lecture_16_2011_v1

72
Chapter 7- A Surfac e V eneer: Sediments, Soils, & Sedimentary Rocks

Upload: frankynevin1

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 1/85

Chapter 7- A Surface Veneer:Sediments, Soils, & Sedimentary Rocks

Page 2: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 2/85

Biochemical limestone can consist of:

1 2 3 4

25% 25%25%25%

1. coral moundsand/or calciteshell fragments.

2. quartz sandgrains on abeach.

3. deposits of clay.4. deposits of

plankton shellscomposed of

silica.

7-135

5

Page 3: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 3/85

What is the difference between chertand quartz?

1 2 3 4

25% 25%25%25%

1. Chert is always biologicalin origin, whereas quartzis inorganic.

2. They have differentchemical compositions

3. Quartz is a mineral butchert is not.

4. Quartz can be formedfrom the action of fluidsmoving through rocks, butchert cannot.

7-136

5

Page 4: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 4/85

h t t p : / / s t a f f . a i s t . g o .

j p / n o m u r a - k / c o m m o n / S

T R U

C I M A G E S / Q u a r t z . g i f

7-137

Page 5: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 5/85

Figure 1 A. Chalcedony. Photomicrograph (cross-polarized light; field of view heigth - ca . 4.8 mmacross) of banded chalcedony, from south-centralSaguache County, Colorado. As can be seen, thischalcedony consists of innumerable microscopicgrains, virtually all of which are quartz. As noted inthe discussion, this makeup, which is typical, is thebasis of calling chalcedony a rock -- i.e ., it is amicrogranular, monomineralic rock. (© photo by

Daniel E. Kile)

i

h t t p : / / s t a f f . a i s t . g o .

j p / n o m u r a - k / c o m m o n / S

T R U

C I M A G E S / Q u a r t z . g i f

http://mineralsciences.si.edu/staff/postdocs/gaillou.htm

http://www.cst.cmich.edu/USERS/DIETR1RV/introduction-group.jpg

www.quartzpage.de

If chert is not a mineral, then

what is it?C

7-138

Page 6: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 6/85

Page 7: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 7/85

Which arrow indicates the direction of flow?

1 2 3 4

25% 25%25%25%

1. A

2. B3. C4. D

A

B

C

D

7-140

Page 8: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 8/85

• Ripples are formed by water flowingover loose sediment

– Asymmetric ripples – Unidirectionalflow.

7-120

Page 9: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 9/85

Graded beds are bedding layers that “fine upward.”

7-128 Sedimentary structures, continued

Page 10: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 10/85

Graded beds are bedding layers that “fine upward.”

• Sediment added as a pulse of turbid water.• Water loses velocity and sediments settle.• Coarsest material settles first, mediumnext, then fine.

7-129

Page 11: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 11/85

• Repeated pulses ofhigh-energysediment transport

create multiplegraded-bedsequences calledturbidites .

7-130

Page 12: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 12/85

Bed-surface markings occur after deposition whilesediment is still soft.

• Mudcracks indicate alternatingwet and dry conditions (onland)

7-131

Page 13: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 13/85

http://www.depauw.edu/acad/geosciences/tcope/SedStruct/HiRes/Mudcracks2.jpg

7-132

Page 14: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 14/85

Bed-surface markings occur after deposition whilesediment is still soft.

• Scour marks are troughs eroded in soft mud by currentflow.

http://www.depauw.edu/acad/geosciences/tcope/SedStruct/HiRes/SoleMarks.jpg

7-133

Page 15: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 15/85

Page 16: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 16/85

7-135

https://reader010.{domain}/reader010/html5/0622/5b2bfa36ea989/5b2bfa43b4ecc.jpghttp://fossilreproductions.com/images/DinosaurFootprints.jpg

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2009/2/27/1235723159663/A-fossil-footprint-left-b-001.jpg

1.5 Ma

Page 17: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 17/85

Page 18: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 18/85

Page 19: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 19/85

R.Weller/Cochise College

Page 20: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 20/85

R.Weller/Cochise College

Page 21: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 21/85

http://upload.wikimedia.org/wikipedia/ja/e/ee/Migmatite012.jpg

Page 22: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 22/85

Page 23: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 23/85

8 1

Page 24: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 24/85

Chapter 8Metamorphism: A Process of Change

8-1

d8 2

Page 25: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 25/85

Introduction• Metamorphic – Changed

from an original “parent.” – Meta = Change. – Morph = Form or shape.

