life cycle assessment of building products and...

99
Life Cycle Assessment of Building Products and Buildings 2012 CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Civil Engineering Ing. Julie Hodková

Upload: doannhan

Post on 25-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Life Cycle Assessment of Building

Products and Buildings

2012

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering

Ing. Julie Hodková

environmental impacts of construction sector

environmental impacts of construction sector

20%

30 – 40%

30 - 40%

10%

25%

30%

25 – 40%

0% 10% 20% 30% 40% 50% 60%

Liquid waste

Solid waste

CO2 emission

Soil

Water use

Raw materials

Energy use

Resources

Loads

life cycle of a building

„from cradle to grave“

life cycle of building - stages

Must be calculated

Usualy neglected

operational energy x „embodied“ energy

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80years

GJ/m2

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80years

GJ/m2

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80years

GJ/m2

residential bulding (1927), masonry, no thermal insulation

current residential house (1999), masonry

low-energy house (2002), timbre frame

values per 1m2 of floor surface

1: 26 1: 21 1: 7

life cycle of building materials - stages

Production is crucial

Environmental impacts in legislation

• Standards from the field of building sustainability- EN 15643 – 1,2,3,4- Regulation of the European Parliament and the EU Council No. 305/2011

• Standards focused on calculation of environmental impacts

- CEN/TR 15941 – data quality

- EN 15804 – general rules for EPDs calculation- EN 15978 – calculation of environmental profile of buildings

terms and definitions

impact category x indicators

equivalent emissions (CO2,eq., etc.)

embodied emissions (CO2,eq., SO2,eq., aj.)

primary energy

embodied energy

………

CO2

CH4

N2O

SF6HCFC

CFC

HF

tetrachlor

SO2NO

NO2

NOx

NH3

HCl

impact categories

impact on the environment

impact categories

CO2

CH4

N2OGWP

SF6

HCFCfreon

HF

materials

land

energy

Envir.

ODP

NPPOCP

tetrachlor

impact category

SO2

NO

NO2

NOx

NH3

HCl

AP

impact categories

impact categories – geographical context

local level

regional level

global level

waste, emissions SO2,eq., (PO4)3,eq.

transport

land use, water and energy resources consumption acidification

eutrophicationsmog

global warmingozone layer depletion

indicators � impact categories - example

Zdroj: Anders C. Schmidt a kol.: A Comparative Life Cycle Assessment of Building Insulation Products made ofStone Wool, Paper Wool and Flax, Part 2: Comparative Assessment

aggregation

Emissions to air

Impact category

CO2 emission X CO2,eq. [kg/TJ]

Zdroj: GEMIS + Czech database (CityPlan)

boiler on natural gas boiler on brown coal boiler on wood electricityenergy mix CZE

(2008)

primary energy – nonrenewable x renewable

primary energy final energy consumption

not use to assess

real expression of consumption!

energy assessment,

energy audit…

energy conversion factor (ECF)

extraction of primary energy resources

„production“ of electricity final energy consumption

ECF – conversion factor =primary energy

final energy consumption

distribution

conversion factor

palivo faktor

zemní plyn 1,4

elektrická energie - mix ČR 3,2

elektrická energie - fotovoltaika 0,2

elektrická energie - větrná energie 0,2

uhlí (hnědé, černé) 1,5

lehký topný olej 1,4

dřevěné pelety 0,15

kusové dřevo 0,05

bioplyn 0,12

Zdroj: GEMIS + česká databáze (CityPlan)

GEMIS – electricity plants data

conversion factor

Zdroj: GEMIS + česká databáze (CityPlan)

emission factor CO2,eq. [g/MJ]

Zdroj: GEMIS + česká databáze (CityPlan)

emission factor SO2,eq . [g/MJ]

Zdroj: GEMIS + česká databáze (CityPlan)

primary energy and passive houses

energy consumption for heating 15 kWh/(m2.a)

primary energy for all appliances

max. 120 kWh/(m2.a)

if uses only electricity for everything � 42 x 3,0 > 120 kWh/(m2.a)

� it is not a passive house!

