lectures for weeks 7 and 8

54
Week 7 Basic characteristics of induction and synchronous generators connected to the infinite bus. Week 8 The basic inverter and interfacing, real and reactive power control. Week 9 Transmission lines, AC versus DC transmission. Professor Faz Rahman Room EE133 [email protected] Tel: 9385 4893 1

Upload: david-vang

Post on 28-Dec-2015

20 views

Category:

Documents


3 download

DESCRIPTION

ElectricalEngineers

TRANSCRIPT

Page 1: Lectures for Weeks 7 and 8

Week 7

Basic characteristics of induction and synchronous generators connected to the infinite bus.

Week 8

The basic inverter and interfacing, real and reactive power control.

Week 9

Transmission lines, AC versus DC transmission.

Professor Faz RahmanRoom EE133

[email protected]: 9385 4893

1

Page 2: Lectures for Weeks 7 and 8

A typical power generation, transmission and distribution network (unidirectional power flow)

2

Transformer Transformer Transformer Transformer

250kVgrid

Transformer

Transformer

33kV

3.3kV

Transformer

415VIndustrial

loads

L

L

N

OtherLoad

Centers

Page 3: Lectures for Weeks 7 and 8

Cont.

3

With renewable distributed generation and energy storage, power flowis bidirectional and can be rather fast, unlike in a conventional powersystem network.

Page 4: Lectures for Weeks 7 and 8

Wind turbine evolvement

4

Page 5: Lectures for Weeks 7 and 8

5

Page 6: Lectures for Weeks 7 and 8

6

Global annual and cumulative installed wind power capacity

Page 7: Lectures for Weeks 7 and 8

7

Wind energy harnessing growth

Page 8: Lectures for Weeks 7 and 8

Offshore wind energy harnessing growth in Europe

8

Page 9: Lectures for Weeks 7 and 8

9

Comparison between offshore and on-land wind turbines

Page 10: Lectures for Weeks 7 and 8

10

Cost of wind energy harnessing

Page 11: Lectures for Weeks 7 and 8

Installation of 160MW offshore substation

11

Page 12: Lectures for Weeks 7 and 8

12

An example of wind farm and grid

Page 13: Lectures for Weeks 7 and 8

13

Page 14: Lectures for Weeks 7 and 8

14

Page 15: Lectures for Weeks 7 and 8

Induction and Synchronous Generators driven by wind turbines

312 pP C AV W

15

312wP AV WPower in wind,

Wind power delivered to generator,

= air density in kg/m3; A = swept area in m2 of blades; V = wind speed in m/sec; Cp = rotor efficiency. 

Page 16: Lectures for Weeks 7 and 8

16

Cp - Power Conversion efficiency,, depends on wind speed, turbine rotor speed, number of blades and blade geometry.

Cut-in speed – Wind-speed below which, the generator produces less than the power consumed by the rotating system.

Rated power – The maximum power which the turbine and generator can produce continuously without undue stress on any part

Rated wind-speed – The speed at which the turbine and generator produces the maximum power for which they are designed to produce continuously.

Cut-out speed – The wind speed beyond which turbine-generator are severely overloaded.

Below cut-in and above cut-out speeds, the turbine blades are stopped; Blades are profiled, or mechanically/hydraulically actuated to stop rotating.

Page 17: Lectures for Weeks 7 and 8

17

Vd/V = 1/3 yields maximum  blade (turbine) efficiency of 0.5926.

Page 18: Lectures for Weeks 7 and 8

Tip Speed Ratio

18

TipSpeed Ratio RTSRV

= turbine blade speed in rad/secR = blade length in mV = wind speed in m/sec

TSR is in the range of 4 – 6 for good efficiency. Thus, the turbine blade speedshould change with wind speed. The generator speed will also vary, producingvariable generator output frequency and voltage.

Variable‐speed options: Pole changing, variable gearbox, variable‐slip inductiongenerator, and power electronic converter between generator and grid.

Page 19: Lectures for Weeks 7 and 8

Blade efficiency versus tip speed ratio

19

Page 20: Lectures for Weeks 7 and 8

Turbine blade efficiency

20

Page 21: Lectures for Weeks 7 and 8

21

Page 22: Lectures for Weeks 7 and 8

Fixed and Variable-Speed Generators

Fixed‐speed Induction Generators• Usually for stand‐alone operation; for low power installations driving loads 

with rising torque characteristics with speed, e.g., fans, compressors, etc.• Self‐excited.

