱRes.ȱSpecialȱIssueȱNo.ȱ1994,ȱ20,ȱ1–103.ȱ

Page 26: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 26ȱ ofȱ 30ȱ

44.� Barras,ȱJ.A.ȱ2006,ȱLandȱareaȱchangeȱinȱcoastalȱLouisianaȱafterȱtheȱ2005ȱhurricanes—Aȱseriesȱofȱthreeȱmaps:ȱU.S.ȱGeologicalȱSurveyȱOpenȬFileȱReportȱ2006–1274.ȱAvailableȱonline:ȱhttp://pubs.usgs.gov/of/2006/1274/ȱ(accessedȱonȱ19ȱOctoberȱ2018).ȱ

45.� Doiron,ȱ L.N.;ȱWhitehurst,ȱ C.A.ȱ Geomorphicȱ Processesȱ Activeȱ inȱ theȱ Southeastȱ Louisianaȱ Canal;ȱ ResearchȱMonographs,ȱDivisionȱofȱEngineeringȱResearch–RMȱ5:ȱLaFourcheȱParish,ȱLA,ȱUSA,ȱ1974;ȱp.ȱ48.ȱ

46.� Davis,ȱD.W.ȱLouisianaȱcanalsȱandȱtheirȱinfluenceȱonȱwetlandȱdevelopment.ȱPh.D.ȱThesis,ȱLouisianaȱStateȱUniversity,ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1973;ȱp.ȱ234.ȱ

47.� Gagliano,ȱS.M.;ȱWicker,ȱK.M.ȱProcessesȱofȱwetlandȱerosionȱinȱtheȱMississippiȱRiverȱDeltaicȱPlain,ȱp.ȱ28–48.ȱInȱMarshȱManagementȱinȱCoastalȱLouisiana:ȱEffectsȱandȱIssues—ProceedingsȱofȱaȱSymposium;ȱDuffy,ȱW.G.,ȱClark,ȱD.,ȱEds.;ȱUnitedȱStatesȱFishȱandȱWildlifeȱServiceȱandȱLouisianaȱDepartmentȱofȱNaturalȱResources.ȱUnitedȱStatesȱFishȱandȱWildlifeȱServiceȱBiologicalȱReport:ȱWashington,ȱD.C.,ȱUSA,ȱ1989.ȱ

48.� Reed,ȱD.J.ȱStatusȱandȱHistoricalȱTrendsȱofȱHydrologicȱModification,ȱReductionȱinȱSedimentȱAvailability,ȱandȱHabitatȱLoss/ModificationȱinȱtheȱBaratariaȱandȱTerrebonneȱEstuarineȱSystem;ȱBTNEPȱPubl.ȱNo.ȱ20;ȱBaratariaȬTerrebonneȱNationalȱEstuaryȱProgram:ȱThibodaux,ȱLA,ȱUSA,ȱ1995;ȱp.ȱ338.ȱ ȱ

49.� Day,ȱJ.;ȱRybczyk,ȱJ.;ȱScarton,ȱF.;ȱRismondo,ȱA.;ȱAre,ȱD.;ȱCecconi,ȱG.ȱSoilȱaccretionaryȱdynamics,ȱseaȬlevelȱriseȱandȱtheȱsurvivalȱofȱwetlandsȱinȱVeniceȱLagoon:ȱAȱfieldȱandȱmodelingȱapproach.ȱEstuar.ȱCoast.ȱShelfȱSci.ȱ1999,ȱ49,ȱ607–628.ȱ

50.� Johnston,ȱ J.B.;ȱCahoon,ȱD.R.;ȱ laȱPeyre,ȱM.K.ȱOuterȱContinentalȱShelfȱ (OCS)ȬRelatedpipelinesȱandȱNavigationȱCanalsȱ inȱ theȱWesternȱ andȱCentralȱGulfȱ ofȱMexico:ȱRelativeȱ Impactsȱ onȱWetlandȱHabitatsȱ andȱEffectivenessȱ ofȱMitigation;ȱOCSȱStudyȱMMSȱ2009Ȭ048;ȱU.S.ȱDept.ȱofȱ theȱInterior,ȱMineralsȱManagementȱService,ȱGulfȱofȱMexicoȱOCSȱRegion,ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2009;ȱp.ȱ200.ȱ

51.� Swenson,ȱ E.M.ȱMarshȱ Hydrologicalȱ Studies,ȱ 1982–1983ȱ Dataȱ Report;ȱ Preparedȱ forȱ theȱ NationalȱMarineȱFisheriesȱService,ȱSoutheastȱRegion,ȱSt.ȱPetersburg,ȱFlorida.ȱContractȱno.ȱNA81ȬBAȬP00006.ȱPublicationȱno.ȱLSUȬCEFIȬ83Ȭ18;ȱCoastalȱ Ecologyȱ Institute,ȱCenterȱ forȱWetlandȱResources,ȱ Louisianaȱ StateȱUniversity:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1983.ȱ

52.� Swenson,ȱE.M.;ȱTurner,ȱR.E.ȱSpoilȱbanks:ȱEffectsȱonȱaȱcoastalȱmarshȱwaterȬlevelȱregime.ȱEstuar.ȱCoast.ȱShelfȱSci.ȱ1987,ȱ24,ȱ599–609.ȱ

53.� Mendelssohn,ȱI.A.;ȱMcKee,ȱK.L.ȱSpartinaȱalternifloraȱdieȬbackȱinȱLouisiana:ȱTimeȬcourseȱinvestigationȱofȱsoilȱwaterloggingȱeffects.ȱJ.ȱEcol.ȱ1988,ȱ76,ȱ509–521.ȱ

