lecture notes on wave optics (03/19/14)lecture notes on wave optics (03/19/14) 2.71/2.710...

5
Lecture Notes on Wave Optics (03/19/14) 2.71/2.710 Introduction to Optics –Nick Fang Mathematical Preparation of Fourier Transform - Fourier Transform in time domain A time signal f (t) can be expressed as a series of frequency components F(): (,) = ∫ (, ) exp(−) −∞ (,) = 1 2 ∫ (, ) exp(+) −∞ The functions f (t) and F() are referred to as Fourier Transform pairs. - Fourier Transform in spatial domain A spatially varying signal (, )can be expressed as a series of spatial-frequency components ( , ): (, ) = 1 (2) 2 ( , ) exp( ) exp( ) −∞ −∞ ( , )=∫ (, ) exp(− ) exp(− ) −∞ −∞ Accordingly, the functions (, )and ( , )are referred to as spatial-Fourier Transform pairs. - A few famous functions o Rectangle function () ≡ { 1, || < 1 2 1 2 , || = 1 2 0, || > 1 2 o Sinc function () = sin() rect(x) x -.5 0 .5 1 1

Upload: others

Post on 09-Nov-2020

24 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lecture Notes on Wave Optics (03/19/14)Lecture Notes on Wave Optics (03/19/14) 2.71/2.710 Introduction to Optics – Nick Fang Mathematical Preparation of Fourier Transform - Fourier

Lecture Notes on Wave Optics (03/19/14)

2.71/2.710 Introduction to Optics –Nick Fang

Mathematical Preparation of Fourier Transform

- Fourier Transform in time domain A time signal f (t) can be expressed as a series of frequency components F():

𝑓(𝑟, 𝑡) = ∫ 𝐹(𝑟, 𝜔) exp(−𝑖𝜔𝑡) 𝑑𝜔∞

−∞

𝐹(𝑟, 𝜔) =1

2𝜋∫ 𝑓(𝑟, 𝑡) exp(+𝑖𝜔𝑡) 𝑑𝑡

−∞

The functions f (t) and F() are referred to as Fourier Transform pairs.

- Fourier Transform in spatial domain A spatially varying signal 𝑓(𝑥, 𝑦)can be expressed as a series of spatial-frequency

components 𝐹(𝑘𝑥, 𝑘𝑦):

𝑓(𝑥, 𝑦) =1

(2𝜋)2∫ ∫ 𝐹(𝑘𝑥, 𝑘𝑦) exp(𝑖𝑘𝑥𝑥) exp(𝑖𝑘𝑦𝑦) 𝑑𝑘𝑥𝑑𝑘𝑦

−∞

−∞

𝐹(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝑓(𝑥, 𝑦) exp(−𝑖𝑘𝑥𝑥) exp(−𝑖𝑘𝑦𝑦) 𝑑𝑥𝑑𝑦∞

−∞

−∞

Accordingly, the functions 𝑓(𝑥, 𝑦)and 𝐹(𝑘𝑥 , 𝑘𝑦)are referred to as spatial-Fourier

Transform pairs.

- A few famous functions

o Rectangle function

𝑟𝑒𝑐𝑡(𝑥) ≡

{

1, |𝑥| <

1

21

2, |𝑥| =

1

2

0, |𝑥| >1

2

o Sinc function

𝑠𝑖𝑛𝑐(𝑥) =sin(𝜋𝑥)

𝜋𝑥

rect(x)

x-.5 0 .5

1

1

Page 2: Lecture Notes on Wave Optics (03/19/14)Lecture Notes on Wave Optics (03/19/14) 2.71/2.710 Introduction to Optics – Nick Fang Mathematical Preparation of Fourier Transform - Fourier

Lecture Notes on Wave Optics (03/19/14)

