lecture of k.schwarz on hyperfine interactions

68
Hyperfine interactions Karlheinz Schwarz Institute of Materials Chemistry TU Wien Some slides were provided by Stefaan Cottenier (Gent)

Upload: dotruc

Post on 31-Jan-2017

252 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Lecture of K.Schwarz on hyperfine interactions

Hyperfine interactions

Karlheinz SchwarzInstitute of Materials Chemistry

TU Wien

Some slides were provided by Stefaan Cottenier (Gent)

Page 2: Lecture of K.Schwarz on hyperfine interactions
Page 3: Lecture of K.Schwarz on hyperfine interactions

nuclear point chargesinteracting with

electron charge distribution

Page 4: Lecture of K.Schwarz on hyperfine interactions

hyperfine interaction

all aspects of the nucleus-electron interaction

which go beyondan electric point charge for a nucleus.

=

Definition :

Page 5: Lecture of K.Schwarz on hyperfine interactions

electricpoint

charge

Page 6: Lecture of K.Schwarz on hyperfine interactions

electricpoint

charge

• volume• shape

Page 7: Lecture of K.Schwarz on hyperfine interactions

N

S

electricpoint

charge

• volume• shape• magnetic moment

Page 8: Lecture of K.Schwarz on hyperfine interactions

How to measure hyperfine interactions ?

This talk:• Hyperfine physics• How to calculate HFF with WIEN2k

• NMR• NQR• Mössbauer spectroscopy• TDPAC• Laser spectroscopy• LTNO• NMR/ON• PAD• …

Page 9: Lecture of K.Schwarz on hyperfine interactions

• Definitions

• magnetic hyperfine interaction

• electric quadrupole interaction

• isomer shift

• summary

Content

Page 10: Lecture of K.Schwarz on hyperfine interactions
Page 11: Lecture of K.Schwarz on hyperfine interactions
Page 12: Lecture of K.Schwarz on hyperfine interactions

N

S

Page 13: Lecture of K.Schwarz on hyperfine interactions

N

S

Page 14: Lecture of K.Schwarz on hyperfine interactions

N

S

Page 15: Lecture of K.Schwarz on hyperfine interactions

N

S

Page 16: Lecture of K.Schwarz on hyperfine interactions

N

S

Page 17: Lecture of K.Schwarz on hyperfine interactions

N

S

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Page 18: Lecture of K.Schwarz on hyperfine interactions

N

S

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Page 19: Lecture of K.Schwarz on hyperfine interactions

N

S

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Page 20: Lecture of K.Schwarz on hyperfine interactions

N

S

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Page 21: Lecture of K.Schwarz on hyperfine interactions

N

S

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Page 22: Lecture of K.Schwarz on hyperfine interactions

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Page 23: Lecture of K.Schwarz on hyperfine interactions

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Classical Quantum(=quantization)

e.g. I =1

m =+1

m =0

m =-1

Page 24: Lecture of K.Schwarz on hyperfine interactions

-1.5

-1

-0.5

0

0.5

1

1.5

0 30 60 90 120 150 180

Ener

gy (u

nits

: µB)

E

Classical Quantum(=quantization)

e.g. I =1

m =+1

m =0

m =-1

Hamiltonian :

Page 25: Lecture of K.Schwarz on hyperfine interactions

nuclear property electron property

N

S

(vector) (vector)

interaction energy (dot product) :

