level set formulation for curve evolution

25
Level Set Formulation for Curve Evolution Ron Kimmel www.cs.technion.ac.il/ ~ron Computer Science Department Technion-Israel Institute of Technolog Geometric Image Processing Lab

Upload: helki

Post on 24-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Computer Science Department. Technion-Israel Institute of Technology. Level Set Formulation for Curve Evolution. Ron Kimmel www.cs.technion.ac.il/~ron. Geometric Image Processing Lab. Implicit representation. Consider a closed planar curve - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Level Set Formulation for Curve Evolution

Level Set Formulationfor Curve Evolution

Ron Kimmel

www.cs.technion.ac.il/~ron

Computer Science Department Technion-Israel Institute of Technology

Geometric Image Processing Lab

Page 2: Level Set Formulation for Curve Evolution

Consider a closed planar curve

The geometric trace of the curve can be alternatively represented implicitly as

Implicit representation21:)( RS pC

}0),(|),{( yxyxC

0

0

1

1

Page 3: Level Set Formulation for Curve Evolution

Properties of level sets

The level set normal

Proof. Along the level sets we have zero change,

that is , but by the chain rule

So,

||

N

N

0s

Tyxyx sysxs

,),(

T

||||0,

||

NTT

||

T

Page 4: Level Set Formulation for Curve Evolution

Properties of level sets

The level set curvature

Proof. zero change along the level sets, , also

So,

||

div

0ss

NTds

dT

ds

dyx

ds

dyx sysxss

,,,)(),(

...||

,||

,,||

,||

,,,,

||],,[||

||,

yxyx

syysxysxysxx

TT

yxyx

1

Page 5: Level Set Formulation for Curve Evolution

Optical flow

Problem: find the velocity also known as `optical flow’It’s an `inverse’ problem,Given I(t) find

VII t

,

),( yxV

),( yxV

VtxItxI

dtVdtdtVOVdttxItxdtItxItxI

dtVOVdtdttxIdttxItxI

dttVdtxItxI

t

t

),,(),(

0),,(),,(),(),(),(

0)(),,(),(),(

0),(),(

2222

22

Page 6: Level Set Formulation for Curve Evolution

Aperture Problem

Page 7: Level Set Formulation for Curve Evolution

Aperture Problem

`Normal’ vertical flow

Horizontal flow can not be computed differentially.

Page 8: Level Set Formulation for Curve Evolution

Normal flow

Due to the `aperture problem’only the `normal’ velocity can be locally computed

for the normal flow we have

V

||,

I

IVNNVNV NN

||||

,,, IVI

IIVNVIVII NNNt

NVN

|| IVI Nt

Page 9: Level Set Formulation for Curve Evolution

Level Set Formulation

implicit representation of CThen,

Proof. By the chain rule

Then,

Recall that , and

RR 2:, yx 0),(:, yxyxC

dC d

VN Vdt dt

ttytx yxt

tyx

);,(

0

y

x

C(t)

C(t) level set 0

, ,x y t

x

y

NVNVCyx ttytxt

,,,

||

N

||||

,,

VVNV

|| Vt

Page 10: Level Set Formulation for Curve Evolution

Level Set Formulation

Handles changes in topology

Numeric grid points never collide or drift apart.

Natural philosophy for dealing with gray level images.

Page 11: Level Set Formulation for Curve Evolution

Numerical Considerations

Finite difference approximation. Order of approximation, truncation error, stencil. (Differential) conservation laws. Entropy condition and vanishing viscosity. Consistent, monotone, upwind scheme. CFL condition (stability examples)

Page 12: Level Set Formulation for Curve Evolution

Numerical Considerations

Central derivative

Forward derivative

Backward derivative

)(ihuui )(xu

x

h

1 1 iii

h

uuuD ii

x 211

h

uuuD ii

x

1

h

uuuD ii

x1

Page 13: Level Set Formulation for Curve Evolution

Truncation Error

Taylor expansion about x=ih

)()('

)()('

)()('

