lecture iii: spin-triplet supercurrent in ferromagnetic josephson...

64
Lecture III: Spin-triplet supercurrent in ferromagnetic Josephson junctions Norman Birge * , Michigan State University * Work supported by DOE BES Autumn College on Non-Equilibrium Quantum Systems May 2-13, 2011 Buenos Aires, Argentina

Upload: others

Post on 16-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture III: Spin-triplet supercurrent in ferromagnetic Josephson junctions

    Norman Birge*, Michigan State University

    * Work supported by DOE BES

    Autumn College on Non-Equilibrium Quantum SystemsMay 2-13, 2011

    Buenos Aires, Argentina

  • Collaborators: Trupti Khaire, Mazin Khasawneh, Caroline KloseHamood Arham, Kurt Boden, William P. Pratt, Jr.

  • Prologue: Fermion pairing

    • Condensed Matter Physics– superconductivity & superfluidity (3He)

    • Nuclear Physics– nucleon pairing (even-odd energy differences)

    • Astrophysics– superfluidity in neutron stars

    • Atomics Physics– BEC to BCS crossover in cold atomic gases

    (see lectures by Christophe Salomon)

  • Prologue:What we remember from quantum mechanics

    A convenient basis:

    21212211 ,,,;, ssrrsrsr

    Wavefunction for two identical fermions (Spin-Statistics Thm or Pauli Exclusion)

    11222211 ,;,,;, srsrsrsr

    Two possibilities:

    2112 ,, rrrr SS1. and 2112 ,, ssss AA

    2112 ,, rrrr AA2. and 2112 ,, ssss SS

  • ,, ,21,m

    llnln YrRrr

    2112 ,, ssss AA

    2112 ,, ssss SS

    Example: two electrons in free space: 21 rrr

    even l

    odd l 2112 ,, rrrr AA

    2112 ,, rrrr SS

    Spatial state is eigenstate of orbital L2:

    Spin state is eigenstate of total spin S2: 21 SSS

    s=1 (triplet)

    s=0 (singlet)

    Prologue:What we remember from quantum mechanics

    210s

    211s

  • Allowed Cooper pair symmetries

    s=0 s=1

    l=0(s-wave)

    BCS X

    l=1(p-wave)

    X superfluid 3HeSr2RuO4

    l=2(d-wave)

    high-Tc X

    11222211 ,;,,;, srsrsrsr

  • Proposal by Berezinskii (1974):

    What does this mean?

    121212212121 ;,;;,; ttssrrFttssrrF

    122121212121 ;,;;,; ttssrrFttssrrF

    Fermions require:

    F is odd in time:

    F is even under exchange of space and spin:

    211212212121 ;,;;,; ttssrrFttssrrF

    F(r1,r2,s1,s2,t1,t2 ) “anomalous Green’s function” = pair correlation function

  • Allowed Cooper pair symmetries

    s=0 s=1

    l=0 BCS X

    l=1 X superfluid 3HeSr2RuO4

    l=2 high-Tc X

    = allowed if correlation function is odd under time-reversal (or odd in frequency)

  • Allowed Cooper pair symmetries

    s=0 s=1

    l=0 BCS X

    l=1 X superfluid 3HeSr2RuO4

    l=2 high-Tc X

    = allowed if correlation function is odd under time-reversal (or odd in frequency)

    Berezinski model for 3He (1974)

    Balatsky & Abrahams (‘92)

  • Allowed Cooper pair symmetries

    s=0 s=1

    l=0 BCS S/F

    l=1 S/F superfluid 3HeSr2RuO4

    l=2 high-Tc S/F

    especially interesting

    Bergeret, Volkov & Efetov, PRL 90, 117006 (2003); RMP 77, 1321 (2005)

  • Outline

    • Proximity effect in S/N and S/F systems• Prediction: Spin-triplet pair correlations• Our search: S/F/S Josephson junctions

    – PdNi – a weak ferromagnet– Co/Ru/Co – a synthetic antiferromagnet– Combining the best of both materials

