lecture notes session 19

24
EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 1 EE247 Lecture 19 ADC Converters Sampling (continued) Sampling switch charge injection Complementary switch Use of dummy device Bottom-plate switching Track & hold circuits T/H circuit incorporating gain & offset cancellation ESD protection impact on converter performance ADC architectures - Nyquist rate ADCs - Oversampled ADCs EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 2 Switch Charge Injection Complementary Switch In slow clock case if area of n & p devices are equal effect of overlap capacitor for n & p devices to first order cancel (matching n & p width and ΔL) φ 1 φ 1B φ 1 φ 1B V G t V H V i V L

Upload: others

Post on 11-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 1

EE247Lecture 19

ADC Converters• Sampling (continued)

– Sampling switch charge injection• Complementary switch• Use of dummy device• Bottom-plate switching

– Track & hold circuits– T/H circuit incorporating gain & offset cancellation

• ESD protection impact on converter performance• ADC architectures

- Nyquist rate ADCs- Oversampled ADCs

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 2

Switch Charge InjectionComplementary Switch

• In slow clock case if area of n & p devices are equal effect of overlap capacitor for n & p devices to first order cancel (matching n & p width and ΔL)

φ1φ1B

φ1

φ1B

VG

t

VH

Vi

VL

Page 2: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 3

Switch Charge InjectionComplementary Switch

Fast Clock

• In fast clock case Offset cancelled for equal device widthInput voltage dependant error worse!

φ1

φ1B

VG

t

VH

Vi

VL

( )

( )

( )

ch n n ox n H i th n

th pch p p ox p i L

ch p ch no

s s

o i os

n ox n p ox p

s

Q W C L V V V

VQ W C L V V

Q1 QV

2 C C

V V 1 V

W C L W C L12 C

ε

ε

− −

−−

− −

= − −

= − −

⎛ ⎞Δ ≈ −⎜ ⎟⎜ ⎟

⎝ ⎠

= + +

+≈ − ×

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 4

Switch Charge InjectionDummy Switch

ViVO

Cs

t

VH

Vi

VL

VG VGB

• Dummy switch same L as main switch but half W • Main device clock goes low, dummy device goes high dummy switch

acquires same amount of channel charge main switch needs to lose• Effective only if exactly half of the charge transferred to M2 and requires

good matching between clock fall/rise

WM2=1/2WM1

VG VGB

M1 M2

Page 3: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 5

Switch Charge InjectionBottom Plate Sampling

• Switches M2 opened slightly earlier compared to M1Injected charge by the opening of M2 is constant & eliminated when

used differentially

• Since Cs bottom plate open when M1 opened no charge injected on Cs

φ1aVH

VL

t

φ1bVi

VO

M1

φ1b

φ1a M2

Cs

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 6

Flip-Around Track & Hold

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

φ1

φ1D

φ2

• Concept based on bottom-plate sampling

Page 4: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 7

Flip-Around T/H-Basic Operationφ1 high

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Charging C

φ1

φ1D

φ2

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 8

Flip-Around T/H-Basic Operationφ2 high

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Holding

φ1

φ1D

φ2

Page 5: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 9

Flip-Around T/H - Timing

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Sampling

S1 opens earlier than S1A "Bottom Plate Sampling"

φ1

φ1D

φ2

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 10

Charge Injection• At the instant of sampling, some of the

charge stored in sampling switch S1 is dumped onto C

• With "Bottom Plate Sampling", charge injection comes only from S1 and is to first-order independent of vIN– Only a dc offset is added This dc offset can

be removed with a differential architecture

Page 6: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 11

Flip-Around T/H

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Constant switch VGSto minimize distortion

φ1

φ1D

φ2

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 12

Flip-Around T/H• S1 is an n-channel MOSFET• Since it always switches the same voltage, it’s on-

resistance, RS1, is signal-independent (to first order) • Choosing RS1 >> RS1A minimizes the non-linear

component of R = RS1A+ RS1– S1A is a wide (much lower resistance than S1) & constant

VGS switch– In practice size of S1A is limited by the (nonlinear) S/D

capacitance that also adds distortion– If S1A’s resistance is negligible delay depends only on S1

resistance– S1 resistance is independent of VIN delay is independent

of VIN

Page 7: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 13

Differential Flip-Around T/H

Ref: W. Yang, et al. “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDRat Nyquist Input,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001 1931

Offset voltage associated with charge injection of S11 & S12 cancelled by differential nature of the circuit

S11

S12

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 14

Differential Flip-Around T/H

• Gain=1• Feedback factor=1• ΔVin-cm=Vout_com-Vsig_com

Amplifier needs to have large input common-mode compliance

φ1’φ1φ2

Page 8: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 15

Differential Flip-Around T/HChoice of Sampling Switch Size

Ref: K. Vleugels et al, “A 2.5-V Sigma–Delta Modulator for Broadband Communications Applications “ IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001, pp. 1887