2.71/2.710 Introduction to Optics –Nick Fang

o Triangle Function

Λ(𝑥) ≡ {1 − |𝑥|, |𝑥| < 1

0, |𝑥| ≥ 1

o Step function

𝐻(𝑥) ≡ {

1, 𝑥 > 01

2, 𝑥 = 0

0, 𝑥 < 0

o Comb function

𝑐𝑜𝑚𝑏(𝑥) = ∑ 𝛿(𝑥 − 𝑛)

𝑛=−∞

x

sinc(x)

zeros at x=

np (n ≠ 0)

x0

1

1-1

Λ(𝑥)

x

2

Page 3: Lecture Notes on Wave Optics (03/19/14)Lecture Notes on Wave Optics (03/19/14) 2.71/2.710 Introduction to Optics – Nick Fang Mathematical Preparation of Fourier Transform - Fourier

Lecture Notes on Wave Optics (03/19/14)

2.71/2.710 Introduction to Optics –Nick Fang

- Interesting properties of Fourier Transform:

o Scale theorem 𝑓(𝑎𝑥)

o Shift theorem𝑓(𝑥 − 𝑎), (e.g. double slit)

o Complex Conjugate 𝑓∗(𝑥)

o Derivative𝑑

𝑑𝑥𝑓(𝑥)

f(x) F(kx)

kx

kx

x

x

x

kx

t(x) = rect[(x+a)/w] + rect[(x-a)/w]

0 xa-a

w wt(x)

3

Page 4: Lecture Notes on Wave Optics (03/19/14)Lecture Notes on Wave Optics (03/19/14) 2.71/2.710 Introduction to Optics – Nick Fang Mathematical Preparation of Fourier Transform - Fourier

Lecture Notes on Wave Optics (03/19/14)

2.71/2.710 Introduction to Optics –Nick Fang

o Modulation 𝑓(𝑥)cos(2𝜋

𝐿𝑥)

- Practice problem: can you apply these theorems in (x, y) plane?

Accordingly, the following functions 𝑓(𝑥, 𝑦)and 𝐹(𝑘𝑥, 𝑘𝑦)are referred to as spatial-

Fourier Transform pairs.

Functions Fourier Transform Pairs

𝑟𝑒𝑐𝑡 (𝑥

𝑎) |𝑎|𝑠𝑖𝑛𝑐 (

𝑎𝑘𝑥2𝜋

)

𝑠𝑖𝑛𝑐 (𝑥

𝑎) |𝑎|𝑟𝑒𝑐𝑡 (

𝑎𝑘𝑥2𝜋

)

Λ (𝑥

𝑎) |𝑎|2𝑠𝑖𝑛𝑐2 (

𝑎𝑘𝑥2𝜋

)

comb (𝑥

𝑎) |𝑎|𝑐𝑜𝑚𝑏 (

𝑎𝑘𝑥2𝜋

)

Gaussian 𝑒𝑥𝑝 (−𝑥2

𝑎2) 𝑒𝑥𝑝 (−

𝑎2

4𝜋𝑘𝑥

2)

Step function 𝐻(𝑥) 1

𝑖𝑘𝑥+1

2(𝛿(𝑘𝑥))

𝑐𝑖𝑟𝑐 (√𝑥2 + 𝑦2

𝑎) |𝑎|2

2𝜋𝐽1 (𝑎√𝑘𝑥2 + 𝑘𝑦

2)

𝑎√𝑘𝑥2 + 𝑘𝑦

2

kx0-G0

x

𝑓(𝑥)cos(2𝜋

𝑥)

G0

𝐹(𝑘𝑥) 𝛿 𝑘 − + 𝛿 𝑘 +

4

Page 5: Lecture Notes on Wave Optics (03/19/14)Lecture Notes on Wave Optics (03/19/14) 2.71/2.710 Introduction to Optics – Nick Fang Mathematical Preparation of Fourier Transform - Fourier

MIT OpenCourseWarehttp://ocw.mit.edu

2.71 / 2.710 OpticsSpring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5