• An induction generator will self‐excite depending on the speed of the windturbine shaft, the machine parameters and the capacitance values C. Thecapacitors often have back‐back series thyristors in order to control theexcitation and power flow when connected with the AC bus. C is alsosometimes variable by use of contactors.

22

Page 23: Lectures for Weeks 7 and 8

Fixed and Variable-speed Generators

Variable‐speed generators

• Power Electronic Converters (PEC) allow variable‐speed operation. The control of power (active and reactive) from generator to the to the grid can be made variable through the use of PEC (AC‐DC, DC‐AC and AC‐AC converters).

23

Page 24: Lectures for Weeks 7 and 8

24

Page 25: Lectures for Weeks 7 and 8

Generators commonly used with wind turbines

25

Singly‐excited induction generator

Doubly excited induction generator

Synchronous generator (PM excited)

Page 26: Lectures for Weeks 7 and 8

Characteristics of a singly-fed induction generator connected to an infinite bus

26

Note: stator currents are constrained to be at the infinite bus frequency, so agear box and some adjustment to rotor speed is necessary. A rectifier +inverter connected to the stator windings offers some freedom from thisconstraint and other constraints such as pitch control, available speed rangeand many other.

Page 27: Lectures for Weeks 7 and 8

Induction Generators

27

An induction generator is an AC machine with three-phase windings in the stator. For larger applications, the machines also has 3-phase windings in the rotor. The frequency fs of currents in the stator windings determine the synchronous speed syn, which is given by

ssyn

2 fp s

syn60 fN

p

in rev/minin rad/sec

Where p is the number of pairs of electromagnetic poles (always an even number of north and south magnetic poles) rotating at the synchronous speed in the air gap between the stator and the rotor.

The difference between the rotor speed (Nrot) of an induction machine defines a ratio called Slip or s, given by

syn rot syn rot

syn syn

N Ns

N

For 0 < s < 1, the machine acts as a motor, for s < 0, the machine acts as a generator. Note that for s < 0, the rotor speed is higher than the synchronous speed.

Page 28: Lectures for Weeks 7 and 8

Singly-fed induction machine characteristics

28

R1 X1

V1

I1

Im

Xm

'2R

'2R 1 s

s

' 22

IIa

'2X

1 2E aE

A

A’

2Th

max 22 'sTh Th Th 2

V3 pT2 R R X X

max

'2

T 22 'Th Th 2

RsR X X

m 1Th

1 m

X VV ;X X

Th 1R R ;

2 'Th 2

mech 2' 2s '2Th Th 2

V3 p RT ;sRR X X

s

Page 29: Lectures for Weeks 7 and 8

Torque-speed characteristic of an SFIM

29

Generating modeGenerating and motoring modes

Expressions for these characteristics, Tmax and smax machine parameters, motor voltage and frequency are treated in ELEC3105.

Page 30: Lectures for Weeks 7 and 8

Characteristic of a doubly-fed induction generator connected to an infinite bus

30

sl inj

r

P Ps

P

Psl = power loss in the rotor

Pinj = power injected into rotor by the inverter

Pr = Total rotor power

Page 31: Lectures for Weeks 7 and 8

Characteristic of a doubly-fed induction generator connected to an infinite bus continued.

31

• This scheme is based on the hypothesis that when the power injected into therotor windings exceeds the losses in the rotor, the motor will then run at super‐synchronous speed, meaning operation with s < 0 (i.e., generator mode ofoperation).

• The rectifier/inverter allows variable power injected power into the rotor at thefrequency of the rotor currents (which is much lower than the frequency of theinfinite bus).

• It can be shown (covered in ELEC4613) that the for low slip operation, thecounter torque developed by the DFIG can be made proportional to the DCcurrent Id supplied at the input of the inverter (equivalent to controlling theamplitude of the sinusoidal AC currents supplied to the 3‐phase rotorwindings). This in turn controls the power transferred from the generator tothe bus. (Operation and control 3‐phase inverters are covered in ELEC4614).

Page 32: Lectures for Weeks 7 and 8

Synchronous Generators

32

• Generators at large power stations are invariably synchronous machines with excitation of rotor electromagnets supplied from a DC supply via slip rings.  

• With distributed generation driven by wind turbines, permanent magnets are used in the rotor. These range from a few 100 W to about 10MW (recently).