0

50

100

150

200

250

300

D 2

50

D 1

00

D 5

0

D 1

5

kon

ečn

á s

po

tře

ba

en

erg

ie [

kW

h/(

m2

.ro

k)]

přídatná spotřeba elektrické

energie

elektrospotřebiče vč. osvětlení

TV

vytápění0

50

100

150

200

250

300

D 2

50

D 1

00

D 5

0

D 1

5

kon

ečn

á s

po

tře

ba

en

erg

ie [

kW

h/(

m2

.ro

k)]

přídatná spotřeba elektrické

energie

elektrospotřebiče vč. osvětlení

TV

vytápění

final consumption of energy

– no matter what is the energy carrier

energy consumption for house technologies

electronic appliances and lightening

heating

final

ene

rgy

cons

umpt

ion

[kW

h/m

2.a]

hot water

895

0

50

100

150

200

250

300

350

400

450

500D

25

0 Z

E

D 1

00

Z

E

D 5

0 Z

E

D 1

5 Z

E

D 2

50

E

E

D 1

00

E

E

D 5

0 E

E

D 1

5 E

E

D 2

50

P

E

D 1

00

P

E

D 5

0 P

E

D 1

5 P

E

D 2

50

P

O

D 1

00

P

O

D 5

0 P

O

D 1

5 P

O

spo

tře

ba

pri

rní

en

erg

ie

[kW

h/(

m2

.ro

k)]

přídatná spotřeba

elektrické energie

elektrospotřebiče vč.

osvětlení

TUV

vytápění

120 kWh/(m 2.a)

primary energy

Explanation: D100 ZE

Energy consumption for heating kWh/(m2.a)Energy source for heating and hot water

Energy source for other consumptions

Z – natural gasE – electricity from the gridP – pelletsO – „green“ electricity

prim

ary

ener

gy c

onsu

mpt

ion

[kW

h/m

2.a]

energy consumption for technologies

electronic appliances and lightening

heating

hot water

212

0

20

40

60

80

100

120D

25

0 Z

E

D 1

00

Z

E

D 5

0 Z

E

D 1

5 Z

E

D 2

50

E

E

D 1

00

E

E

D 5

0 E

E

D 1

5 E

E

D 2

50

P

E

D 1

00

P

E

D 5

0 P

E

D 1

5 P

E

D 2

50

P

O

D 1

00

P

O

D 5

0 P

O

D 1

5 P

O

em

ise

CO

2,e

kv.

[k

g/(

m2

.ro

k)]

global warming potential

473

0

50

100

150

200

250D

25

0 Z

E

D 1

00

Z

E

D 5

0 Z

E

D 1

5 Z

E

D 2

50

E

E

D 1

00

E

E

D 5

0 E

E

D 1

5 E

E

D 2

50

P

E

D 1

00

P

E

D 5

0 P

E

D 1

5 P

E

D 2

50

P

O

D 1

00

P

O

D 5

0 P

O

D 1

5 P

O

em

ise

SO

2,e

kv.

[k

g/(

m2

.ro

k)]

acidification potential

„embodied energy“

= primary energy consumption (PEI) of a product throughout its life cycle

= primarily energy consumption for the extraction of raw materials and final product manufacture

� „embodied “ emission (CO2,eq., SO2,eq. aj.)

svázaná spot řeba energie [MJ/kg]

0

20

40

60

80

100

120pr

ostý

bet

on

póro

beto

n

plná

cih

la

mal

ta

píse

k, příro

dní p

ísek

nepá

lená

hlín

a - ci

hla

(výr

oba

v

mís

tě)

nepá

lená

hlín

a - ci

hla

(dov

oz)

dřev

ovlá

knitá

des

ka z

měké

ho dře

va

expa

ndov

aný

poly

styr

en

extrud

ovan

ý po

lyst

yren

ovčí v

lna

min

erál

ní v

ata

řezi

vo, p

rkna

PV

C - p

odla

hová

kry

tina

beto

nová

tašk

a

mědě

ný p

lech

titan

-zin

kový

ple

ch

PV

C - iz

olač

ní p

ás

arm

ovac

í oce

l

„embodied “ values of materials

Zdroj: Waltjen, T.: Ökologischer Bauteilkatalog. Bewertete gängige Konstruktionen, Springer-Verlag/Wien 1999

primary energy consumption (PEI) = embodied energy

!!! Attention, you can not compare values for 1 kg , always elements with the same function must be

compared

svázaná produkce emisí CO 2,ekv. [kg/kg]