    • Conclusions and Future Prospects

  • k

    E

    -kF-kF kF kF

    k

    E

    kF-kF

    Andreev Reflection: N/S vs. F/S

    S/N S/F

    FexFF vEQkk 2

    ex

    FF E

    D

    ex

    FF E

    vQ2

    1 ballistic

    diffusive

    Tkvv

    B

    FFN 2

    TkDD

    B

    NNN 2

    ballistic

    diffusive

    Coherence time between electron and hole: 2

    S N/F

    D = diffusion constant

    2Eex

  • Proximity effect: S/N vs. S/F

    )/exp()( 0 Nxx )/exp()/cos()( 0 FF xxx

    nmfewED

    ex

    FF ~

    N F

    x

    mfewTk

    D

    B

    NN 2

  • How to detect the oscillating pair correlation function?

    Kontos, Aprili, Lesueur, Grison, PRL 86, 304 (2001)

    1. Measure tunneling density of states in S/F/I/N structure, as function of dF

    S F I N

    dF

  • How to detect the oscillating pair correlation function?

    2. Measure critical current of S/F/S Josephson junction, as function of dF

    Ryazanov et al., PRL 86, 2427 (2001); 96, 197003 (2006).

    Weak F: Cu48Ni52 alloy

    Robinson, Piano, Burnell, Bell, Blamire, PRL 97, 177003 (2005)

    Strong F: Co

    0.0 1.0 2.0 3.0 4.0 5.0

    dCo (nm)

    I cRN

    (mV)

    0-state: Is = Ic sin( 2- 1)-state: Is = Ic sin( 2- 1+ ) S F S

    dF

  • Prediction: long-range spin-triplet pair correlations induced by noncollinear magnetization

    ex

    FSF E

    DTk

    D

    B

    FTF 2

    TF

    SF

    Singlet Triplet

    Bergeret, Volkov & Efetov, Phys. Rev. B 64, 134506 (2001); PRL 90, 117006 (2003)

    Kadrigrobov, Shekhter & Jonson, Europhys. Lett. 54, 394 (2001)

    S F

    S F2F1

  • Features of odd-frequency, spin-triplet pair correlations

    • s=1: pairs not subject to Eexlong-range penetration in F

    l=0: insensitive to disorder

    Bergeret, Volkov & Efetov, Rev. Mod. Phys. 77, 1321 (2005)

    s=0 s=1

    l=0 BCS S/F

    l=1 S/F Sr2RuO4

    l=2 high-Tc S/F

  • Possible observation of triplet:

    Keizer, Goennenwein, Klapwijk, Miao, Xiao, Gupta, Nature 439, 825 (2006)

    0.3 – 1 m

    Long-range propagation of supercurrent,

    but large sample-to-sample variations in Ic.

    Reproduced last year by J. Aarts

    CrO2 is a “half metal”

    k

    E

    EF

  • Our approach:Systematic study of S/F/S junctions:

    sfTFF

    SF ld

    S F S

    dF

    suppress singlet

    triplet limited by spin-flip scattering

    ex

    FSF E

    DTk

    D

    B

    FTF 2

  • Signature of spin-triplet:

    Log(Ic)

    dF

    singlet:

    triplet:

    S F S

    dF

    homogeneous Minhomogeneous M

    SF

    Fc

    dI exp

    TF

    Fc

    dI exp

  • 1. Sputter S/F/S2. Pattern pillars with photolithography

    Nb

    Nb bottom contact

    F

    Au

    Tri-‐layer photoresist

    Si Substrate

    Sample Fabrication

    10 – 40 m

  • Nb

    Nb bottom contact

    F

    Au

    Si Substrate

    Si Ox

    1. Sputter S/F/S2. Pattern pillars with photolithography3. Ion mill4. Deposit SiOx

    Sample Fabrication

    10 – 40 m

  • Nb bottom contact

    F

    Au

    Si Substrate

    Si Ox

    1. Sputter S/F/S2. Pattern pillars with photolithography3. Ion mill4. Deposit SiOx

    Nb top contact

    1. Sputter S/F/S2. Pattern pillars with photolithography3. Ion mill4. Deposit SiOx5. Liftoff6. Deposit top Nb contact

    Sample Fabrication

    10 – 40 m

  • Measurement

    -0.2 -0.1 0.0 0.1 0.2

    -5

    0

    5

    V (n

    V)I (mA)