54.� Day,ȱR.;ȱHolz,ȱR.;ȱDay,ȱJ.ȱAnȱinventoryȱofȱwetlandȱimpoundmentsȱinȱtheȱcoastalȱzoneȱofȱLouisiana,ȱUSA:ȱHistoricalȱtrends.ȱEnviron.ȱManag.ȱ1990,ȱ14,ȱ229–240.ȱ

55.� Taylor,ȱN.C.;ȱDay,ȱ J.W.;ȱNeusaenger,ȱG.E.ȱEcologicalȱcharacterizationȱofȱ JeanȱLafitteȱNationalȱHistoricalȱPark,ȱLouisiana:ȱBasisȱforȱaȱmanagementȱplan.ȱInȱMarshȱManagementȱinȱCoastalȱLouisiana:ȱEffectsȱandȱIssues—ProceedingsȱofȱaȱSymposium;ȱBatonȱRouge,ȱLA,ȱUSA,ȱ7–10ȱJuneȱ1988;ȱDuffy,ȱW.G.,ȱClark,ȱD.,ȱEds.;ȱUnitedȱStatesȱFishȱandȱWildlifeȱServiceȱandȱLouisianaȱDepartmentȱofȱNaturalȱResources:ȱWashington,ȱD.C.,ȱUSA,ȱ1989.ȱ

56.� Cahoon,ȱD.R.;ȱGroat,ȱC.G.ȱAȱStudyȱofȱMarshȱManagementȱPracticeȱinȱCoastalȱLouisiana;ȱExecutiveȱSummary;ȱU.S.ȱDept.ȱ ofȱ theȱ Interior,ȱMineralsȱManagementȱ Service,ȱGulfȱ ofȱMexicoȱOCSȱRegion:ȱNewȱOrleans,ȱLouisiana,ȱUSA,ȱ1990;ȱVolumeȱ1,ȱp.ȱ36.ȱ

57.� Reed,ȱD.J.ȱEffectȱofȱweirsȱonȱsedimentȱdepositionȱinȱLouisianaȱcoastalȱmarshes.ȱEnviron.ȱManag.ȱ1992,ȱ16,ȱ55–65.ȱ

58.� Reed,ȱD.J.;ȱCahoon,ȱD.R.ȱTheȱrelationshipȱbetweenȱmarshȱsurfaceȱtopographyȱandȱvegetationȱparametersȱinȱaȱdeterioratingȱLouisianaȱSpartinaȱalternifloraȱsaltȱmarsh.ȱJ.ȱCoast.ȱRes.ȱ1992,ȱ8,ȱ77–87.ȱ

59.� Rogers,ȱD.R.;ȱRogers,ȱB.D.;ȱHerke,ȱW.H.ȱEffectsȱofȱaȱmarshȱmanagementȱplanȱonȱfisheryȱcommunitiesȱinȱcoastalȱLouisiana.ȱWetlandsȱ1992,ȱ12,ȱ53–62.ȱ

60.� Boumans,ȱR.M.;ȱDay,ȱJ.W.ȱEffectsȱofȱtwoȱLouisianaȱmarshȱmanagementȱplansȱonȱwaterȱandȱmaterialsȱfluxȱandȱshortȬtermȱsedimentation.ȱWetlandsȱ1994,ȱ14,ȱ247–261.ȱ

61.� Cahoon,ȱD.R.ȱRecentȱaccretionȱinȱtwoȱmanagedȱmarshȱimpoundmentsȱinȱcoastalȱLouisiana.ȱEcol.ȱAppl.ȱ1994,ȱ4,ȱ166–176.ȱ

62.� Asano,ȱT.ȱSedimentȱtransportȱunderȱsheetȬflowȱconditions.ȱJ.ȱWaterw.ȱPortȱCoast.ȱOceanȱEng.ȱASCEȱ1995,ȱ121,ȱ239–246.ȱ

63.� GascuelȬOdux,ȱC.;ȱCrosȬCayot,ȱS.;ȱDurand,ȱP.ȱSpatialȱvariationsȱofȱsheetȱflowȱandȱsedimentȱtransportȱonȱanȱagriculturalȱfield.ȱEarthȱSurf.ȱProcess.ȱLandf.ȱ1996,ȱ21,ȱ843–851.ȱ

64.� Neill,ȱC.;ȱTurner,ȱR.E.ȱBackfillingȱcanalsȱtoȱmitigateȱwetlandȱdredgingȱinȱLouisianaȱcoastalȱmarshes.ȱEnviron.ȱManag.ȱ1987,ȱ11,ȱ823–836.ȱ

Page 27: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 27ȱ ofȱ 30ȱ

65.� Taylor,ȱN.C.ȱEcologicalȱ characterizationȱofȱ JeanȱLafitteȱNationalȱHistoricalȱPark.ȱLouisiana:ȱBasisȱ forȱaȱmanagementȱplan.ȱMaster’sȱThesis,ȱLouisianaȱStateȱUniversity.ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1988.ȱ

66.� Reed,ȱD.J.;ȱdeȱLuca,ȱN.;ȱFoote,ȱA.L.ȱEffectȱofȱhydrologicȱmanagementȱonȱmarshȱsurfaceȱsedimentȱdepositionȱinȱcoastalȱLouisiana.ȱEstuariesȱ1997,ȱ20,ȱ301–311.ȱ

67.� Jarvis,ȱJ.C.ȱVerticalȱAccretionȱRatesȱinȱCoastalȱLouisiana:ȱAȱReviewȱofȱtheȱScientificȱLiterature;ȱERDC/ELȱTNȬ10Ȭ5;ȱU.S.ȱArmyȱEngineerȱResearchȱandȱDevelopmentȱCenter:ȱVicksburg,ȱMS,ȱUSA,ȱ2010;ȱp.ȱ15.ȱ