)()('')(')()(

)()('')(')()(

2

32!2

11

32!2

11

hOihuuD

hOihuuD

hOihuuD

hOihuhihhuihuhihuu

hOihuhihhuihuhihuu

ix

ix

ix

i

i

21

21

1 1

11

Stencils

Page 14: Level Set Formulation for Curve Evolution

Numerical Approximations

2

1,11,11,11,1

4h

uuuuuD jijijiji

xy

211 2

h

uuuuD iii

xx

1 2- 1

41

41

41

41

Page 15: Level Set Formulation for Curve Evolution

Conservation Law

Rate of change of the amount in a fixed domain G =

Flux across the boundaries of G

Differential conservation law

GG

dSnfudxdt

d ,

G

u

0 div fut

nnf

,

f

Page 16: Level Set Formulation for Curve Evolution

Generalized Solution 1D

In 1D

Weak solution satisfies

u

0),(),(),(),(

0

0 div

1

0

1

0

1

0

1

0

1

0

1

0

0101

dttxftxfdxtxutxu

dtdxfu

dtdxfu

t

t

x

x

t

t

x

x

xt

t

t

x

x

t

)),(()),((),( 10

1

0

txuHtxuHdxtxudt

dx

x

t

x

1t

0t

0x 1x

ff u

u

Page 17: Level Set Formulation for Curve Evolution

Hamilton-Jacobi

In 1D: HJ=Hyperbolic conservation lawsIn 2D: just the `flavor’…

Vanishing viscosity, of

The `entropy condition’ selected the `weak solution’

that is the `vanishing viscosity solution’ also known

as `entropy solution’.

xxxt uuHu )(0

lim

Nεκ

NCt

Page 18: Level Set Formulation for Curve Evolution

Numerical Schemes

Conservation form

Numerical flux

The scheme is monotone, if F is non-decreasing.

Theorem: A monotone, consistent scheme, in conservation form converges to the entropy solution.

Yet, up to 1st order accurate ;-( …

x

gg

t

uu nj

nj

nj

nj

2

12

11

),...,( 11 n

qjn

pjnj uuFu

)(),...,( ),,...,( 1121 uHuuguugg qjpj

nj

Page 19: Level Set Formulation for Curve Evolution

Upwind Monotone

Upwind scheme

For we have upwind-monotone schemes

we define Then, and the final scheme is

)()( 2uhuH

0' )(

0' )(

12

1HuH

HuHg

j

jnj

)))0,,((min(),(

)))0,max()0,((min(),(2

11

21

1

nj

nj

nj

njM

nj

nj

nj

njHJ

uuhuug

uuhuug

xxdtxutx ~),~(),(

1

nj

nj

nj

nj

Du

Du

),(1 nj

nj

nj

nj DDtg

Page 20: Level Set Formulation for Curve Evolution

CFL Stability Condition

At the limitFor 3-point scheme of

we need for the numerical domain of dependenceto include the PDE domain of dependence

0)( xt uHu

0 0, tx t

x1x

tx ~,~

domain of dependence

0x

domain of influence

'1 Hx

t

Page 21: Level Set Formulation for Curve Evolution

CFL Stability Condition

At the limitFor 3-point scheme of

we need for the numerical domain of dependenceto include the PDE domain of dependence

0)( xt uHu

0 0, tx t

x1x

tx ~,~

0x

'1 Hx

t

x

Page 22: Level Set Formulation for Curve Evolution

1D Example

SolutionCharacteristics dx/dt=1CFL condition

Numeric scheme

xt uu

)0,(),( txutxu t

x

tx 0

0x

x

t

1

ni

xni

t uDuD

Page 23: Level Set Formulation for Curve Evolution

1D Example

where

Characteristics

Numeric scheme

CFL condition

xt uxau )(

1 1

1 1)(

x

xxa

t

x

ta

x

)2()(

))0,min()0,(max(

112||

1121 n

ini

ni

ani

ni

axtn

ini

ni

xi

ni

xi

ni

t

uuuuuuu

uDauDauDii

1 1

1 1

x

x

dx

dt

1

xxxxi uauax ||||

Numerical viscosity

Page 24: Level Set Formulation for Curve Evolution

2D Example

Numeric scheme

CFL condition

t

2

1

h

t

2,1,1

12

22

)0,,min(max)0,,max(

)0,,max()0,,max(

nji

nji

nijh

nij

xnij

x

nij

ynij

ynij

xnij

xnij

t

DD

DDDDD

tt NC

Page 25: Level Set Formulation for Curve Evolution

2D Examples

Some flows

Vt

31

31

31 22

22

22

2div

2div

xyyyxxyyxxtt

yx

xyyyxxyyxxtt

tt

NC

NC

NC

require upwind/monotoneschemes

,2

div ,

22

22

gg

gNNggC

yx

xyyyxxyyxx

tt