0

1

2

3

4

5

6pr

ostý

bet

on

póro

beto

n

plná

cih

la

mal

ta

píse

k, pří

rodn

í pís

ek

nepá

lená

hlín

a -

cihl

a (v

ýrob

a v

mís

tě)

nepá

lená

hlín

a -

cihl

a (d

ovoz

)

dřev

ovlá

knitá

des

ka z

měké

ho dře

va

expa

ndov

aný

poly

styr

en

extr

udov

aný

poly

styr

en

ovčí v

lna

min

erál

ní v

ata

řezi

vo, p

rkna

PV

C -

pod

laho

vá k

rytin

a

beto

nová

tašk

a

mědě

ný p

lech

titan

-zin

kový

ple

ch

PV

C -

izol

ační

pás

arm

ovac

í oce

l

„embodied“ values of materials

Zdroj: Waltjen, T.: Ökologischer Bauteilkatalog. Bewertete gängige Konstruktionen, Springer-Verlag/Wien 1999

Global warming potential (GWP)=embodied CO2,eq. emissions

!!! Attention, you can not compare values for 1 kg , always elements with the same function must be

compared

Example: embodied values of materials

svázaná spot řeba energie [MJ/kg]

0

50

100

150

200

250

hlin

íkov

ý pl

ech

hlin

íkov

ý pl

ech

-re

cykl

ovan

ý

90%

Zdroj: Waltjen, T.: Ökologischer Bauteilkatalog. Bewertete gängige Konstruktionen, Springer-Verlag/Wien 1999

Embodied energy

Alu

min

ium

she

et

Alu

min

ium

she

etre

cycl

ed

Example: Rockwool

surovina

6%

pojivo

12%

výroba

76%

doprava

2%

odpady

0%

obal vč.

likvidace

4%

PEI

surovina

11%

výroba

81%

doprava

2%

odpady

0%obal

1%

odpady z

obalů

5%

GWP

environmental parameters – thermal insulation

Zdroj: Mötzl, H., Zelger, T.: Öekologie der Dämmstoffe, Springer-Verlag/Wien 2000

!!! Attention, you can not compare values for 1 kg , always elements with the same function must be compared, here e.g. insulation wit h U=0,25 W/m2K !!!

Primary energy consumption (PEI)

environmental parameters – thermal insulation

Zdroj: Mötzl, H., Zelger, T.: Öekologie der Dämmstoffe, Springer-Verlag/Wien 2000

Global warming potential (GWP) kgCO2,eq./kg

environmentální parametry – tepelné izolace

Zdroj: Österreichisches Institut für Baubiologie und Bauökologie: http://www.ibo.at/de/oekokennzahlen.htm

Global warming potential (GWP) kgCO2,eq./kg

units for comparisons

Declared unit e.g. 1kg versus Functional unit – e.g. 1 m2

Example: facade insulation, Uinsulation= 0,15 W/(m2.K)

Acidification potential SO2,ekv. (AP) - kg/m2

Primary energy consumption (PEI) - MJ/m2

Mineral wool 258,9 589,9

Expanded polystyrene 212,7 793,7

slab structures – embodied energy 0 100 200 300 400 500 600

MJ/m2

databáze

Název databáze Správce databáze OdkazEcoinvent (LCIA) Swiss Centre for Life Cycle Inventories www.ecoinvent.ch

GaBi (LCIA) PE International www.gabi-software.com

Environdec (EPD) Environdec www.environdec.com

INIES (EPD)Centre Scientifique et Technique du Bâtiment (CSTB)

www.inies.fr

IBO Baustoffdatenbank (LCIA)

Österreichisches Institut für Baubiologie und Bauökologie (IBO)

www.baubook.at

ICE (LCIA) University of Bathwww.bath.ac.uk/mech-eng/sert/embodied/

Ökobau.dat (LCIA)Bundesministeriums für Verkehr, Bau und Stadtentwicklung

www.nachhaltigesbauen.de

IBU (EPD) Institut Bauen und Umwelt e.V. (IBU) www.bau-umwelt.de

CENDEC (EPD) Centrum environmentálních prohlášení www.cendec.cz

!!! Different databases = different methodologies, resources, age of data, localization, technological

representativeness….=>

Green Guide - BRE

http://www.bre.co.uk/greenguide

Green Guide - BRE

databases – data differences

Differences in the assessment of buildings accordin g to different databases =>

databases – differences in building assessments

• Assessments of environmental parameters of a timber house • Databases: IBO, ICE, Ecoinvent• Process: Using the bill of quantities the total envi ronmental indicators

were calculated

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

PE

I [M

J]