68.� Sasser,ȱC.E.;ȱDozier,ȱM.D.;ȱGosselink,ȱJ.G.;ȱHill,ȱJ.M.ȱSpatialȱandȱtemporalȱchangesȱinȱLouisianaȇsȱBaratariaȱbasinȱmarshes,ȱ1945–1980.ȱEnviron.ȱManag.ȱ1986,ȱ10,ȱ671–680.ȱ

69.� Wang,ȱF.C.ȱDynamicsȱofȱsaltwaterȱintrusionȱinȱcoastalȱchannels.ȱJ.ȱGeophys.ȱRes.ȱ1988,ȱ93,ȱ6937–6946.ȱ70.� Turner,ȱR.E.ȱandȱY.S.ȱRao.ȱRelationshipsȱbetweenȱwetlandȱfragmentationȱandȱrecentȱhydrologicȱchangesȱinȱ

aȱdeltaicȱcoast.ȱEstuariesȱ1990,ȱ13,ȱ72–281.ȱ71.� Shaffer,ȱG.;ȱDay,ȱJ.;ȱMack,ȱS.;ȱKemp,ȱP.;ȱvanȱHeerden,ȱI.;ȱPoirrier,ȱM.;ȱWestphal,ȱK.;ȱFitzGerald,ȱD.;ȱMilanes,ȱ

A.;ȱMorris,ȱC.;ȱetȱal.ȱTheȱMRGOȱnavigationȱproject:ȱAȱmassiveȱhumanȬinducedȱenvironmental,ȱeconomic,ȱandȱstormȱdisaster.ȱJ.ȱCoast.ȱRes.ȱ2009,ȱ54,ȱ206–224.ȱ

72.� McKee,ȱK.L.;ȱMendelssohn,ȱI.A.ȱResponseȱofȱaȱfreshwaterȱmarshȱplantȱcommunityȱtoȱincreasedȱsalinityȱandȱincreasedȱwaterȱlevel.ȱAquat.ȱBot.ȱ1989,ȱ34,ȱ301–316.ȱ

73.� Mendelssohn,ȱI.A.;ȱMorris,ȱJ.T.ȱEcoȬphysiologicalȱcontrolsȱonȱtheȱproductivityȱofȱSpartinaȱalternifloraȱloisel.ȱInȱConceptsȱandȱControversiesȱinȱTidalȱMarshȱEcology;ȱWeinstein,ȱM.P.,ȱKreeger,ȱD.A.,ȱEds.;ȱKuwerȱAcademicȱPublishers:ȱBoston,ȱMA,ȱUSA,ȱ2000;ȱpp.ȱ59–80.ȱ

74.� Day,ȱJ.W.;ȱKemp,ȱG.P.;ȱReed,ȱD.J.;ȱCahoon,ȱD.R.;ȱBoumans,ȱR.M.;ȱSuhayda,ȱJ.M.;ȱGambrell,ȱR.ȱVegetationȱdeathȱandȱ rapidȱ lossȱofȱsurfaceȱelevationȱ inȱ twoȱcontrastingȱMississippiȱdeltaȱsaltȱmarshes:ȱTheȱ roleȱofȱsedimentation,ȱautocompactionȱandȱseaȬlevelȱrise.ȱEcol.ȱEng.ȱ2011,ȱ37,ȱ229–240.ȱ

75.� Nyman,ȱJ.A.;ȱDeLaune,ȱR.D.;ȱPatrick,ȱW.H.,ȱJr.ȱWetlandȱsoilȱformationȱinȱtheȱrapidlyȱsubsidingȱMississippiȱRiverȱDeltaicȱPlain:ȱMineralȱandȱorganicȱmatterȱrelationships.ȱEstuar.ȱCoast.ȱShelfȱSci.ȱ1990,ȱ31,ȱ57–69.ȱ

76.� Gagliano,ȱS.ȱAssessmentȱofȱEnvironmentalȱImpactsȱAssociatedȱwithȱOilȱandȱGasȱExplorationȱandȱDevelopmentȱinȱtheȱBullyȱCampȱOilȱandȱGasȱFieldȱLafourcheȱParish,ȱLouisiana;ȱExportȱ reportȱpreparedȱ forȱ Jones,ȱSwanson,ȱHuddellȱ&ȱGarrison,ȱ601ȱPoydrasȱSt.,ȱSuiteȱ2655:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2017.ȱ

77.� Nichols,ȱL.G.ȱTechnicalȱReportȱofȱtheȱLouisianaȱWildlifeȱandȱFisheriesȱCommission,ȱRockefellerȱRefugeȱleveeȱstudy;ȱLouisianaȱWildlifeȱandȱFisheriesȱCommission,ȱRefugeȱDivision:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ1959.ȱ

78.� Bondesan,ȱM.;ȱCastiglioni,ȱG.;ȱElmi,ȱC.;ȱGabbianelli,ȱG.;ȱMarocco,ȱR.;ȱPirazzoli,ȱP.;ȱTomasin,ȱA.ȱCoastalȱareasȱatȱriskȱfromȱstormȱsurgesȱandȱseaȬlevelȱriseȱinȱnortheasternȱItaly.ȱJ.ȱCoast.ȱRes.ȱ1995,ȱ11,ȱ1354–1379.ȱ

79.� Mallman,ȱE.P.;ȱZoback,ȱM.D.ȱSubsidenceȱinȱtheȱLouisianaȱCoastalȱZoneȱdueȱtoȱhydrocarbonȱproduction:ȱJ.ȱCoast.ȱRes.ȱ2007,ȱ50,ȱ443–449.ȱ