• Parent rocks are called“protoliths.”

• Metamorphism canoccur to any protolith.

8-2

Page 26: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 26/85

8 4

Page 27: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 27/85

• Metamorphism occurs in the solid state.• Does not include weathering, diagenesis, melting.

• Metamorphic rocks often look totally unlikeprotoliths.

8-4

Page 28: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 28/85

8 5

Page 29: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 29/85

Metamorphic rocks have distinctive properties.

• Texture – Intergrown andinterlocking grains.

• Some mineralsoccur only inmetamorphic rocks.

Fossiliferous limestone

Marble

8-5

8 6

Page 30: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 30/85

Metamorphic rocks have distinctive properties.• Foliation – Forces cause minerals to align.

Red mudstone

Garnet gneiss

8-6

8 7

Page 31: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 31/85

Metamorphic processesMetamorphic change is slow and in the solid state.

• Several metamorphic processes may operate atthe same time.

Kyanite

1. Recry s tal l izat ion –

Minerals change sizeand shape.

2. Phase ch ang e – Newminerals form with: – Same chemical

formula. – Different crystal

structure.

8-7

8 8

Page 32: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 32/85

3. Neoc ry st al l izat ion

– Pressure and temperature changes cause originalminerals to become unstable.

– Original minerals decompose in the protolith.

– Ions react to form new minerals.

8-8

Page 33: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 33/85

M hi i d b f8 10

Page 34: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 34/85

Metamorphism is caused by one or more of:• Heat (Temperature – T).• Pressure (P).• Differential stress.• Hydrothermal fluids.

Rocks may be overpr in ted by multiple events.

8-10

8 11

Page 35: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 35/85

Heat (Temperature)• Metamorphism occurs as the result of

heating between 200 oC and 850 oC. – The upper T limit is melting. – varies based upon rock mineral composition and

water content.• Heat energy breaks and reforms atomic

bonds.

• Sources of heat: – The geothermal gradient. – Magmatic intrusions.

– Compression.

8-11

Page 36: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 36/85

• Mineral stability is highly dependent upon T and P

Page 37: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 37/85

• Mineral stability is highly dependent upon T and P.

Andalusite

KyaniteSillimanite

Al2SiO 5

8-13

8-14

Page 38: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 38/85

• Often a result of tectonic forces.• Two kinds of differential stress: Normal and

shear.

Differential Stress: pressure that isnot uniform in all directions

1. Norm al s t ress – operates perpendicular to asurface. – Tension

– Compression

8 14

Page 39: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 39/85

Diff ti l St

8-16

Page 40: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 40/85

Differential Stress• Preferred platy mineral alignment is called foliation.

– Foliation imparts a layered or bandedappearance.

– Rocks commonly break parallel to foliationplanes.

• Foliation developsperpendicular tocompression.

How?

8 16

8-17

Page 41: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 41/85

http://earth.boisestate.edu/home/cjnorth/images/extension_fractures_cleavage2.jpg

…but how do grains align?