• When driven at a speed, the per‐phase representation of the machine includes a sinusoidal induced voltage E, leakage and armature demagnetization effects of stator currents represented by Xs and winding resistance R per phase.

• The machine fully covered in ELEC3105.

Page 33: Lectures for Weeks 7 and 8

Cont…

33

In a synchronous machine, the rotor fields (with north and south magnetic polescreated by electro or permanent magnet excitation) and the stator fields (createdby its own currents) must rotate at the same speed at steady‐state.

The induced voltages lead the corresponding stator voltage waveforms by an angle, (the load angle) when operating as a generator. When the machine is loaded,this angle increases with the power developed.

During transient operation, the speed of the machine changes causing the angleto change transiently. For stability, this angle must not exceed 90. The magnitudeof this angle also depends on the level of rotor excitation.

When a synchronous generator is connected to an infinite bus, and generates intothe bus, the components of the current flow between the generator in phase withthe bus voltage will be determined by the power delivered. (Recall, P = VIcos,where Icos is the in‐phase component of the phase current.

Page 34: Lectures for Weeks 7 and 8

The synchronous generator connected to the infinite bus

34

• When the machine is connected to an infinite bus at voltage Va, the three‐phase stator currents at the bus frequency produces a stator field which rotates at syn(see slide 27). The rotor also rotates at this speed (on average) so there is no slip.

• As the generator delivers load which primarily is determined by the power received at its shaft, the induced phase voltage Ea progressively leads Va of the corresponding bus phase voltage by a phase angle , given by

Wa a

s

3V EP sinX

Nmsyn s s

P 3p VET sinX

• With fixed input power to the shaft,  the phase angle and magnitude of the stator current changes with rotor excitation, if available, with the in‐phase current remaining constant.

Ra  0

Page 35: Lectures for Weeks 7 and 8

The synchronous generator on the infinite bus contd.

35

• With variable‐speed, the frequency of the induced voltages E and the bus voltage V will not be equal, so a rectifier‐inverter PEC is required. Note also that the number of poles also determine the frequency. If a machine with a large number of poles is not used, a gear‐box is required in order to run the generator at a much higher speed than the turbine, thereby reducing the size of the machine.

Page 36: Lectures for Weeks 7 and 8

Power transfer between DG and Grid

36

W/phaseP VI cos VAR / phaseQ VI sinAll quantities in RMS values.

VAS P jQ

Line parameters:

ml 1R /A A

X L

H / mo d rL ln2 r

The capacitance/m for a short line may be neglected.

Page 37: Lectures for Weeks 7 and 8

37

;22 1 LZ R L tanR

s RV V 0 I Z

If R << X, Z X, = 90

s RV VI 90 90X X

s RV V 0IZ

Power,  sV s Rs I s s

V VP V I cos V cos 90 V cos 90X X

W/phases RV V sinX

VR0

jXs=jsLs I

Vs

R

Page 38: Lectures for Weeks 7 and 8

38

Reactive Power,  sV s Rs I s s

V VQ V I sin V sin 90 V sin 90X X

VAR/phase2

s s RV V V cosX X

Phasor diagram for a given current delivered to the grid. 

Phasor diagram for a bidirectional power flow.

Page 39: Lectures for Weeks 7 and 8

A 2-level rectifier/inverter circuit

39

Diodes D1‐D6 form a rectifier. IGBTsswitches T1 – T6 have pulse‐widthmodulated (PWM) on‐off duty cyclessynchronized with vsa – vsc, whichforces sinusoidal in‐phase currents tobe drawn from the generator. Itoperates as a boost converter with Vdc> Vl-lmax.

T1D1 – T6D6 form an inverter,converting Vdc into 3‐phase AC outputsat the grid frequency and synchronizedwith v’sa – v’sc. On‐off duty cycles of T1– T6 are also PWM. It operates as abuck converter with Vdc < Vl-lmax. Theinverter supplies AC currents to thegrid with specified phase angles.

Page 40: Lectures for Weeks 7 and 8

Inverter interfacings

40

Page 41: Lectures for Weeks 7 and 8

41

3‐phase PWM converter

3‐phase PWM rectifier / inverter circuitshave been used in this part in order toillustrate the operation of DG systems.There are many other types of convertercircuits that may suit particularapplications and performancerequirements. Some of these circuits arecovered in the Power Electronics courseELEC4614.

In inverter mode, Vdc is the input and 3‐phase sinusoidal voltages of arbitraryamplitude and frequency are the outputs. In this mode, the switching of theinverter must be synchronised with the grid voltages.

