lesson 30: the definite integral

35
Section 5.2 The Definite Integral Math 1a December 7, 2007 Announcements I my next office hours: Monday 1–2, Tuesday 3–4 (SC 323) I MT II is graded. You’ll get it back today I Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun 1/13 in Hall C, all 7–8:30pm I Final tentatively scheduled for January 17

Upload: matthew-leingang

Post on 18-Dec-2014

2.777 views

Category:

Technology


0 download

DESCRIPTION

We define the definite integral as a limit of Riemann sums, compute some approximations, then investigate the basic additive and comparative properties

TRANSCRIPT

Page 1: Lesson 30: The  Definite  Integral

Section 5.2The Definite Integral

Math 1a

December 7, 2007

Announcements

I my next office hours: Monday 1–2, Tuesday 3–4 (SC 323)

I MT II is graded. You’ll get it back today

I Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun1/13 in Hall C, all 7–8:30pm

I Final tentatively scheduled for January 17

Page 2: Lesson 30: The  Definite  Integral

Outline

The definite integral as a limit

Estimating the Definite Integral

Properties of the integral

Comparison Properties of the Integral

Page 3: Lesson 30: The  Definite  Integral

The definite integral as a limit

DefinitionIf f is a function defined on [a, b], the definite integral of f froma to b is the number∫ b

af (x) dx = lim

∆x→0

n∑i=1

f (ci ) ∆x

Page 4: Lesson 30: The  Definite  Integral

Notation/Terminology

∫ b

af (x) dx

I

∫— integral sign (swoopy S)

I f (x) — integrand

I a and b — limits of integration (a is the lower limit and bthe upper limit)

I dx — ??? (a parenthesis? an infinitesimal? a variable?)

I The process of computing an integral is called integration

Page 5: Lesson 30: The  Definite  Integral

Notation/Terminology

∫ b

af (x) dx

I

∫— integral sign (swoopy S)

I f (x) — integrand

I a and b — limits of integration (a is the lower limit and bthe upper limit)

I dx — ??? (a parenthesis? an infinitesimal? a variable?)

I The process of computing an integral is called integration

Page 6: Lesson 30: The  Definite  Integral

Notation/Terminology

∫ b

af (x) dx

I

∫— integral sign (swoopy S)

I f (x) — integrand

I a and b — limits of integration (a is the lower limit and bthe upper limit)

I dx — ??? (a parenthesis? an infinitesimal? a variable?)

I The process of computing an integral is called integration

Page 7: Lesson 30: The  Definite  Integral

Notation/Terminology

∫ b

af (x) dx

I

∫— integral sign (swoopy S)

I f (x) — integrand

I a and b — limits of integration (a is the lower limit and bthe upper limit)

I dx — ??? (a parenthesis? an infinitesimal? a variable?)

I The process of computing an integral is called integration

Page 8: Lesson 30: The  Definite  Integral

Notation/Terminology

∫ b

af (x) dx

I

∫— integral sign (swoopy S)

I f (x) — integrand

I a and b — limits of integration (a is the lower limit and bthe upper limit)

I dx — ??? (a parenthesis? an infinitesimal? a variable?)

I The process of computing an integral is called integration

Page 9: Lesson 30: The  Definite  Integral

Notation/Terminology

∫ b

af (x) dx

I

∫— integral sign (swoopy S)

I f (x) — integrand

I a and b — limits of integration (a is the lower limit and bthe upper limit)

I dx — ??? (a parenthesis? an infinitesimal? a variable?)

I The process of computing an integral is called integration

Page 10: Lesson 30: The  Definite  Integral

The limit can be simplified

TheoremIf f is continuous on [a, b] or if f has only finitely many jumpdiscontinuities, then f is integrable on [a, b]; that is, the definite

integral

∫ b

af (x) dx exists.

TheoremIf f is integrable on [a, b] then∫ b

af (x) dx = lim

n→∞

n∑i=1

f (xi )∆x ,

where

∆x =b − a

nand xi = a + i ∆x

Page 11: Lesson 30: The  Definite  Integral

The limit can be simplified

TheoremIf f is continuous on [a, b] or if f has only finitely many jumpdiscontinuities, then f is integrable on [a, b]; that is, the definite

integral

∫ b

af (x) dx exists.

TheoremIf f is integrable on [a, b] then∫ b

af (x) dx = lim

n→∞

n∑i=1

f (xi )∆x ,

where

∆x =b − a

nand xi = a + i ∆x

Page 12: Lesson 30: The  Definite  Integral

Outline

The definite integral as a limit

Estimating the Definite Integral

Properties of the integral

Comparison Properties of the Integral

Page 13: Lesson 30: The  Definite  Integral

Estimating the Definite Integral

Given a partition of [a, b] into n pieces, let x̄i be the midpoint of[xi−1, xi ]. Define

Mn =n∑

i=1

f (x̄i ) ∆x .