•THD simulated w/o sampling switch boosted clock -45dB•THD simulated with sampling switch boosted clock (see figure)

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 16

Input Common-Mode Cancellation

Ref: R. Yen, et al. “A MOS Switched-Capacitor Instrumentation Amplifier,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-17, NO. 6,, DECEMBER 1982 1008

Page 9: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 17

Input Common-Mode Cancellation

Track mode (φ high)VC1=VI1 , VC2=VI2Vo1=Vo2=0

Hold mode (φ low)Vo1+Vo2 =0Vo1-Vo2= -(VI1-VI2)(C1/(C1+C3))

Input common-mode level removed

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 18

Differential T/H Combined with Gain Stage

Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Employs the previously discussed technique to eliminate the problem associated with high common-mode voltage excursion at the input of the opamp

Page 10: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 19

Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Combined with Gain Stage

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 20

Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

• Gain=4C/C=4• Feedback factor =1/(1+G)=0.2• Input voltage common-mode level removed• Amplifier offset not removed

Differential T/H Combined with Gain Stage

Page 11: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 21

Ref: H. Ohara, et al., "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," IEEE Journal of Solid-State Circuits, vol. 22, pp. 930 - 938, December 1987.

• Operation during offset cancellation phase shown• Auxilary inputs added with Amain/Aaux.=10

Differential T/H Including Offset Cancellation

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 22

Differential T/H Including Offset CancellationOperational Amplifier

Ref: H. Ohara, et al., "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," IEEE Journal of Solid-State Circuits, vol. 22, pp. 930 - 938, December 1987.

• Operational amplifier dual input folded-cascode opamp

• M3,4 auxiliary input, M1,2 main input

• To achieve 1/10 gain ratio WM3, 4 =1/10x WM1,2 & current sources are scaled by 1/10

• M5,6,7 common-mode control

• Output stage dual cascode high DC gain

Vout=gm1roVin1 + gm2roVin2

Page 12: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 23

• During offset cancellation phase AZ and S1 closed main amplifier offset amplified by gm1/gm2 & stored on CAZ

• Auxiliary amp chosen to have lower gain so that:Aux. amp offset & charge injection associated with opening of switch AZ reduced

by Aaux/Amain=1/10Minimize power dissipation

• Requires an extra auto-zero clock phase

Differential T/H Including Offset Cancellation Phase

Voffset

+

-(V INAZ+ -VINAZ- )= -gm1/gm2 Voffset

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 24

ESD ProtectionADC Architectures

Page 13: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 25

What is ESD?

• Electrostatic discharge• Example: Charge built up on human body

while walking on carpet...• Charged objects near or touching IC pins

can discharge through on-chip devices• Without dedicated protection circuitry, ESD

events could be destructive

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 26

Model and Protection Circuit

[http://www.ce-mag.com/archive/03/ARG/dunnihoo.html]

[http://www.idt.com/docs/AN_123.pdf]

Page 14: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 27

Equivalent Circuit

• Nonlinear capacitance causes distortion• Distortion increases with frequency

– Today's converters: High frequency, low distortion!

Ref: I. E. Opris, "Bootstrapped pad protection structure," IEEE J.Solid-State Circuits, pp. 300, Feb. 1998

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 28

ESD Circuit Distortion

[I. E. Opris, "Bootstrapped pad protection structure," IEEE J.Solid-State Circuits, pp. 300, Feb. 1998.]

C(Vin)= 2......4pFfor Vin=2....0V

Page 15: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 29

ESD Circuit Distortion

• Analysis: – Volterra Series – Or SPICE simulations

• Example:

R Cj CL

vi vo R=25ΩCjo=1pFCL=5pFVipeak=0.5V

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 30

ESD Circuit Distortion

HD3(@ 37.5MHz) = -92dBHD3(@ 100MHz) = -84dB

106

107

108

109

1010

-100

-80

-60

2nd

Ord

er H

arm

onic

Dis

torti

on [d

Bc]

Input Frequency

-120

3rd

Ord

er H

arm

onic

Dis

torti

on [d

Bc]

106

107

108

109

1010

Input Frequency

-100

-80

Page 16: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 31

ESD Circuit Distortion• Distortion from ESD circuits approaches state

of-the-art ADC performance!• If you are working on a new, record breaking

ADC, better think about ESD now...• Ref.: A. Wang, "Recent developments in ESD

protection for RF IC," Proc. DAC Conference, Jan. 2003

• Solutions still pre-mature• Lots of company intellectual property! (IP)

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 32

ADC Architectures• Slope Converters• Successive approximation• Flash• Folding• Time-interleaved / parallel converter• Residue type ADCs

– Two-step– Pipeline– Algorithmic– …

• Oversampled ADCs

Page 17: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 33

Single Slope ADC

• Low complexity• Hard to generate precise ramp• Better: Dual Slope, Multi-Slope

RampGenerator

Time

VR

amp

VRampVIN

"0"

Counterstop

start

Clock

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 34

Dual Slope ADC

http://www.maxim-ic.com/appnotes.cfm/appnote_number/1041

• Integrate Vin for fixed time, de-integrate with Vref applied TDe-Int ~ Vin/Vref

• Insensitive to most linear error sources

Page 18: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 35

Successive Approximation ADC

• Binary search over DAC output

DACVIN

ControlLogic

Clock

VREF

ResetDAC

Set DAC[MSB]=1

VIN>VDAC?1 MSB 0 MSB

Set DAC[MSB-1]=1

VIN>VDAC?1 [MSB-1] 0 [MSB-1]

....