In rectifier mode, the 3‐phase AC voltages are the inputs, while the Vdc is theoutput. In this mode, the switching of the converter must be synchronised withthe AC voltages.

Page 42: Lectures for Weeks 7 and 8

42

control

tri

v̂mv̂

1

sf

fmf

The Depth of Modulation,

The Carrier Ratio,

where fs and f1 are the frequencies of the carrier and fundamental (desired) output. respectively.

Page 43: Lectures for Weeks 7 and 8

43

A sinewave reference and a sawtooth carrier are compared to produce a logiclevel out put of 1 and 0 of variable duty cycle. The carrier frequency is muchhigher than the sinewave frequency. If the output signals are used to turn onand off the two switches in an inverter leg, the resulting pole voltage at A (orB or C) will replicate the sinewave .The amplitude of the average pole voltage will be proportional to theamplitude of the reference sinewave and it will be of the same phase and thereference sinewave. It can be shown that the output pole phase voltage isgiven by

dcAn

Vv̂ m2

Page 44: Lectures for Weeks 7 and 8

Operation of a PWM inverter

44

D6T2T4

T3T1 D3

D4

D1

Vd

D2

D5

T6

T5

CA B

A B C

ia ib ic 0V

+Vd/2

Vd/2

idP

N

dAn,1

VV m

2 2 0 354. m Vd

dAB,1 d

3VV m 0.612m V

2 2

m is the depth of modulation

Page 45: Lectures for Weeks 7 and 8

45

V1

mfmf + 2

3mf2mf + 2 3mf + 2

2mf

Harmonics vl-l

mn

0.2 0.4 0.6 0.8 1.0

1 0.122 0.245 0.367 0.490 0.612mf 2

mf 4

0.010 0.037 0.080 0.135

0.005

0.195

0.0112mf  1

2mf 5

0.116 0.200 0.227 0.192

0.008

0.111

0.0203mf 2

3mf 4

0.027 0.085

0.007

0.124

0.029

0.108

0.064

0.038

0.0964mf 1

4mf 5

4mf 7

0.100 0.096 0.005

0.021

0.064

0.051

0.010

0.042

0.073

0.030

Page 46: Lectures for Weeks 7 and 8

Wind generator controls

46

Page 47: Lectures for Weeks 7 and 8

47

Using the sensed AC voltages, the angle  between E and V (or Vs and VR) can be determined.Controller 1 transfers the generator output power to DC link capacitor. Controller 2 transfers this power to the infinite bus.

Page 48: Lectures for Weeks 7 and 8

48

Page 49: Lectures for Weeks 7 and 8

Control of the generator side converter (rectifier)

49

Note that for small , sin and cos 1. Vs and VR are voltage to the left and right sides of Xgen, respectively. Only VR can be measured.

This controller is based on the steady‐state equivalent circuit of the synchronous generator; so the control action is not very fast and can become easily unstable.

Page 50: Lectures for Weeks 7 and 8

Control of the grid-side converter (inverter)

50

Power input to the DC link capacitor is the difference between the generator output power and the power transferred to the grid.

C gen grid DC c

2DC DC

DC

P P P V I

dV dV1V C Cdt 2 dt

2DC C

DC gen grid

2V P dtC

2V P P dtC

If controller 2 maintains the VDC to a reference value, and Ic = 0, all of Pgentransfers to the grid. This control implies that Pgen = Pgrid.

Page 51: Lectures for Weeks 7 and 8

51

Page 52: Lectures for Weeks 7 and 8

Control in the synchronously rotating frame

52

The controllers of the foregoing slides are based on the steady‐state equivalentcircuit and they control the inverter/rectifier output voltages. These do not addressthe dynamics of the system. Fast controllers that are able to respond to thedynamics with fast control of power, voltage and frequency, require vector controlwhich also impart control actions via regulation of currents rather than voltages.Currents that are regulated are transformed into a quadrature dq‐axes whichrotate synchronously with the stator supplies of the generator or the grid.Controlling the current in the q‐ and d‐axes in this reference frame allowsindependent control of the active and reactive power supplied by the generator orthe inverter. Vector control principles are covered in Electric Drives course(ELEC4613).

Page 53: Lectures for Weeks 7 and 8

53

Real and reactive power control in the dq reference frame

Page 54: Lectures for Weeks 7 and 8

Real and reactive power control in the dq reference frame

54