80.� Dokka,ȱR.K.ȱTheȱroleȱofȱdeepȱprocessesȱinȱlateȱ20thȱcenturyȱsubsidenceȱofȱNewȱOrleansȱandȱcoastalȱareasȱofȱsouthernȱLouisianaȱandȱMississippi.ȱJ.ȱGeophys.ȱRes.ȱ2011,ȱ116,ȱB06403,ȱdoi:10.1029/2010JB008008.ȱ

81.� CaroȱGuenca,ȱM.;ȱHanssen,ȱR.;ȱHooper,ȱA.;ȱArikan,ȱM.ȱSurfaceȱdeformationȱofȱtheȱwholeȱNetherlandsȱafterȱPSIȱanalysis.ȱInȱProceedingsȱofȱtheȱFringeȱ2011ȱWorkshop,ȱFrascati,ȱItaly,ȱ19–23ȱSeptemberȱ2011;ȱESAȱSPȬ697.ȱ

82.� Kolker,ȱA.S.;ȱAllison,ȱM.A.;ȱHameed,ȱS.ȱAnȱevaluationȱofȱsubsidenceȱratesȱandȱseaȱlevelȱvariabilityȱinȱtheȱnorthernȱGulfȱofȱMexico.ȱGeophys.ȱRes.ȱLett.ȱ2011,ȱ38,ȱL21404,ȱdoi:10.1029/2011GL049458.ȱ

83.� Yu,ȱ S.ȬY.;ȱ Tornqvist,ȱ T.E.;ȱHu,ȱ P.ȱQuantifyingȱHoloceneȱ lithosphericȱ subsidenceȱ ratesȱ underneathȱ theȱMississippiȱDelta.ȱEarthȱPlanet.ȱSci.ȱLett.ȱ2012,ȱ331,ȱ21–30,ȱdoi:10.1016/j.epsl.2012.02.021.ȱ

84.� Morton,ȱR.A.;ȱBuster,ȱN.A.;ȱKrohn,ȱM.D.ȱSubsurfaceȱcontrolsȱonȱhistoricalȱsubsidenceȱratesȱandȱassociatedȱwetlandȱlossȱinȱsouthcentralȱLouisiana.ȱTrans.ȱGulfȱCoastȱAssoc.ȱGeol.ȱSoc.ȱ2002,ȱ52,ȱ767–778.ȱ

85.� Gagliano,ȱS.M.;ȱHaggar,ȱK.S.ȱEffectsȱofȱDȬshapedȱfaultȱdeformationȱonȱsouthȱLouisianaȱlandscapeȱ(abs.);ȱAnnualȱConventionȱ2010ȱProgramsȱandȱAbstracts;ȱAmericanȱAssociationȱofȱPetroleumȱGeologists:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ2010.ȱ

86.� Morton,ȱR.A.;ȱBernier,ȱJ.C.ȱRecentȱsubsidenceȬrateȱreductionsȱinȱtheȱMississippiȱdeltaȱandȱtheirȱgeologicalȱimplications.ȱJ.ȱCoast.ȱRes.ȱ2010,ȱ29,ȱ555–561.ȱ

87.� Armstrong,ȱC.;ȱMohrig,ȱD.;ȱHess,ȱT.;ȱGeorge,ȱT.;ȱStraub,ȱK.ȱ Influenceȱofȱgrowthȱ faultsȱonȱcoastalȱ fluvialȱsystems:ȱExamplesȱfromȱtheȱlateȱMioceneȱtoȱRecentȱMississippiȱRiverȱDelta.ȱSediment.ȱGeol.ȱ2014,ȱ301,ȱ120–132.ȱ

Page 28: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 28ȱ ofȱ 30ȱ

88.� Levesh,ȱJ.L.;ȱMcLindon,ȱC.;ȱKulp,ȱM.A.ȱAȱDetailedȱStudyȱofȱtheȱDelacroixȱIslandȱMajorȱFaultȱandȱItsȱRoleȱonȱStratigraphicȱHorizonsȱfromȱtheȱMiddleȱMioceneȱtoȱPresent,ȱAbstract.ȱInȱProceedingsȱofȱtheȱAGUȱFallȱMeeting,ȱNewȱOrleans,ȱLA,ȱUSA,ȱ11–15ȱDecemberȱ2017.ȱ

89.� Culpepper,ȱM.;ȱMcDade,ȱE.C.;ȱDawers,ȱN.;ȱZhang,ȱR.ȱSynthesisȱofȱFaultȱTracesȱ inȱSEȱLouisianaȱRelativeȱ toȱInfrastructure:ȱProjectȱNo.ȱ17GTLSU12;ȱTransportationȱConsortiumȱofȱSouthȱCentralȱStates:ȱSanȱAntonio,ȱTX,ȱUSA,ȱ2019;ȱp.ȱ53.ȱ

90.� Straub,ȱK.;ȱMohrig,ȱD.ȱ 2010.ȱ SubsidenceȱAssociatedȱwithȱActiveȱGrowthȱ Faultingȱ onȱ theȱMississippiȱDelta:ȱDisplacementȱRatesȱandȱSteeringȱofȱtheȱMississippiȱRiver;ȱPresentedȱatȱLongȱTermȱEstuaryȱAssessmentȱGroup:ȱNewȱ Orleans,ȱ LA,ȱ USA,ȱ 2010.ȱ Availableȱ online:ȱ http://leag.tulane.edu/PDFs/StraubȬLEAGȬ4.28.10.pdfȱ(accessedȱonȱ12ȱFebruaryȱ2019).ȱ

91.� Hillis,ȱR.ȱPoreȱpressure/stressȱcouplingȱandȱitsȱimplicationsȱforȱseismicity.ȱExplor.ȱGeophys.ȱ2000,ȱ31,ȱ448–454.ȱ