Page 26: Lecture of K.Schwarz on hyperfine interactions

Btot = Bdip + Borb + Bfermi + Blat

Source of magnetic fields at a nuclear site in an atom/solid

Page 27: Lecture of K.Schwarz on hyperfine interactions

Btot = Bdip + Borb + Bfermi + Blat

Bdip = electron as bar magnet

Source of magnetic fields at a nuclear site in an atom/solid

Page 28: Lecture of K.Schwarz on hyperfine interactions

Btot = Bdip + Borb + Bfermi + Blat

Bdip = electron as bar magnet

rv

-e

L

Borb

Morb

I

Borb = electron as current loop

Source of magnetic fields at a nuclear site in an atom/solid

Page 29: Lecture of K.Schwarz on hyperfine interactions

Btot = Bdip + Borb + Bfermi + Blat

Bdip = electron as bar magnet

rv

-e

L

Borb

Morb

I

Borb = electron as current loop

BFermi = electron at nucleus

2s

2p

Source of magnetic fields at the nuclear site in an atom/solid

Page 30: Lecture of K.Schwarz on hyperfine interactions

Btot = Bdip + Borb + Bfermi + Blat

Bdip = electron as bar magnet

rv

-e

L

Borb

Morb

I

Borb = electron as current loop

BFermi = electron at nucleus

2s

2p

Source of magnetic fields at a nuclear site in an atom/solid

Blat = neighbours as bar magnets

Page 31: Lecture of K.Schwarz on hyperfine interactions

Magnetic hyperfine field

In regular scf file::HFFxxx (Fermi contact contribution)

After post-processing with LAPWDM :• orbital hyperfine field (“3 3” in case.indmc)• dipolar hyperfine field (“3 5” in case.indmc)in case.scfdmup

After post-processing with DIPAN :• lattice contributionin case.outputdipan

more info:UG 7.8 (lapwdm)UG 8.3 (dipan)

How to do it in WIEN2k ?

Page 32: Lecture of K.Schwarz on hyperfine interactions

Mössbauer spectroscopy:

Isomer shift: δ = α (ρ0Sample – ρ0

Reference); α=-.291 au3mm s-1

proportional to the electron density ρ at the nucleus

Magnetic Hyperfine fields: Btot=Bcontact + Borb + Bdip

Bcontact = 8π/3 µB [ρup(0) – ρdn(0)] … spin-density at the nucleus

… orbital-moment

… spin-moment

S(r) is reciprocal of the relativistic mass enhancement

Page 33: Lecture of K.Schwarz on hyperfine interactions

Verwey transition in YBaFe2O5

CO structure: Pmma VM structure: Pmmma:b:c=2.09:1:1.96 (20K) a:b:c=1.003:1:1.93 (340K)

Fe2+ and Fe3+ chains along b Fe2.5+

a b

c

Charged orderedFe2+ Fe3+

Valence mixedFe2.5+

Ba

Y

Page 34: Lecture of K.Schwarz on hyperfine interactions

DOS: GGA+U vs. GGAGGA+U GGA

insulator, t2g band splits metallic single lower Hubbard-band in VM splits in CO with Fe3+ states lower than Fe2+

Page 35: Lecture of K.Schwarz on hyperfine interactions

Difference densities ∆ρ=ρcryst-ρatsup

CO phase VM phaseFe2+: d-xzFe3+: d-x2

O1 and O3: polarized toward Fe3+

Fe: d-z2 Fe-Fe interactionO: symmetric

Page 36: Lecture of K.Schwarz on hyperfine interactions

YBaFe2O5 HFF, IS and EFG with GGA+U, LDA/GGA

CO

VM

HFF(Fe2+)

HFF(Fe3+)

HFF(Fe2.5+)

Page 37: Lecture of K.Schwarz on hyperfine interactions

• Definitions

• magnetic hyperfine interaction

• electric quadrupole interaction

• isomer shift

• summary

Content

Page 38: Lecture of K.Schwarz on hyperfine interactions

Electric Hyperfine-Interaction

between nuclear charge distribution (σ) and external potential

Taylor-expansion at the nuclear position∫= dxxVxE n )()(σ

+

∂∂∂

+

∂∂

+

=

∑ ∫ ∫

∫∑

ijji

ji

ii i

dxxxxxx

V

dxxxx

V

ZVE

)()0(21

)()0(

2

0

σ

σ

direction independent constant

electric field xnuclear dipol moment (=0)

electric fieldgradient xnuclear quadrupol moment Q

higher terms neglected

nucleus with charge Z, but not a sphere

Page 39: Lecture of K.Schwarz on hyperfine interactions
Page 40: Lecture of K.Schwarz on hyperfine interactions

• Force on a point charge:

Page 41: Lecture of K.Schwarz on hyperfine interactions

• Force on a point charge:

• Force on a general charge:

Page 42: Lecture of K.Schwarz on hyperfine interactions

-Q

-Q

Page 43: Lecture of K.Schwarz on hyperfine interactions

-Q

-Q

Page 44: Lecture of K.Schwarz on hyperfine interactions

-Q

-Q

Page 45: Lecture of K.Schwarz on hyperfine interactions

-Q

2

Page 46: Lecture of K.Schwarz on hyperfine interactions

-Q

-Q

-4,05

-4,04

-4,03

-4,02

-4,01

-4,00

-3,99

-3,98

-3,970 30 60 90 120 150 180

E-tm0

θ (deg)

Ener

gy (u

nits

e2 /

4πε 0

)

2

Page 47: Lecture of K.Schwarz on hyperfine interactions

θ (deg)

Ener

gy (u

nits

e2 /

4πε 0

)

-4,05

-4,04

-4,03

-4,02

-4,01

-4,00

-3,99

-3,98

-3,970 30 60 90 120 150 180

E-tm0

Page 48: Lecture of K.Schwarz on hyperfine interactions

-4,05

-4,04

-4,03

-4,02

-4,01

-4,00

-3,99

-3,98

-3,970 30 60 90 120 150 180

E-tm0

θ (deg)

Ener

gy (u

nits

e2 /

4πε 0

)

m=±1

m=0

e.g. I = 1

Page 49: Lecture of K.Schwarz on hyperfine interactions

nuclear property electron property(tensor – rank 2 )

interaction energy (dot product) :

(tensor – rank 2 )

Page 50: Lecture of K.Schwarz on hyperfine interactions

Electric field gradients (EFG)

Nuclei with a nuclear quantum number I 1 have an electrical quadrupole moment Q

Nuclear quadrupole interaction (NQI) can aid to determine the distribution of the electronic charge surrounding such a nuclear site

Experiments NMR NQR Mössbauer PAC

heQ /Φ≈νEFG traceless tensorΦ

VV ijijij2

31

∇−=Φ δ

jiij xx

VV∂∂

∂=

)0(2

0=++ zzyyxx VVVwith traceless

cc

bc

ac

cb

bb

ab

ca

ba

aa

VVV

VVV

VVV

zz

yy

xx

VV

V00

0

0

00 |Vzz| |Vyy| |Vxx|≥ ≥

//////

zz

yyxx

VVV −

EFG Vzzasymmetry parameterprincipal component

Nuclear electronic

Page 51: Lecture of K.Schwarz on hyperfine interactions

First-principles calculation of EFG

, 1192

Previous: point charge model andSternheimer factor to experimental value

Page 52: Lecture of K.Schwarz on hyperfine interactions

Electronic structure of Li3N

• The charge anisotropy around N differs strongly between • muffin-tin and • full-potential

• affecting the EFG.

Page 53: Lecture of K.Schwarz on hyperfine interactions

Nuclear quadrupole moment of 57Fe, 3545

From the slope between the theoreical EFG and experimental quadrupole

splitting ΔQ (mm/s) the nuclear quadrupole

moment Q of the most important Mössbauer nucleus is found to be about twice as large (Q=0.16 b) as so far inliterature (Q=0.082 b)

Page 54: Lecture of K.Schwarz on hyperfine interactions

theoretical EFG calculations:

∫ ∑=′′−

′=

∂∂∂

=LM

LMLMcji

ij rYrVrdrr

rrVxx

VV )ˆ()()()()0(2 ρ

2220

2220

20

21

21

)0(

VVV

VVV

rVV

xx

yy

zz

+−∝

−−∝

=∝

EFG is a tensor of second derivatives of VC at the nucleus:

[ ]

[ ]222 )(211

)(211

)(

3

3

320

zyzxzyxxyd

dzz

zyxp

pzz

dzz

pzzzz

dddddr

V

pppr

V

VVdrr

YrV

−+−+∝

−+∝

+=∝

∫ρ

Cartesian LM-repr.