VIN>VDAC?1 [LSB] 0 [LSB]

DAC[Input]= ADC[Output]

Y

Y

Y

N

N

N

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 36

Successive Approximation ADC

• High accuracy achievable (16+ Bits) • Moderate speed proportional to B (MHz range)

VDAC/VREF

Time / Clock Ticks

1

1/2

3/45/8

VIN

1/2 3/4 5/8 11/16 21/32 41/64DAC

VIN

ControlLogic

Clock

VREF

Example: 6-bit ADC & VIN=5/8VREF

ADC 101000

Page 19: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 37

Flash Converter

• B-bit flash ADC:– DAC generates all

possible 2B -1 levels– 2B-1 comparators

compare VIN to DAC outputs

– Comparator output:• If VDAC< VIN 0• If VDAC > VIN 1

– Comparator outputs form thermometer code

– Encoder converts thermometer to binary code

DigitalOutput

VINVREF fs

DAC

2B-1 BEncoder

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 38

Flash ADC ConverterExample: 3-bit Conversion

Enc

oder

VIN VREFfs

Thermometer code

B-bits

Time

VREF

0

0

1

1

1

1

1

1

0

1

VIN

Page 20: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 39

Flash Converter

• Very fast: only 1 clock cycle per conversion

– Half cycle VIN & VDAC comparison

– Half cycle 2B-1 to B encoding

• High complexity: 2B-1 comparators

• High capacitance @ input node

Thermometer code

B-bits

R/2

R

R

R

R/2

R

Enc

oder Digital

Output

VINVREF fs

.....

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 40

Folding Converter

• Significantly fewer comparators than flash • Fast• Nonidealities in folder limit resolution to ~10-bits

LSBADC

MSBADC

Folding Circuit

VIN

DigitalOutput

Page 21: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 41

Time Interleaved Converter

• Extremely fast:Limited by speed of S/H

• Accuracy limited by mismatch in individual ADCs (timing, offset, gain, …)

S/H

4fsADC

fs

ADC

+ T/4

ADC

+ 2T/4

ADC

+ 3T/4

Ser

ial /

Par

alle

l Con

vers

ion

VIN

Dig

ital O

utpu

t

fs

fs

fs

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 42

Residue Type ADC

• Quantization error output (“residuum”) enables cascading for higher resolution

• Great flexibility for stages: flash, oversampling ADC, …• Optional S/H enables parallelism (pipelining)• Fast: one clock per conversion (with S/H), latency

S/H & Gain(optional)

coarse ADC(1 ... 6 Bit)

Partial Digital Output

VIN

ErrorDAC

Page 22: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 43

Pipelined ADC

• Approaches speed of flash, but much lower complexity• One clock per conversion, but K clocks latency• Efficient digital calibration possible• Versatile: from 16Bits / 1MS/s to 14Bits / 100MS/s

Digital Correction Logic

Stage 1B1 Bits

Stage 2B2 Bits

Stage KBk Bits

Digital outputup to (B1 + B2 + ... + Bk) Bits

VIN

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 44

Algorithmic ADC

• Essentially same as pipeline, but a single stage is used for all partial conversions

• K clocks per conversion

T/HcoarseADC

(1 ... 6 Bit)

Digital Output

VINResidue

DAC

Shift Register& Correction Logic

start of conversion

2B

Page 23: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 45

Oversampled ADC

• Hard to comprehend … “easy” to build• Input is oversampled (M times faster than output rate)• Reduces Anti-Aliasing filter requirements and

capacitor size• Accuracy independent of component matching• Very high resolution achievable (> 20 Bits)

H(z)Digital

DecimationFilter

DAC

VIN

DigitalOutput

fs fs/M

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 46

Throughput Rate Comparison

100

101

102

103

104

1050

2

4

6

8

10

12

14

16

18

Clock Cycles per Conversion

Res

olut

ion

[Bit]

Flas

h, P

ipel

ine~

1 to

2

Succ

essi

ve

Appr

oxim

atio

n~B

2nd O

rder

1-B

it

Ove

rsam

pled

~2(

0.4B

+1)

Serial ~2B

Page 24: Lecture Notes Session 19

EECS 247 Lecture 19: Data Converters © 2005 H.K. Page 47

Speed-Resolution Map

[www.v-corp.com]