leonid e. zhukov · leonid e. zhukov (hse) lecture 4 06.02.2016 2 / 23. motivation most of the...

24
Network models: dynamic growth and small world Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Network Science Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 1 / 23

Upload: others

Post on 21-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Network models: dynamic growth and small world

Leonid E. Zhukov

School of Data Analysis and Artificial IntelligenceDepartment of Computer Science

National Research University Higher School of Economics

Network Science

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 1 / 23

Page 2: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Network models

Empirical network features:

Power-law (heavy-tailed) degree distribution

Small average distance (graph diameter)

Large clustering coefficient (transitivity)

Giant connected component, hierarchical structure,etc

Generative models:

Random graph model (Erdos & Renyi, 1959)

Preferential attachment model (Barabasi & Albert, 1999)

Small world model (Watts & Strogatz, 1998)

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23

Page 3: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Motivation

Most of the networks we study are evolving over time, they expand byadding new nodes:

Citation networks

Collaboration networks

Web

Social networks

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 3 / 23

Page 4: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment model

Barabasi and Albert, 1999Dynamic growth modelStart at t = 0 with n0 nodes and some edges m0 ≥ n0

1 GrowthAt each time step add a new node with m edges (m ≤ n0),connecting to m nodes already in netwrok ki (i) = m

2 Preferential attachmentThe probability of linking to existing node i is proportional to thenode degree ki

Π(ki ) =ki∑i ki

after t timesteps: t + n0 nodes, mt + m0 edges

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 4 / 23

Page 5: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment model

Barabasi, 1999

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 5 / 23

Page 6: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment

Continues approximation: continues time, real variable node degree〈ki (t)〉- expected value over multiple realizationsTime-dependent degree of a single node:

ki (t + δt) = ki (t) + mΠ(ki )δt

dki (t)

dt= mΠ(ki ) = m

ki∑i ki

=mki2mt

dki (t)

dt=

ki (t)

2tinitial conditions: ki (t = i) = m∫ ki (t)

m

dkiki

=

∫ t

i

dt

2t

Solution:

ki (t) = m( ti

)1/2

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 6 / 23

Page 7: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachement

ki (t) = m( ti

)1/2

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 7 / 23

Page 8: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachement

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 8 / 23

Page 9: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment

Time evolution of a node degree

ki (t) = m( ti

)1/2

Nodes with ki (t) ≤ k:

m( ti

)1/2

≤ k

i ≥ m2

k2t

Probability of randomly selected node to have k ′ ≤ k (fraction of nodeswith k ′ ≤ k )

F (k) = P(k ′ ≤ k) =n0 + t −m2t/k2

n0 + t≈ 1− m2

k2

Distribution function:

P(k) =d

dkF (k) =

2m2

k3

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 9 / 23

Page 10: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment vs random graph

BA : P(k) =2m2

k3, ER : P(k) =

〈k〉ke−〈k〉

k!, 〈k〉 = pn

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 10 / 23

Page 11: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment vs random graph

BA : P(k) =2m2

k3, ER : P(k) =

〈k〉ke−〈k〉

k!, 〈k〉 = pn

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 11 / 23

Page 12: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment vs random graph

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 12 / 23

Page 13: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment model

m = 1 m = 2 m = 3

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 13 / 23

Page 14: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Growing random graph

1 GrowthAt each time step add a new node with m edges (m ≤ n0),connecting to m nodes already in network ki (i) = m

2 Preferential attachment Uniformly at randomThe probability of linking to existing node i is

Π(ki ) =1

n0 + t − 1

Node degree growth:

ki (t) = m(

1 + log( ti

))Node degree distribution function:

P(k) =e

mexp (− k

m)

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 14 / 23

Page 15: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Preferential attachment

Power law distribution function:

P(k) =2m2

k3

Average path length (analytical result) :

〈L〉 ∼ log(N)/ log(log(N))

Clustering coefficient (numerical result):

C ∼ N−0.75

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 15 / 23

Page 16: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Many more models

Some other models that produce scale-free networks:

Non-linear preferential attachment

Link selection model

Copying model

Cost-optimization model

...

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 16 / 23

Page 17: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Historical note

Polya urn model, George Polya, 1923

Yule process, Udny Yule, 1925

Distribution of wealth, Herbert Simon,1955

Evolution of citation networks, cumulative advantage, Derek de SollaPrice, 1976

Preferential attachment network model, Barabasi and Albert, 1999

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 17 / 23

Page 18: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Small world

Motivation: keep high clustering, get small diameter

Clustering coefficient C = 1/2Graph diameter d = 8

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 18 / 23

Page 19: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and randomgraph

start with regular lattice with n nodes, k edges per vertex (nodedegree), k << n

randomly connect with other nodes with probability p, forms pnk/2”long distance” connections from total of nk/2 edges

p = 0 regular lattice, p = 1 random graph

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 19 / 23

Page 20: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Small world

Watts, 1998

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 20 / 23

Page 21: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Small world model

Node degree distribution:Poisson like

Ave. path length 〈L(p)〉 :p → 0, ring lattice, 〈L(0)〉 = 2n/kp → 1, random graph, 〈L(1)〉 = log(n)/ log(k)

Clustering coefficient C (p) :p → 0, ring lattice, C (0) = 3/4 = constp → 1, random graph, C (1) = k/n

Watts, 1998

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 21 / 23

Page 22: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Small world model

20% rewiring:ave. path length = 3.58 → ave. path length = 2.32clust. coeff = 0.49 → clust. coeff = 0.19

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 22 / 23

Page 23: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

Model comparison

Random BA model WS model Empirical networks

P(k) λke−λ

k! k−3 poisson like power lawC 〈k〉/N N−0.75 const large

〈L〉 log(N)log(〈k〉)

log(N)log log(N) log(N) small

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 23 / 23

Page 24: Leonid E. Zhukov · Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 2 / 23. Motivation Most of the networks we study are evolving over time, they expand by adding new nodes: Citation

References

Emergence of Scaling in Random Networks, A.L. Barabasi and R.Albert, Science 286, 509-512, 1999

Collective dynamics of small-world networks. Duncan J. Watts andSteven H. Strogatz. Nature 393 (6684): 440-442, 1998

Leonid E. Zhukov (HSE) Lecture 4 06.02.2016 24 / 23