Primary energy consumption (PEI [MJ]) of the building

determined according to data from three different databases - IBO, ICE and Ecoinvent

Assessment by IBOdatabase

Assessment by ICEdatabase

Assessment byEcoinvent database

-200 000

-150 000

-100 000

-50 000

0

50 000

100 000

150 000

GW

P [k

gCO

2, e

q.]

Global warming potential (GWP [kg CO2,eq.]) of the building

determined according to data from three different databases - IBO, ICE and Ecoinvent

Assessment by IBOdatabase

Assessment by ICEdatabase

Assessment byEcoinvent database

databases – differences - notices

• Improper or unsupported data selection can result inincomparable and incredible results

• You can only compare data calculated according to the same methodology => it is often sufficient to use a single database

databases – differences – need of national database

Data used for the environmental assessment of buildings in the Czech Republic should come from a localized database, ensuring adequate data quality through:

• uniform methodology for the data collection, ensuring their consistency

• data from primary sources - data from measurements of the factory

• appropriate geographical, technological and temporal representativeness

=> Need to localized uniform methodology and database=>

Web-based catalog of materials and components including their

technical and environmental parameters, localized for the

Czech Republic

www.envimat.cz

What is it?• on-line tool for creating, evaluating and comparing

structures in terms of environmental impact

• database of environmental parameters of building materials and structures for the Czech Republic

General goalProvide environmental data of building materials on the Czech market and allow the public to interactively workwith them.

Developement

• Since 2005, development of SBToolCZ at FCE CTU regarding the sustainable construction

• In 2009, research and concept of Envimat - the need for data inSBToolCZ

• beginning of the project in 2010 under the Student Grant Competition SGS

• 2011 functional beta version, finalizing user interface

• 2012 full functional version, used in the SBToolCZcertification

• 2013 development of a new module for complex calculation of buildings

Goals of Envimat

• Localized database of construction products

• Transparent system that helps to analyze differences betweenbuilding elements , and will be used for optimization of structures

• Motivation of architects and designers to take into account of environmental profiles of materials in the design process of buildings

• Visibility of products that have a lower impact on the environment

• Encourage manufacturers to provide data

• Provide input data for SBToolCZ

• Increase public awareness of the environmental aspects and impacts

Data in Envimat

• currently it mainly uses generic data from the Swiss database Ecoinvent – systém boundaries of "Cradle to Gate"

• in the future will only use specific data from EPD of products used on the Czech market-> Gradual replacement of data from Ecoinvent

=> Localized specific data of products from the market

Data in Envimat - EPD

What is EPD?EPD = Environmental Product Declaration

• It is a type III environmental labeling according to ISO 14025

• It is based on LCA and quantifies the environmental impacts of products

• It has a uniform methodology given by uniform rules PCR (Product Category Rules)

• It is comparable, objective (third party verification), a credible

• It provides localized specific data of products from the market

• Data are verified by an independent third party!!

Deviation – other environmental labeling

• Type I environmental labeling = "ecolabel„Focused only on selected topics such as: health aspects, the content of recycled materials, specific environmental issues (e.g. origin of wood)

Deviation – other environmental labeling

• Type II environmental labeling= Self-declared environmental claims

It is the most abused labeling. Often as consumers we see commercials with the proclamation of friendliness of the product to the environment. In most cases, however, this is only a marketing claims of the manufacturer, which is not verified by an independent third party (according to ISO 14021). = Greenwashing =>

Data in Envimat – EPD – Example of German EPD

Data v Envimatu – EPD - P říklad českého EPD

Data v Envimatu – EPD - P říklad českého EPD

Data in Envimat – EPDs – How to get them?