8 17

Pl t i l llig t d diff ti l t

8-18

Page 42: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 42/85

Platy mineral allignment under differential stress8 18

Plat mineral allignment nder differential stress

8-19

Page 43: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 43/85

Platy mineral allignment under differential stress8 19

Platy mineral allignment under differential stress

8-20

Page 44: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 44/85

Platy mineral allignment under differential stress8 20

Platy mineral allignment under differential stress

8-21

Page 45: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 45/85

Platy mineral allignment under differential stress

Page 46: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 46/85

Hydrothermal fluids and8-23

Page 47: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 47/85

Hydrothermal fluids andmetamorphism

• Pore fluid: water, CO 2, dissolvedminerals

• Pore fluids affect metamorphism by: – Transporting dissolved material

– Acting as chemical reservoirs

– Speeding up chemical reactions

– Adding or subracting elementsPore space

Mineral crystals

8-24

Page 48: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 48/85

• If there is enough fluid flowingthrough a rock to substantiallychange the overall chemicalcomposition of a rock, the processis referred to as metasommatism .

R.Weller/Cochise College

Metamorphism vs.Metasomatism

Metamorphic Rock Types8-25

Page 49: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 49/85

Metamorphic Rock Types• Two major subdivisions: foliated and non-foliated• Foliated rocks have a through-going planar fabric.

– Subjected to differential stress. – Has a significant component of platy minerals. – Classified by composition, grain size, and foliation type.

8-26

Page 50: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 50/85

• Two major subdivisions: foliated and non-foliated• Non-foliated rocks have no planar fabric evident.

– Crystallized without differential stress. – Comprised of equant minerals only. – Classified by mineral composition.

N f li t d t hi k

8-27

Page 51: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 51/85

Non-foliated metamorphic rocks

1. Quartzite – Almost pure quartz in composition. – Protolith: quartz sandstone. – Sand grains in the protolith recrystallize and fuse.

Metamorphic Alteration

Page 52: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 52/85

Page 53: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 53/85

Summary of metamorphic rocks8-30

Page 54: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 54/85

Summary of metamorphic rocksFoliated Non-foliated

QuartziteMarble

AmphiboliteHornfels

Sedimentary protolith

Igneous protolith

Grade is a measure of metamorphic intensity

8-31

Page 55: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 55/85

Grade is a measure of metamorphic intensity

Page 56: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 56/85

Foliated metamorphic rocks8-33

Page 57: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 57/85

Foliated metamorphic rocks2. Phyllite – Fine-grained mica-rich rock with satiny lustre.

– Protolith: slate (shale) – Grade: low – medium – Clay minerals neocrystallize into tiny micas.

slatephyllite

Foliated metamorphic rocks8-34

Page 58: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 58/85

3. Schist – Fine - coarse rock with larger micas.

– Protolith: phyllite (shale) or other mica-rich rock – Grade: Medium to high – Foliation: schistosity, from alignment of large mica

crystals grown at higher T.

– Schist often has other minerals due to neocrystallization(quartz, feldspars, kyanite, garnet, staurolite, sillimanite)

– Large non-mica minerals are called porphyroblasts .

Foliated metamorphic rocks

Foliated metamorphic rocks8-35

Page 59: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 59/85

Foliated metamorphic rocks4. Gneiss – distinct banded foliation (compositional banding).

– Light bands of felsic minerals (quartz and feldspars). – Dark bands of mafic minerals (biotite or amphibole).

Summary of metamorphic rocks8-36

Page 60: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 60/85

Summary of metamorphic rocksFoliated Non-foliated

QuartziteMarble

AmphiboliteHornfels

Sedimentary protolith

Igneous protolith

Slate

Phyllite

Schist

Gneiss

I n c r e

a s i n

gm

e t am

or ph i c

gr a

d e

I n c r e

a s i n

g gr ai n

s i z

e

Grains notvisible

Visiblegrains

How does compositional banding develop?

8-37

Page 61: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 61/85

1. Original layering in the protolith.

2. Extensive high T shearing.

How does compositional banding develop?

How does compositional banding develop?

8-38

Page 62: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 62/85

3. Compositional banding – Solid-state chemical

differentiation.

1

2 3

p g p

Migmatite8-39

Page 63: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 63/85

Migmatite• Migmatite is a partially melted gneiss.• It has features of igneous and metamorphic rocks.• Mineralogy controls behavior.