Page 14: Lesson 30: The  Definite  Integral

Example

Estimate

∫ 1

0

4

1 + x2dx using the midpoint rule and four divisions.

Solution

The partition is 0 <1

4<

1

2<

3

4< 1, so the estimate is

M4 =1

4

(4

1 + (1/8)2+

4

1 + (3/8)2+

4

1 + (5/8)2+

4

1 + (7/8)2

)

=1

4

(4

65/64+

4

73/64+

4

89/64+

4

113/64

)=

150, 166, 784

47, 720, 465≈ 3.1468

Page 15: Lesson 30: The  Definite  Integral

Example

Estimate

∫ 1

0

4

1 + x2dx using the midpoint rule and four divisions.

Solution

The partition is 0 <1

4<

1

2<

3

4< 1, so the estimate is

M4 =1

4

(4

1 + (1/8)2+

4

1 + (3/8)2+

4

1 + (5/8)2+

4

1 + (7/8)2

)

=1

4

(4

65/64+

4

73/64+

4

89/64+

4

113/64

)=

150, 166, 784

47, 720, 465≈ 3.1468

Page 16: Lesson 30: The  Definite  Integral

Example

Estimate

∫ 1

0

4

1 + x2dx using the midpoint rule and four divisions.

Solution

The partition is 0 <1

4<

1

2<

3

4< 1, so the estimate is

M4 =1

4

(4

1 + (1/8)2+

4

1 + (3/8)2+

4

1 + (5/8)2+

4

1 + (7/8)2

)=

1

4

(4

65/64+

4

73/64+

4

89/64+

4

113/64

)

=150, 166, 784

47, 720, 465≈ 3.1468

Page 17: Lesson 30: The  Definite  Integral

Example

Estimate

∫ 1

0

4

1 + x2dx using the midpoint rule and four divisions.

Solution

The partition is 0 <1

4<

1

2<

3

4< 1, so the estimate is

M4 =1

4

(4

1 + (1/8)2+

4

1 + (3/8)2+

4

1 + (5/8)2+

4

1 + (7/8)2

)=

1

4

(4

65/64+

4

73/64+

4

89/64+

4

113/64

)=

150, 166, 784

47, 720, 465≈ 3.1468

Page 18: Lesson 30: The  Definite  Integral

Outline

The definite integral as a limit

Estimating the Definite Integral

Properties of the integral

Comparison Properties of the Integral

Page 19: Lesson 30: The  Definite  Integral

Properties of the integral

Theorem (Additive Properties of the Integral)

Let f and g be integrable functions on [a, b] and c a constant.Then

1.

∫ b

ac dx = c(b − a)

2.

∫ b

a[f (x) + g(x)] dx =

∫ b

af (x) dx +

∫ b

ag(x) dx.

3.

∫ b

acf (x) dx = c

∫ b

af (x) dx.

4.

∫ b

a[f (x)− g(x)] dx =

∫ b

af (x) dx −

∫ b

ag(x) dx.

Page 20: Lesson 30: The  Definite  Integral

Properties of the integral

Theorem (Additive Properties of the Integral)

Let f and g be integrable functions on [a, b] and c a constant.Then

1.

∫ b

ac dx = c(b − a)

2.

∫ b

a[f (x) + g(x)] dx =

∫ b

af (x) dx +

∫ b

ag(x) dx.

3.

∫ b

acf (x) dx = c

∫ b

af (x) dx.

4.

∫ b

a[f (x)− g(x)] dx =

∫ b

af (x) dx −

∫ b

ag(x) dx.

Page 21: Lesson 30: The  Definite  Integral

Properties of the integral

Theorem (Additive Properties of the Integral)

Let f and g be integrable functions on [a, b] and c a constant.Then

1.

∫ b

ac dx = c(b − a)

2.

∫ b

a[f (x) + g(x)] dx =

∫ b

af (x) dx +

∫ b

ag(x) dx.

3.

∫ b

acf (x) dx = c

∫ b

af (x) dx.

4.

∫ b

a[f (x)− g(x)] dx =

∫ b

af (x) dx −

∫ b

ag(x) dx.

Page 22: Lesson 30: The  Definite  Integral

Properties of the integral

Theorem (Additive Properties of the Integral)

Let f and g be integrable functions on [a, b] and c a constant.Then

1.

∫ b

ac dx = c(b − a)

2.

∫ b

a[f (x) + g(x)] dx =

∫ b

af (x) dx +

∫ b

ag(x) dx.

3.

∫ b

acf (x) dx = c

∫ b

af (x) dx.

4.

∫ b

a[f (x)− g(x)] dx =

∫ b

af (x) dx −

∫ b

ag(x) dx.

Page 23: Lesson 30: The  Definite  Integral

More Properties of the Integral

Conventions: ∫ a

bf (x) dx = −

∫ b

af (x) dx

∫ a

af (x) dx = 0

This allows us to have

5.