92.� Zoback,ȱM.D.;ȱZinke,ȱJ.C.ȱProductionȬinducedȱnormalȱfaultingȱinȱtheȱValhallȱandȱEkofiskȱoilȱfields.ȱInȱTheȱMechanismȱofȱInducedȱSeismicity;ȱTrifu,ȱC.I.,ȱEd.;ȱPageophȱTopicalȱVolumes,ȱBirkhauser:ȱBasel,ȱSwitzerland,ȱ2002;ȱpp.ȱ403–420.ȱ

93.� Pratt,ȱW.E.;ȱJohnson,ȱD.W.ȱLocalȱsubsidenceȱofȱtheȱGooseȱCreekȱoilȱfield.ȱJ.ȱGeol.ȱ1926,ȱ34,ȱ577–590.ȱ94.� Geertsma,ȱJ.ȱLandȱsubsidenceȱaboveȱcompactingȱoilȱandȱgasȱreservoirs.ȱJ.ȱPet.ȱTechnol.ȱ1973,ȱ25,ȱ734–744.ȱ95.� Chang,ȱ C.;ȱ Zoback,ȱ M.D.ȱ Viscousȱ creepȱ inȱ roomȬdriedȱ unconsolidatedȱ Gulfȱ ofȱ Mexicoȱ shaleȱ (I):ȱ

Experimentalȱresults.ȱJ.ȱPet.ȱSci.ȱEng.ȱ2009,ȱ69,ȱ239–246.ȱ96.� Baú,ȱD.;ȱGambolati,ȱG.;ȱTeatini,ȱP.ȱResidualȱ landȱ subsidenceȱ overȱdepletedȱ gasȱ fieldsȱ inȱ theȱNorthernȱ

AdriaticȱBasin.ȱEnviron.ȱEng.ȱGeosci.ȱ1999,ȱ5,ȱ389–405.ȱ97.� Hettema,ȱM.;ȱPapamichos,ȱE.;ȱSchutjens,ȱP.M.T.M.ȱSubsidenceȱdelay:ȱFieldȱobservationsȱandȱanalysis.ȱOilȱ

GasȱSci.ȱTechnol.ȱ2002,ȱ57,ȱ443–458.ȱ98.� Dusseault,ȱM.B.;ȱBruno,ȱM.S.;ȱBarrera,ȱJ.ȱCasingȱshear:ȱCauses,ȱcases,ȱcures.ȱSPEȱDrill.ȱCompletionȱ2001,ȱ16,ȱ

98–107.ȱ99.� Boesch,ȱD.F.;ȱRabalais,ȱN.N.ȱ (Eds.)ȱProducedȱWatersȱ inȱSensitiveȱCoastalȱHabitats:ȱAnȱAnalysisȱ ofȱ Impacts,ȱ

CentralȱCoastalȱGulfȱofȱMexico;ȱOCSȱReport/MMSȱ89Ȭ0031;ȱU.S.ȱDept.ȱofȱtheȱInterior,ȱMineralsȱManagementȱService,ȱGulfȱofȱMexicoȱOCSȱRegionalȱOffice:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ1989;ȱp.ȱ157.ȱ

100.� Veil,ȱJ.A.;ȱPuder,ȱG.M.;ȱElcock,ȱD.;ȱRedweik,ȱR.J.ȱAȱWhiteȱPaperȱDescribingȱProducedȱWaterȱfromȱProductionȱofȱCrudeȱOil,ȱNaturalȱGas,ȱandȱCoalȱBedȱMethane;ȱNo.ȱANL/EA/RPȬ112631;ȱArgonneȱNationalȱLab:ȱLemont,ȱIL,ȱUSA,ȱ2004.ȱ

101.� AmericanȱPetroleumȱInstituteȱ(API).ȱProducedȱwaterȱimpactsȱonȱLouisianaȱwetlands.ȱHealthȱandȱEnvironmentalȱSciencesȱAPIȱPublicationȱNumberȱ4517;ȱAPI:ȱWashington,ȱDC,ȱUSA,ȱ2000.ȱ

102.� Veil,ȱ J.A.;ȱKimmell,ȱT.A.;ȱRechner,ȱA.C.ȱCharacteristicsȱofȱProducedȱWaterȱDischargedȱ toȱ theȱGulfȱofȱMexicoȱHypoxicȱ Zone;ȱ Reportȱ toȱ theȱU.S.ȱDept.ȱ ofȱ Energy,ȱNationalȱ Energyȱ Technologyȱ Laboratory,ȱArgonneȱNationalȱLaboratory:ȱWashington,ȱDC,ȱUSA,ȱ2005.ȱ

103.� Neff,ȱJ.;ȱLee,ȱK.;ȱDeBlois,ȱE.M.ȱProducedȱwater:ȱOverviewȱofȱcomposition,ȱfates,ȱandȱeffects.ȱInȱProducedȱWater;ȱSpringer:ȱNewȱYork,ȱNY,ȱUSA,ȱ2011;ȱpp.ȱ3–54.ȱ

104.� Rabalais,ȱN.N.;ȱMcKee,ȱB.A.;ȱReed,ȱD.J.;ȱMeans,ȱJ.C.ȱFateȱandȱEffectsȱofȱNearshoreȱDischargesȱofȱOCSȱProducedȱWaters;ȱExecutiveȱSummary;ȱOCSȱStudy/MMSȱ91Ȭ0004;ȱU.S.ȱDept.ȱofȱtheȱInterior,ȱMineralsȱManagementȱService,ȱGulfȱofȱMexicoȱOCSȱRegionalȱOffice:ȱNewȱOrleans,ȱLA,ȱUSA,ȱ1991;ȱVolumeȱ1,ȱp.ȱ48.ȱ