    Ic-Ic

    Low sample resistance (7 – 100

    Measure with SQUID-based current comparator circuit

    I-V characteristic of overdampedJosephson junctions

    Measure at T = 4.2 K in “quick-dipper” cryostat in helium storage dewar

    Ic critical current

    supercurrent

  • S/F/S junctions with a weak F: Pd88Ni12 alloy

    Each point represents average over 2 - 4 junctions on same substrate

    30 40 50 60 70 80 90 100

    103

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dPdNi (nm)

    Nb (S)

    PdNi (F)

    Nb (S)

    (previous work on PdNi Josephson junctions had dPdNi < 15 nm)

    T.S. Khaire, W.P. Pratt, and N.O. Birge, Phys. Rev. B 79, 094523 (2009)

  • Each point represents average over 2 - 4 junctions on same substrate

    Periodic minima in Jc

    30 40 50 60 70 80 90 100

    103

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dPdNi (nm)

    S/F/S junctions with a weak F: Pd88Ni12 alloy

    Nb (S)

    PdNi (F)

    Nb (S)

  • )/cos()/exp( 21 FFc xxI

    1 = 7.7 ± 0.5 nm 2 = 4.4 ± 0.1 nm

    30 40 50 60 70 80 90 100

    103

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dPdNi (nm)

    S/F/S junctions with a weak F: Pd88Ni12 alloy

    Nb (S)

    PdNi (F)

    Nb (S)

    T.S. Khaire, W.P. Pratt, and N.O. Birge, Phys. Rev. B 79, 094523 (2009)

  • 30 40 50 60 70 80 90 100

    103

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dPdNi (nm)

    No sign of spin-triplet supercurrent!

    S/F/S junctions with a weak F: Pd88Ni12 alloy

    Nb (S)

    PdNi (F)

    Nb (S)

  • Why don’t we see spin-triplet supercurrent in S/F/S Josephson junctions with PdNi?

    • Not enough non-collinear magnetization• Magnetic inhomogeneity on wrong length scale• Too much spin-flip and/or spin-orbit scattering

  • How to measure the spin memory length using Giant Magnetoresistance (GMR)

    P state

    AP state

    Permalloy = Ni0.84Fe0.16

    Pd0.88Ni0.12

    RP < RAP

    Cu

    Albert Fert & Peter Grunberg 2007 Nobel Prize

    Jack Bass & Bill Pratt

  • Dependence of GMR signal on dPdNi

    dPdNi dPy

    Fix dPy, vary dPdNi

    PdNiPdNiPdNi dRA*

    sfPdNiPdNiPdNi lRA

    *

    If dPdNi < lsfPdNi

    If dPdNi > lsfPdNi

    0 1 2 3

    dPdNi

  • Raw GMR signal

    P state

    AP statedPdNi = 12 nm

    -80 -40 0 40 80

    10.05

    10.10

    10.15

    R (n

    )

    H (Oe)

  • GMR signal vs. dPdNi

    0 5 10 15 200.00

    0.05

    0.10

    0.15

    0.20

    AR

    (fm

    2 )

    dPdNi (nm)

  • Fit to Valet-Fert theory

    Result: lsf PdNi = 2.8 ± 0.5 nmH.Z. Arham, T.S. Khaire, R. Loloee, W. P. Pratt, Jr., and N.O.B., Phys. Rev. B 80, 174515 (2009)

    0 5 10 15 200.00

    0.05

    0.10

    0.15

    0.20

    AR

    (fm

    2 )

    dPdNi (nm)