– Light-colored (felsic) minerals melt at lower T. – Dark-colored (mafic) minerals melt a higher T.

• Felsics melt first; mafics remain metamorphic.

quartzclay

8-40

Page 64: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 64/85

Fig. 8.19

muscovitebiotite

garnetKsp

claychlorite

Sillimanite

Staurolite

Grade is a measure of metamorphic intensity

8-41

Page 65: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 65/85

Grade is a measure of metamorphic intensity

• Specific minerals typify particular grades

8-42

Page 66: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 66/85

• Specific minerals typify particular grades.

Page 67: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 67/85

• Metamorphic facies – Mineral assemblage from

Page 68: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 68/85

a specific protolith at specific P-T conditions.

8-44

Index

8-45

Page 69: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 69/85

Indexminerals have a limited

P-T range andrecordmetamorphicgrade.

Fig. 8.21

Page 70: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 70/85

Metamorphic types and environments8-47a

Page 71: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 71/85

1. Burial metamorphism

2. Regional metamorphism

8-47b

Page 72: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 72/85

• Creates foliated rocks.

Page 73: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 73/85

3. Subduction metamorphism

8-48

Page 74: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 74/85

• Subduction creates theunique blueschist facies.

• Trenches and accretionaryprisms have low T, high P

• P-T condtions produceglaucophane , a blueamphibole mineral.

http://jm-derochette.be/images/Spectrometer/Glaucophane_base%20V_I.jpg

Glaucophane exhibits pleochroismunder polarized light

http://www.dvminerals.com/img2006/G-150.jpg

p. 249

Page 75: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 75/85

4. Contact metamorphism8-50

Page 76: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 76/85

slate

andalusiteLow-gradehornfels

Int.-gradehornfels

andalusite &

sillimanite

5. Hydrothermal metamorphism

8-51

Page 77: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 77/85

• Alteration by hot, chemically aggressive water.• A dominant process near mid-ocean ridge magma.

5. Hydrothermal metamorphism8-52a

Page 78: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 78/85

• The hot water rises and isejected via black smokers.

oceanexplorer.noaa.gov

8-52b 5. Hydrothermal metamorphism

Page 79: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 79/85

http://z.about.com/d/geology/1/0/h/L/greenschist.jpg

1 43 Ga black smokers from a massive sulfide deposit in China

8-53

Page 80: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 80/85

http://highlyallochthonous.blogspot.com/2007/01/precambrian-black-smokers.html

1.43 Ga black smokers from a massive sulfide deposit in China

6. Dynamic metamorphism

8-54a

Page 81: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 81/85

• Breakage of rock byshearing at a fault zone.

• Shallow crust (Upper 10-15 km): Brittledeformation forms faultbreccia

http://www.portervillecollege.edu/richardgoode/DeathValleyPicts/Fault%20Breccia.JPG

Fault breccia

6. Dynamic metamorphism

8-54b

Page 82: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 82/85

• Deeper crust (Below 10-15

km.): ductile deformation formsmylonite

http://earth.boisestate.edu/home/cjnorth/images/mylonite.JPG

mylonite

7. Shock metamorphismWhen Earth is str ck b a comet or asteroid

8-55

Page 83: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 83/85

http://earth.boisestate.edu/home/cjnorth/images/mylonite.JPGhttp://www.portervillecollege.edu/richardgoode/DeathValleyPicts/Fault%20Breccia.JPG

• When Earth is struck by a comet or asteroid,impacts generate a compressional shock wave.

– Extremely high pressure. – Heat that vaporizes or melts large masses of rock.

• These conditions generate high-pressure mineralscoesite and stishovite.

http://www.chiemgau-impact.com/images/intro/2%20shattercone%20Steinheim.jpg

7. Shock metamorphism8-56

Page 84: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 84/85

http://gsc.nrcan.gc.ca/mindep/photolib/ni_cu_pge/sudbury/images/fig08.jpg

Shatter cones in quartzite near Sudbury

p

Page 85: lecture_16_2011_v1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 85/85