EFG is proportional to differences in orbital occupations

Page 55: Lecture of K.Schwarz on hyperfine interactions

High temperature superconductor

YBa2Cu3O7

Electronic structure Charge density, EFG

EFG (electric field gradient)

K.Schwarz, C.Ambrosch-Draxl, P.Blaha,Phys.Rev. B 42, 2051 (1990)

Page 56: Lecture of K.Schwarz on hyperfine interactions

EFG at O sites in YBa2Cu3O7

Interpretation of the EFG (measured by NQR) at the oxygen sites

px py pz Vaa Vbb Vcc

O(1) 1.18 0.91 1.25 -6.1 18.3 -12.2

O(2) 1.01 1.21 1.18 11.8 -7.0 -4.8

O(3) 1.21 1.00 1.18 -7.0 11.9 -4.9

O(4) 1.18 1.19 0.99 -4.7 -7.0 11.7

ppp

zz rnV ><∆∝ 3

1)(

21

yxzp pppn +−=∆

Asymmetry count EFG (p-contribution)

EFG is proportional to asymmetric charge distributionaround given nucleus

Cu1-d

O1-py

EF

partly occupied

y

x

z

non-bonding O-p,C

O1

Page 57: Lecture of K.Schwarz on hyperfine interactions

EFG (1021 V/m2) in YBa2Cu3O7

Site Vxx Vyy Vzz η Y theory -0.9 2.9 -2.0 0.4 exp. - - - - Ba theory -8.7 -1.0 9.7 0.8 exp. 8.4 0.3 8.7 0.9 Cu(1) theory -5.2 6.6 -1.5 0.6 exp. 7.4 7.5 0.1 1.0 Cu(2) theory 2.6 2.4 -5.0 0.0 standard LDA calculations give exp. 6.2 6.2 12.3 0.0 good EFGs for all sites except Cu(2) O(1) theory -5.7 17.9 -12.2 0.4 exp. 6.1 17.3 12.1 0.3 O(2) theory 12.3 -7.5 -4.8 0.2 exp. 10.5 6.3 4.1 0.2 O(3) theory -7.5 12.5 -5.0 0.2 exp. 6.3 10.2 3.9 0.2 O(4) theory -4.7 -7.1 11.8 0.2 exp. 4.0 7.6 11.6 0.3

K.Schwarz, C.Ambrosch-Draxl, P.Blaha, Phys.Rev. B42, 2051 (1990) D.J.Singh, K.Schwarz, P.Blaha, Phys.Rev. B46, 5849 (1992)

Page 58: Lecture of K.Schwarz on hyperfine interactions

Cu partial charges in YBa2Cu3O7

a transfer of 0.07 e into the dz2 would increase the EFG from -5.0 by

bringing it to -11.6 inclose to the Experimental value (-12.3 1021 V/m2)

Page 59: Lecture of K.Schwarz on hyperfine interactions

How to do it in WIEN2k ?

Electric-field gradient

In regular scf file::EFGxxx:ETAxxxMain directions of the EFG

Full analysis printed in case.output2 if EFG keyword in case.in2 is put (UG 7.6)(split into many different contributions)

more info:• Blaha, Schwarz, Dederichs, PRB 37 (1988) 2792• EFG document in wien2k FAQ (Katrin Koch, SC)

} 5 degrees of freedom

Page 60: Lecture of K.Schwarz on hyperfine interactions

Ba3Al2F12

Rings formed by four octahedra sharing

corners

α-BaCaAlF7

Isolated octahedra

Ca2AlF7, Ba3AlF9-Ib,

α-BaAlF5

Isolated chains of octahedra linked by

corners

α-CaAlF5, β-CaAlF5,

β BaAlF γ

EFGs in fluoroaluminates10 different phases of known structures from CaF2-AlF3,

BaF2-AlF3 binary systems and CaF2-BaF2-AlF3 ternary system

Page 61: Lecture of K.Schwarz on hyperfine interactions

νQ and ηQ calculations using XRD data

Attributions performed with respect to the proportionality between |Vzz|and νQ for the multi-site compounds

Calculated ηQ

0,0 0,2 0,4 0,6 0,8 1,0

Exp

erim

enta

l ηQ

0,0

0,2

0,4

0,6

0,8

1,0

AlF3 α-CaAlF5 β-CaAlF5 Ca2AlF7 α-BaAlF5 β-BaAlF5 γ-BaAlF5 Ba3Al2F12 Ba3AlF9-Ib β-Ba3AlF9

α-BaCaAlF7

RegressionηQ,mes. =ηQ, cal.