105.� Haque,ȱS.M.ȱEffectsȱofȱsurfaceȱbrineȱdisposalȱonȱtheȱmarshesȱofȱcoastalȱLouisiana.ȱInȱProceedingsȱofȱtheȱCoastalȱZone,ȱNewȱOrleans,ȱLA,ȱUSA,ȱ19–23ȱJuly,ȱ1993.ȱ

106.� Bass,ȱA.S.ȱAccidentalȱOilfieldȱBrineȱSpillȱImpactȱStudy:ȱAȱSurveyȱofȱtheȱMagnitudeȱandȱDistributionȱofȱAccidentalȱBrineȱSpillsȱinȱtheȱLouisianaȱCoastalȱWetlandsȱConservationȱArea;ȱFinalȱReport;ȱLouisianaȱGeologicalȱSurveyȱReportȱ submittedȱ toȱ theȱ Louisianaȱ CoastalȱManagementȱ Division,ȱ Louisianaȱ Departmentȱ ofȱ NaturalȱResources:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1998;ȱ55ȱp.ȱ

107.� Lehto,ȱB.;ȱMarcantel,ȱR.;ȱPaul,ȱW.B.ȱCalcasieuȬSabineȱCooperativeȱRiverȱBasinȱStudyȱReport;ȱReportȱpreparedȱforȱtheȱUnitedȱStatesȱDepartmentȱofȱAgriculturalȱandȱSoilȱConservationȱService;ȱUSȱDeptȱofȱAgriculturalȱandȱSoilȱConsȱService:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ1999;ȱp.ȱ293.ȱ

108.� Louisianaȱ CoastalȱWetlandsȱ Conservationȱ andȱ Restorationȱ Taskȱ Force.ȱ Hydrologicȱ Investigationȱ ofȱ theȱLouisianaȱChenierȱPlain;ȱLouisianaȱDepartmentȱofȱNaturalȱResources,ȱCoastalȱRestorationȱDivision:ȱBatonȱRouge,ȱLAȱ2002;ȱp.ȱ135.ȱ ȱ

Page 29: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 29ȱ ofȱ 30ȱ

109.� Hamilton,ȱL.D.;ȱMeinhold,ȱA.F.;ȱNagy,ȱJ.ȱProducedȱWaterȱRadionuclideȱHazard/riskȱAssessment–Phaseȱ1;ȱAPIȱPublicationȱNumberȱ4532;ȱAmericanȱPetroleumȱInstitute:ȱWashington,ȱDC,ȱUSA,ȱ1991;ȱp.ȱ176.ȱ

110.� TottenȱS.;ȱMatthew,ȱW.;ȱHanan,ȱM.A.;ȱSimpson,ȱS.ȱNaturalȱremediationȱofȱmarshȱsoilȱcontaminatedȱbyȱoilȬfieldȱbrineȱcontainingȱelevatedȱradiumȱlevels,ȱsouthernȱLouisiana.ȱEnviron.ȱGeosci.ȱ2007,ȱ14,ȱ113–122.ȱ

111.� McGenity,ȱT.J.;ȱFolwell,ȱB.D.;ȱMcKew,ȱB.A.;ȱSanni,ȱG.O.ȱMarineȱcrudeȬoilȱbiodegradation:ȱAȱcentralȱroleȱforȱinterspeciesȱinteractions.ȱAquat.ȱBiosyst.ȱ2012,ȱ8,ȱ10.ȱ

112.� USEPAȱ(UnitedȱStatesȱEnvironmentalȱProtectionȱAgency).ȱWaterȱQualityȱBenefitsȱAnalysisȱofȱFinalȱEffluentȱLimitationsȱGuidelinesȱ andȱ Standardsȱ forȱ theȱCoastalȱ Subcategoryȱ ofȱ theȱOilȱ andȱGasȱExtractionȱPointȱ SourceȱCategory;ȱEPAȬ821ȬRȬ96Ȭ024;ȱEPA:ȱWashington,ȱD.C.,ȱUSA,ȱ1996.ȱ

113.� Twilley,ȱR.;ȱBentley,ȱS.;ȱChen,ȱQ.;ȱEdmonds,ȱD.;ȱHagen,ȱS.;ȱLam,ȱN.;ȱWillson,ȱC.;ȱXu,ȱK.;ȱBraud,ȱD.;ȱPeele,ȱR.;ȱetȱal.ȱCoȬevolutionȱofȱwetlandȱlandscapes,ȱflooding,ȱandȱhumanȱsettlementȱinȱtheȱMississippiȱRiverȱDeltaȱPlain.ȱSustain.ȱSci.ȱ2016,ȱ11,ȱ711–731.ȱ

114.� DeLaune,ȱR.D.;ȱPezeshki,ȱS.R.;ȱPardue,ȱJ.H.;ȱWhitcomb,ȱJ.H.;ȱPatrick,ȱW.H.,ȱJr.ȱSomeȱinfluencesȱofȱsedimentȱadditionȱtoȱaȱdeterioratingȱsaltȱmarshȱinȱtheȱMississippiȱRiverȱdeltaicȱplain:ȱAȱpilotȱstudy.ȱJ.ȱCoast.ȱRes.ȱ1990,ȱ6,ȱ181–188.ȱ

115.� Ford,ȱM.A.;ȱCahoon,ȱD.R.;ȱLynch,ȱJ.C.ȱRestoringȱmarshȱelevationȱinȱaȱrapidlyȱsubsidingȱsaltȱmarshȱbyȱthinȬlayerȱdepositionȱofȱdredgedȱmaterial.ȱEcol.ȱEng.ȱ1999,ȱ12,ȱ189–205.ȱ