Analysis of manufacturing process in the production site

LCA of the product

Set of basic data it the format of EPD

EPD third party verification

Approval by the certification body

Entry into the Envimat database

Data in Envimat

Systém boundary for data

- LCA uses „ Cradle to Grave “

- for building products we use mostly

„ Cradle to Gate “ (according to EN 15804), because their use behind the „Gate“ is unpredictable

+ eventually the transport to the building site can be calculated separately for each specific case

Data in Envimat – monitored parametersEnvironmental parameters

Parameter Shortcut Units

Primary energy input PEI MJ/kg

Global warming potential GWP kg CO2,eq./kg

Acidification potential AP g SO2,eq./kg

Eutrophication potential EP g (PO4)3 - eq./kg

Ozone depletion potential ODP g R -11 eq./kg

Photochemical ozone creation potential POCP g C2H4 eq./kg

Technical parametersParameter UnitsThickness mmSpecific weight kg/m3

Surface mass density kg/m2

Price* CZKSound reduction index Rw* dBHeat transfer coefficient* W /mKThickness W /m2K

* Included if available

Envimat functions – catalog of materials and structu res

c

c

Envimat functions - comparisons

Envimat functions – modeling of structures

Envimat functions – modeling of structures

Envimat functions – EPDs enlistement

GEMIS

Gesamt-Emissions-Modell Integrierter Systemfreeware (www.oeko.de, www.cityplan.cz)developed by Öko-Institute in Darmstadtcooperation with EU, USA, ...focus on energy, materials, ...is based on an extensive database of materials and processesquality data for the energy input to the building

emissions of CO 2,eq. [g/MJ]

Zdroj: GEMIS + česká databáze (CityPlan)

LCALife Cycle Assessment

set of standards 14 040 – 14 050

• EN ISO 14040:2006 Principles and framework

• EN ISO 14044:2006 Requirements and Guidelines

• ISO/TR 14047:2004 Examples of application of ISO 14042

• ISO TS 14048:2003 Data documentation format

• ISO/TR 14049:2001 Examples of application of ISO 14041 for goal and scope definition of the Inventory analysis

Standards of the Environmental management - Life cycle assessment

new European standards

New standards for sustainability of buildings

nové evropské normy

• EN 15978 Sustainability of construction works –Assessment of environmental performance of buildings –Calculation method

• EN 15804 Sustainability of construction works –Environmental product declarations – Core rules for the product category of construction products

New standards for sustainability of buildings

nové evropské normy – životní cyklus

• ČSN EN 15978 Udržitelnost staveb – Posuzování environmentálních vlastností budov – Výpočtová metoda

• ČSN EN 15804 Udržitelnost staveb – Environmentální prohlášení o produktu – Základní pravidla pro produktovou kategorii stavebních produktů

Nové normy řady Udržitelnost staveb

schéma posuzování životního cyklu

goal and scope definition

functional unit definition – what we want to assess

goal of LCA – how do we want to use the results of LCA

– e.g. comparisons, optimization of production processes

definition of system boundary

– what to include in the assessment

goal and scope definition

Definition of system boundary• Which stages of the life cycle to include?

• Will it also assess the depreciation of machines that are designed for the extraction and transport of primary raw materials?

• Will it assess energy and water consumption at thebuilding site?

• Will it evaluate all structures, or just construction frame?

• How much in detail the operational stage will be assessed?

• Will it include disposal stage?

goal and scope definition

System boundary variants

RAW MATERIALS

EXTRACTIONPRODUCTION TRANSPORT INSTALLATIO

NMAINTENANC

E DISPOSAL

RAW MATERIALS

EXTRACTIONPRODUCTION

RAW MATERIALS

EXTRACTIONPRODUCTION TRANSPORT

Cradle to gate

Cradle to site

Cradle to grave

Life Cycle Inventory – LCI

Schematic representation of all material and energy flows

in the assessed system

Data collection

Quantification of the flows

technological processes – rock wool

Zdroj: Anders Schmidt, Ph.D., FORCE Technology: Porovnání hodnocení životních cyklu tří izolačních materiálů

inventory analysis - quantification

Source: EPD – KB Bloky

inventory analysis – LCI of buildingen

viro

nmen

tal i

mpa

ct (

flow

s of

en

ergy

, mat

eria

ls, e

mis

sion

s, …

)

extr

actio

n

operation

tran

spor

t

prod

uctio

dopr

ava

real

izac

e

construction disposal

removal, transpor, recycling,

waste

maintenance, renovation, modernization, reconstruction, rehabilitation, ...