    Fit with lsf PdNi

  • Pd1-xNix magnetic characterization

    -4000 -2000 0 2000 4000-150

    -100

    -50

    0

    50

    100

    150

    M (e

    mu/

    cm3 )

    Field (Oe)

    PdNi alloy has out-of-plane magnetic anisotropy!!(violates assumptions about P and AP states in GMR experiment)

    H out-of-plane

    H in-plane

    0 50 100 150 200 250 3000

    20

    40

    60

    80

    100

    120

    140

    160

    M (e

    mu/

    cm3 )

    Temperature (K)

  • Alternate “spoiler” spin valve geometry

    dPdNi

    PdNi

  • Why don’t we see spin-triplet supercurrent in S/F/S Josephson junctions with PdNi?

    • Not enough non-collinear magnetization• Magnetic inhomogeneity on wrong length scale• Too much spin-flip and/or spin-orbit scattering

    Try a different approach:Use a strong F with long spin-memory length: Co

  • Aside: Characterization of Josephson Junctions by the Fraunhofer pattern

    “I never believe anybody’s Josephson junction data unless they show me a Fraunhofer pattern.” -- Dale van Harlingen

    2R

    2L+  d

    NHext

    o

    oCC

    JII

    )(2)0()(

    1

    where RdH NLext 2)2(

    L=  London  

    penetration  

    length  

    /o

    I c(

    ) / I c

    (0)

    Airy  diffraction  pattern  for  a  circular  junction

  • Large-area Nb/Co/Nb junctions

    -20 -10 0 10 200.00

    0.02

    0.04

    0.06

    I c (m

    A)

    H (Oe)

    Nb/Co/Nb, dCo = 5 nm, 2R = 40 m

    2R

    2L+  d

    FHext

    Random Fraunhofer pattern due to complex domain configuration

  • Trick: achieve flux cancellation with Co/Ru/Co synthetic antiferromagnet

    H.A.M. vandenBerg et al., J. Mag. Magn. Mat. 165, 524 (1997).

    Nb

    CoRuCo

    Nb

  • Co/Ru/Co synthetic antiferromagnet restores Fraunhofer pattern!

    -20 -10 0 10 200.00

    0.04

    0.08

    0.12

    0.16

    0.20

    I c(m

    A)

    H (Oe)

    dCo = 13 nmw = 20 m

    -20 -10 0 10 200.00

    0.02

    0.04

    0.06

    I c (m

    A)

    H (Oe)

    dCo = 5 nm

    w = 40 m

    with Ru without Ru

  • S/F/S junction with a strong F: Co

    0 5 10 15 20 25

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dCo (nm)

    Nb

    CoRuCo

    Nb

    Cu

    Cu

    M.A. Khasawneh, W.P. Pratt, and N.O. Birge, Phys. Rev. B 80, 020506(R) (2009)

  • S/F/S junction with a strong F: Co

    )/exp( 1Fc xI 1 = 2.4 ± 0.1 nm

    0 5 10 15 20 25

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dCo (nm)

    1 = 3.0 nm (Robinson et al. found for dCo = 1 – 5 nm)

    No oscillations of Ic: phase shifts cancel in two F layersBlanter & Hekking, PRB 69, 024525 (2004); Crouzy et al., PRB 75, 054503 (2007).

    Nb

    CoRuCo

    Nb

    Cu

    Cu

  • S/F/S junction with a strong F: Co

    0 5 10 15 20 25

    104

    105

    106

    107

    108

    J c (A

    /m2 )

    dCo (nm)

    No sign of spin-triplet supercurrent!M.A. Khasawneh, W.P. Pratt, and N.O. Birge, Phys. Rev. B 80, 020506(R) (2009)

    Nb

    CoRuCo

    Nb

    Cu

    Cu

  • Why don’t we see spin-triplet supercurrent in S/F/S Josephson junctions with Co/Ru/Co?