∫ c

af (x) dx =

∫ b

af (x) dx +

∫ c

bf (x) dx for all a, b, and c .

Page 24: Lesson 30: The  Definite  Integral

More Properties of the Integral

Conventions: ∫ a

bf (x) dx = −

∫ b

af (x) dx

∫ a

af (x) dx = 0

This allows us to have

5.

∫ c

af (x) dx =

∫ b

af (x) dx +

∫ c

bf (x) dx for all a, b, and c .

Page 25: Lesson 30: The  Definite  Integral

More Properties of the Integral

Conventions: ∫ a

bf (x) dx = −

∫ b

af (x) dx

∫ a

af (x) dx = 0

This allows us to have

5.

∫ c

af (x) dx =

∫ b

af (x) dx +

∫ c

bf (x) dx for all a, b, and c .

Page 26: Lesson 30: The  Definite  Integral

Example

Suppose f and g are functions with

I

∫ 4

0f (x) dx = 4

I

∫ 5

0f (x) dx = 7

I

∫ 5

0g(x) dx = 3.

Find

(a)

∫ 5

0[2f (x)− g(x)] dx

(b)

∫ 5

4f (x) dx .

Page 27: Lesson 30: The  Definite  Integral

SolutionWe have

(a) ∫ 5

0[2f (x)− g(x)] dx = 2

∫ 5

0f (x) dx −

∫ 5

0g(x) dx

= 2 · 7− 3 = 11

(b) ∫ 5

4f (x) dx =

∫ 5

0f (x) dx −

∫ 4

0f (x) dx

= 7− 4 = 3

Page 28: Lesson 30: The  Definite  Integral

SolutionWe have

(a) ∫ 5

0[2f (x)− g(x)] dx = 2

∫ 5

0f (x) dx −

∫ 5

0g(x) dx

= 2 · 7− 3 = 11

(b) ∫ 5

4f (x) dx =

∫ 5

0f (x) dx −

∫ 4

0f (x) dx

= 7− 4 = 3

Page 29: Lesson 30: The  Definite  Integral

Outline

The definite integral as a limit

Estimating the Definite Integral

Properties of the integral

Comparison Properties of the Integral

Page 30: Lesson 30: The  Definite  Integral

Comparison Properties of the Integral

TheoremLet f and g be integrable functions on [a, b].

6. If f (x) ≥ 0 for all x in [a, b], then∫ b

af (x) dx ≥ 0

7. If f (x) ≥ g(x) for all x in [a, b], then∫ b

af (x) dx ≥

∫ b

ag(x) dx

8. If m ≤ f (x) ≤ M for all x in [a, b], then

m(b − a) ≤∫ b

af (x) dx ≤ M(b − a)

Page 31: Lesson 30: The  Definite  Integral

Comparison Properties of the Integral

TheoremLet f and g be integrable functions on [a, b].

6. If f (x) ≥ 0 for all x in [a, b], then∫ b

af (x) dx ≥ 0

7. If f (x) ≥ g(x) for all x in [a, b], then∫ b

af (x) dx ≥

∫ b

ag(x) dx

8. If m ≤ f (x) ≤ M for all x in [a, b], then

m(b − a) ≤∫ b

af (x) dx ≤ M(b − a)

Page 32: Lesson 30: The  Definite  Integral

Comparison Properties of the Integral

TheoremLet f and g be integrable functions on [a, b].

6. If f (x) ≥ 0 for all x in [a, b], then∫ b

af (x) dx ≥ 0

7. If f (x) ≥ g(x) for all x in [a, b], then∫ b

af (x) dx ≥

∫ b

ag(x) dx

8. If m ≤ f (x) ≤ M for all x in [a, b], then

m(b − a) ≤∫ b

af (x) dx ≤ M(b − a)

Page 33: Lesson 30: The  Definite  Integral

Comparison Properties of the Integral

TheoremLet f and g be integrable functions on [a, b].

6. If f (x) ≥ 0 for all x in [a, b], then∫ b

af (x) dx ≥ 0

7. If f (x) ≥ g(x) for all x in [a, b], then∫ b

af (x) dx ≥

∫ b

ag(x) dx

8. If m ≤ f (x) ≤ M for all x in [a, b], then

m(b − a) ≤∫ b

af (x) dx ≤ M(b − a)

Page 34: Lesson 30: The  Definite  Integral

Example

Estimate

∫ 2

1

1

xdx using the comparison properties.

SolutionSince

1

2≤ x ≤ 1

1

for all x in [1, 2], we have

1

2· 1 ≤

∫ 2

1

1

xdx ≤ 1 · 1

Page 35: Lesson 30: The  Definite  Integral

Example

Estimate

∫ 2

1

1

xdx using the comparison properties.

SolutionSince

1

2≤ x ≤ 1

1

for all x in [1, 2], we have

1

2· 1 ≤

∫ 2

1

1

xdx ≤ 1 · 1