116.� Mendelssohn,ȱI.A.;ȱKuhn,ȱN.L.ȱSedimentȱsubsidy:ȱEffectsȱonȱsoilȱplantȱresponsesȱinȱaȱrapidlyȱsubmergingȱcoastalȱsaltȱmarsh.ȱEcol.ȱEng.ȱ2003,ȱ21,ȱ115–128.ȱ

117.� LaȱPeyre,ȱM.K.;ȱGossman,ȱB.;ȱPiazza,ȱB.P.ȱShortȬȱandȱlongȬtermȱresponseȱofȱdeterioratingȱbrackishȱmarshesȱandȱopenȬwaterȱpondsȱtoȱsedimentȱenhancementȱbyȱthinȬlayerȱdredgeȱdisposal.ȱEstuariesȱCoastsȱ2009,ȱ32,ȱ390–402.ȱ

118.� Perez,ȱB.;ȱDay,ȱJ.;ȱRouse,ȱL.;ȱShaw,ȱR.;ȱWang,ȱM.ȱInfluenceȱofȱAtchafalayaȱRiverȱdischargeȱandȱwinterȱfrontalȱpassageȱonȱsuspendedȱsedimentȱconcentrationȱandȱfluxȱinȱFourleagueȱBay,ȱLouisiana.ȱEstuar.ȱCoast.ȱShelfȱSci.ȱ2000,ȱ50,ȱ271–290.ȱ

119.� Day,ȱJ.W.;ȱBoesch,ȱD.F.;ȱClairain,ȱE.J.;ȱKemp,ȱG.P.;ȱLaska,ȱS.B.;ȱMitsch,ȱW.J.;ȱOrth,ȱK.;ȱMashriqui,ȱH.;ȱReed,ȱD.J.;ȱShabman,ȱL.;ȱetȱal.ȱWhigham.ȱRestorationȱofȱtheȱMississippiȱdelta:ȱLessonsȱfromȱhurricanesȱKatrinaȱandȱRita.ȱScienceȱ2007,ȱ315,ȱ1679–1684.ȱ

120.� Turner,ȱ R.E.;ȱ Streever,ȱ B.ȱ Approachesȱ toȱ Coastalȱ Wetlandȱ Restoration:ȱ Northernȱ Gulfȱ ofȱ Mexico;ȱ KuglerȱPublications:ȱAmsterdam,ȱNetherlands,ȱ2002;ȱp.ȱ147.ȱ

121.� DeLaune,ȱ R.;ȱ Jugsujindaa,ȱ A.;ȱ Peterson,ȱ G.;ȱ Patrick,ȱ W.ȱ Impactȱ ofȱ Mississippiȱ Riverȱ freshwaterȱreintroductionȱonȱenhancingȱmarshȱaccretionaryȱprocessesȱinȱaȱLouisianaȱestuary.ȱEstuar.ȱCoast.ȱShelfȱSci.ȱ2003,ȱ58,ȱ653–662.ȱ

122.� Baustian,ȱJ.;ȱTurner,ȱR.E.ȱRestorationȱSuccessȱofȱBackfillingȱCanalsȱinȱCoastalȱLouisianaȱMarshes.ȱRestor.ȱEcol.ȱ2006,ȱ14,ȱ636–644.ȱ

123.� Day,ȱJ.;ȱPaulȱK.;ȱAngelina,ȱF.ȱSummaryȱandȱConclusions.ȱpp.ȱ185Ȭ192.ȱInȱPerspectivesȱonȱtheȱrestorationȱofȱtheȱMississippiȱDelta;ȱDay,ȱJ.,ȱKemp,ȱP.,ȱFreeman,ȱA.,ȱMuth,ȱD.ȱEds.;ȱSpringer:ȱNewȱYork,ȱNY,ȱUSA,ȱ2014.ȱ

124.� Ray,ȱG.L.ȱThinȱLayerȱPlacementȱofȱDredgedȱMaterialȱonȱCoastalȱWetlands:ȱAȱReviewȱofȱtheȱTechnicalȱandȱScientificȱLiterature;ȱERDC/ELȱTechnicalȱNotesȱCollectionȱ (ERDC/ELȱTNȬ07Ȭ1);ȱU.S.ȱArmyȱEngineerȱResearchȱandȱDevelopmentȱCenter:ȱVicksburg,ȱMS,ȱUSA,ȱ2007.ȱ

125.� Stagg,ȱC.L.;ȱMendelssohn,ȱI.A.ȱRestoringȱecologicalȱfunctionȱtoȱaȱsubmergedȱsaltȱmarsh.ȱRestor.ȱEcol.ȱ2010,ȱ18,ȱ10–17.ȱ

126.� CPRA–CoastalȱProtectionȱandȱRestorationȱAuthority.ȱLouisiana’sȱComprehensiveȱMasterȱPlanȱforȱaȱSustainableȱCoast;ȱCPRA:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ2017;ȱp.ȱ93.ȱ

127.� Cahoon,ȱD.R.;ȱCowan,ȱJ.H.,ȱJr.ȱEnvironmentalȱimpactsȱandȱregulatoryȱpolicyȱimplicationsȱsprayȱdisposalȱofȱdredgedȱmaterialȱinȱLouisianaȱwetlands.ȱCoast.ȱManag.ȱ1988,ȱ16,ȱ341–362.ȱ

128.� Lester,ȱ G.D.;ȱ Sorensen,ȱ S.G.;ȱ Faulkner,ȱ P.L.;ȱ Reid,ȱ C.S.;ȱ Maxit,ȱ I.E.ȱ Louisianaȱ Comprehensiveȱ WildlifeȱConservationȱStrategy;ȱLouisianaȱDepartmentȱofȱWildlifeȱandȱFisheries:ȱBatonȱRouge,ȱLA,ȱUSA,ȱ2005;ȱp.ȱ455.ȱ