?Embodied values of materials

Impacts from operation of buildings

Life Cycle Impact Assessment - LCIA

Data from LCI � grouped into impact categories according to the chosen LCIA methodology and characterization factors

U našich hodnocení seskupování odpadá, užíváme již data z kategorií dopadu.

LCIA of a building - example

PEI [MJ/(m 2.a)]

GWP [kg CO2,eq./ (m2.a)]

Construstion – materials production 118,0 11,6

Operation – energy consumption 1 152,4 101,5

Total 1 270,4 113,1

interpretation

setting the weights (importance) of the criteria

sensitivity analysis

transparency

conclusions and recommendations

usual LCA indicators

Non-renewable/renewable Primary Energy Input

(PEInre/re) - MJ

Global Warming Potential (GWP) - CO2, eq.

Acidification Potential (AP) - SO2,eq.

Eutrophication Potential (EP) – PO4,eq.

Ozone Depletion Potential (ODP) – R-11eq.

Photochemical Ozone Creation Potential (POCP) - C2H4

LCA tools

differ in scope, detail, focus, system boundaries, ...

SimaPro

GaBi 4

Athena

GEMIS

EcoPro

LCAiT

BEES

Athena

GEMIS

limitations and problems of application of LCA

The possibility of establishing various assumptions in the implementation of LCA (e.g. definition of systém boundary, selection of the impact categories) predispose subjective evaluations and their results.

Application of LCA to buildings and generally to products with a long and complicated life cycle is problematic in terms of diverse product behavior in the future and its impossible accurate prediction.

The accuracy of the evaluation results may be limited by the availability of adequate data or their quality.

If the used product is recycled so that it changes its function, it is connected with other life cycle - it is not so obvious how the recycling should be included in the initial life cycle.

LCA use in practice

development and improvement of products

optimization of production processes

comparing different products - selection of the product whose life cycle harms the environment the least

strategic planning

marketing, influencing public opinion

eco-labeling - labeling of environmentally friendly products (including buildings)

EPD

examples

standard (reference building)

Sustainable building

residential building project

0

10 000

20 000

30 000

40 000

50 000

60 000

70 0000 10 20 30 40 50 60 70 80

GJ

operating energy embodied energy

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

0 10 20 30 40 50 60 70 80

GJ

operating energy embodied energy

0

1 000 000

2 000 000

3 000 000

4 000 000

0 10 20 30 40 50 60 70 80

kg CO2

operating emissions CO2 embodied CO2

0

1 000 000

2 000 000

3 000 000

4 000 000

0

10 20 30 40 50 60 70 80

kg CO2

operating emissions CO2 embodied CO2

primary energy

CO2 emissions

refe

renc

e re

side

ntia

l hou

se

sust

aina

ble

resi

dent

ial h

ouse

flows of primary energy and CO 2 emissions

0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

3,0

2,5

2,0

1,5

1,0

0,5

UNETICE

T06 B - MB

T06 B - VEZ

T06 B - BL

T06 B - PK

RD PH

RD FRV - MB

RD BABINA

RD PASSIVE

RD REFBD REF

BD JECNA

BD DVOULETKA

BD RUBESOVA

BD VYSEHRADSKA

URD

UBD

ZS CERCANY

nízkoenergetické budovy

současné budovy

staré budovy

panelové budovy

BD DYGRYN

VVU-ETA_WVVU-ETA_A

operational energy x embodied energyop

erat

iona

l ene

rgy

[GJ/

(m2 a

)]

embodied energy [GJ/m2]

values per1 m2 of floor area

CHYNE

DENMARK_s

DENMARK

passive house

INB 2010

case study – refurbishment of housingop

erat

ing

prim

ary

ener

gy [G

J/(m

2 a)]

embodied energy [GJ/m2]

0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

3,0

2,5

2,0

1,5

1,0

0,5

UNETICE

T06 B - MB

T06 B - VEZ

T06 B - BL

T06 B - PK

RD PH

RD FRV - MB

RD BABINA

RD PASSIVE

RD REFBD REF

BD JECNA

BD DVOULETKA

BD RUBESOVA

BD VYSEHRADSKA

URD

UBD

ZS CERCANY

low-energy buildings

present buildings

old buildings

values related to m 2 of the floor area

possible stage after refurbishment

panel buildings

BD DYGRYN

VVU-ETA_WVVU-ETA_A

Thank you for your attention!

And build sustainably!