Calculated Vzz (V.m-2)

0,0 1,0e+21 2,0e+21 3,0e+21

Exp

erim

enta

l νQ (H

z)

0,0

2,0e+5

4,0e+5

6,0e+5

8,0e+5

1,0e+6

1,2e+6

1,4e+6

1,6e+6

1,8e+6AlF3 α-CaAlF5 β-CaAlF5 Ca2AlF7 α-BaAlF5 β-BaAlF5 γ-BaAlF5 Ba3Al2F12 Ba3AlF9-Ibβ-Ba3AlF9 α-BaCaAlF7 Régression

ηQ,exp = 0,803ηQ,cal R2 =

0,38 νQ = 4,712.10-16 |Vzz| with R2 =

0,77

Important discrepancies when structures are used which were determined from X-ray powder diffraction data

Page 62: Lecture of K.Schwarz on hyperfine interactions

M.Body, et al., J.Phys.Chem. A 2007, 111, 11873 (Univ. LeMans)

Very fine agreement between experimental and calculated values

Calculated Vzz (V.m-2)

0,0 5,0e+20 1,0e+21 1,5e+21 2,0e+21 2,5e+21 3,0e+21

Exp

erim

enta

l νQ (H

z)

0,0

2,0e+5

4,0e+5

6,0e+5

8,0e+5

1,0e+6

1,2e+6

1,4e+6

1,6e+6

1,8e+6

AlF3 α-CaAlF5 β-CaAlF5

Ca2AlF7 α-BaAlF5 β-BaAlF5 γ-BaAlF5 Ba3Al2F12 Ba3AlF9-Ib β-Ba3AlF9 α-BaCaAlF7 Regression

νQ = 5,85.10-16 Vzz R2 = 0,993

Calculated ηQ

0,0 0,2 0,4 0,6 0,8 1,0

Exp

erim

enta

l ηQ

0,0

0,2

0,4

0,6

0,8

1,0

AlF3 α-CaAlF5 β-CaAlF5 Ca2AlF7 α-BaAlF5 β-BaAlF5 γ-BaAlF5 Ba3Al2F12 Ba3AlF9-Ib β-Ba3AlF9

α-BaCaAlF7 RegressionηQ,exp. =ηQ, cal.

ηQ, exp = 0,972 ηQ,cal

R2 = 0,983

νQ and ηQ after structure optimization

Page 63: Lecture of K.Schwarz on hyperfine interactions

NMR shielding, chemical shift:

Page 64: Lecture of K.Schwarz on hyperfine interactions

• Definitions

• magnetic hyperfine interaction

• electric quadrupole interaction

• isomer shift

• summary

Content

Page 65: Lecture of K.Schwarz on hyperfine interactions
Page 66: Lecture of K.Schwarz on hyperfine interactions

Mössbauer spectroscopyIsomer shift: charge transfer too small in LDA/GGAHyperfine fields: Fe2+ has large Borb and BdipYBaFe2O5 HFF, IS and EFG with GGA+U, LDA/GGA

CO

VM

Page 67: Lecture of K.Schwarz on hyperfine interactions

Cu(2) and O(4) EFG as function of r

EFG is determined by the non-spherical charge density inside sphere

Cu(2)

O(4)

∫∫∑ =∝= drrrdrr

YrVYrr zzLM

LMLM )()()()( 20320 ρρρρ

final EFG

r

r r

rr

Page 68: Lecture of K.Schwarz on hyperfine interactions

EFG contributions:

Depending on the atom, the main EFG-contributions come from anisotropies (in occupation or wave function) semicore p-states (eg. Ti 3p much more important than Cu 3p) valence p-states (eg. O 2p or Cu 4p) valence d-states (eg. TM 3d,4d,5d states; in metals “small”) valence f-states (only for “localized” 4f,5f systems)

usually only contributions within the first nodeor within 1 bohr are important.