129.� Teal,ȱ J.M.;ȱWeinstein,ȱM.P.ȱ Ecologicalȱ engineering,ȱ design,ȱ andȱ constructionȱ considerationsȱ forȱmarshȱrestorationsȱinȱDelawareȱBay,ȱUSA.ȱEcol.ȱEng.ȱ2002,ȱ18,ȱ607–618.ȱ

130.� Peterson,ȱS.B.;ȱTeal,ȱJ.M.;ȱMitsch,ȱW.J.ȱDelawareȱBayȱSaltȱMarshȱRestoration.ȱSpec.ȱIssueȱEcol.ȱEng.ȱ2005,ȱ25,ȱ199–314.ȱ

131.� Slocum,ȱM.G.;ȱ Mendelssohn,ȱ I.A.;ȱ Kuhn,ȱ N.L.ȱ Effectsȱ ofȱ sedimentȱ slurryȱ enrichmentȱ onȱ saltȱ marshȱrehabilitation—Plantȱandȱsoilȱresponsesȱoverȱsevenȱyears.ȱEstuariesȱ2005,ȱ28,ȱ519–528.ȱ

Page 30: Life Cycle of Oil and Gas Fields 1 in 1 the 1 Mississippi 1 River 1 Delta: 1 A 1 Review 1 · 2020-06-09 · we 1review 1the 1life 1cycle 1of 1O&G 1fields 1in 1the 1MRD 1focusing 1on

Waterȱ2020,ȱ12,ȱ1492ȱ 30ȱ ofȱ 30ȱ

132.� Croft,ȱA.L.;ȱLeonard,ȱL.A.;ȱAlphin,ȱT.;ȱCahoon,ȱL.B.;ȱPosey,ȱM.ȱTheȱeffectsȱofȱthinȱlayerȱsandȱrenourishmentȱonȱtidalȱmarshȱprocesses:ȱMasonboroȱIsland,ȱNorthȱCarolina.ȱEstuariesȱCoastsȱ2006,ȱ29,ȱ737–750.ȱ

133.� Shaffer,ȱG.;ȱDay,ȱJ.;ȱLane,ȱR.ȱOptimumȱuseȱofȱfreshwaterȱtoȱrestoreȱbaldȱcypress–waterȱtupeloȱswampsȱandȱfreshwaterȱmarshesȱandȱprotectȱagainstȱsaltȱwaterȱintrusion:ȱAȱcaseȱstudyȱofȱtheȱLakeȱPontchartrainȱBasin.ȱInȱMississippiȱDeltaȱRestoration;ȱDay,ȱJ.,ȱErdman,ȱJ.,ȱEds.;ȱSpringer:ȱNewȱYork,ȱNY,ȱUSA,ȱ2018;ȱpp.ȱ61–76.ȱ

134.� Hunter,ȱR.;ȱDay,ȱ J.W.;ȱLane,ȱR.;ȱShaffer,ȱG.;ȱDay,ȱ J.N.;ȱConner,ȱW.;ȱRybczyk,ȱ J.;ȱMistich,ȱ J.;ȱKo,ȱ J.ȱUsingȱnaturalȱwetlandsȱforȱmunicipalȱeffluentȱassimilation:ȱAȱhalfȬcenturyȱofȱexperienceȱforȱtheȱMississippiȱdeltaȱandȱ surroundingȱ environs.ȱ Inȱ Multifunctionalȱ Wetlands,ȱ Environmentalȱ Contaminationȱ Remediationȱ andȱManagement;ȱNagabhatla,ȱN.,ȱMetcalfe,ȱC.,ȱEds.;ȱSpringer:ȱNewȱYork,ȱNY,ȱUSA,ȱ2018;ȱpp.ȱ15–81.ȱ

135.� McLindon,ȱC.ȱUsingȱOilȱandȱGasȱIndustryȱDataȱtoȱAchieveȱCoastalȱSustainability.ȱSOCȱBlockȱVI.ȱAvailableȱonline:ȱhttps://sites.law.lsu.edu/coast/2016/06/stateȬofȬtheȬcoastȬ2016/ȱ(accessedȱonȱ3ȱMarchȱ2020).ȱ

136.� Wiegman,ȱR.;ȱDay,ȱ J.;ȱD’Elia,ȱC.;ȱRutherford,ȱ J.;ȱMorris,ȱ J.;ȱRoy,ȱE.;ȱLane,ȱR.;ȱDismukes,ȱD.;ȱSnyder,ȱB.ȱModelingȱ impactsȱ ofȱ seaȬlevelȱ rise,ȱ oilȱ price,ȱ andȱ managementȱ strategyȱ onȱ theȱ costsȱ ofȱ sustainingȱMississippiȱ deltaȱ marshesȱ withȱ hydraulicȱ dredging.ȱ Sci.ȱ Totalȱ Environ.ȱ 2017,ȱ 618,ȱ 1547–1559.ȱdoi:10.1016/j.scitotenv.2017.09.ȱ

ȱ

©ȱ2020ȱbyȱtheȱauthors.ȱLicenseeȱMDPI,ȱBasel,ȱSwitzerland.ȱThisȱarticleȱisȱanȱopenȱaccessȱarticleȱdistributedȱunderȱtheȱtermsȱandȱconditionsȱofȱtheȱCreativeȱCommonsȱAttributionȱ(CCȱBY)ȱlicenseȱ(http://creativecommons.org/licenses/by/4.0/).ȱ