    • Not enough non-collinear magnetization• Magnetic inhomogeneity on wrong length scale• Too much spin-flip scattering at Co/Ru interface

    Measure spin-flip scattering at Co/Ru interface using GMR

  • Co domain structure

    Neighboring domains have mostly anti-parallel magnetization

    Not much non-collinear M

    Domains are large ~ 3 m

    Borchers et al., PRL 82, 2796 (1999).SEMPA = scanning electron microscopy

    with polarization analysis

  • Why haven’t we seen spin-triplet correlations?

    • PdNi– Spin memory length too short– Bad for propagation of triplet– Good for generation of triplet

    • Co/Ru/Co– Not enough magnetic inhomogeneity– Bad for generation of triplet– Good for propagation of triplet

  • New Idea: combine best of two materials

    Nb

    Nb

    Co

    CoRu

    X

    X

    Create triplet Propagate triplet

    CuCu

    CuCu

    X = PdNi or CuNi alloy(Cu buffer layers magnetically isolate X from Co)

  • 0 5 10 15 20 25 30

    0.1

    1

    10

    100

    1000

    DCo (nm)

    I cRN (

    nV)

    Finally, the triplet appears!

    with X = PdNi, dX = 4 nm

    without X

    Khaire, Khasawneh, Pratt, & Birge, Phys. Rev. Lett. 104, 137002 (2010)

    Nb

    X

    CoRuCo

    X

    Nb

    CuCu

    CuCu

  • 0 5 10 15 20 25 30

    0.1

    1

    10

    100

    1000

    DCo (nm)

    I cRN (

    nV)

    Finally, the triplet appears!

    with X = CuNi, dX = 3 nm

    Fix DCo = 20 nm and vary dX

    Khaire, Khasawneh, Pratt, & Birge, Phys. Rev. Lett. 104, 137002 (2010)

    with X = PdNi, dX = 4 nm

    without X

    Nb

    X

    CoRuCo

    X

    Nb

    CuCu

    CuCu

  • 0 2 4 6 8 10

    0.1

    1

    10

    100

    dX (nm)

    I cRN (

    nV)

    Control amplitude of triplet with dX

    X = CuNi

    X = PdNi

    Khaire, Khasawneh, Pratt, & Birge, Phys. Rev. Lett. 104, 137002 (2010)

    Nb

    X

    CoRuCo

    X

    Nb

    CuCu

    CuCu

  • 0 10 20 30 40 50

    0.1

    1

    10

    100

    1000

    I CRN (

    nV)

    DCo (nm)

    What happens with thicker Co layers?

    poor Fraunhofer patterns –(Co/Ru/Co AF coupling not as effective)

    Khasawneh, Khaire, Klose, Pratt, & Birge, Supercon. Sci. & Tech. 24, 024005 (2011).

  • B. Cooper pairs feel non-collinear M between X and Co layers.

    Nb Cu X Cu Co

    Mechanism for generating triplet

    Nb Cu X Cu Co

    A. Cooper pairs feel non-collinear M between X-layer domains

    ss

  • Pure Ni works well for X layer (no need for inhomogeneous X layer)

    0 2 4 6 8 10

    0.1

    1

    10

    100

    I CR N

    (nV)

    dx (nm)

    Ni

    CuNi

    PdNi

    Khasawneh, Khaire, Klose, Pratt, & Birge, Supercon. Sci. & Tech. 24, 024005 (2011).

  • B. Cooper pairs feel non-collinear M between X and Co layers.

    Nb Cu X Cu Co

    Mechanism for generating triplet

    Nb Cu X Cu Co

    A. Cooper pairs feel non-collinear M between X-layer domains

    ss

  • M. Houzet and A. I. Buzdin, PRB 76, 060504R 2007

    F’ and F” are not required to be inhomogeneous

    S N F’ N F N F N F” N S

    Nb Cu X Cu Co Co Cu X Cu Nb

    Ru

    X = PdNi, CuNi, or Ni

    Mechanism for generating triplet

  • Microscopic mechanism for triplet generation(from discussion with M. Eschrig)

    S 210,0

    z

    S F1QxQx

    QxiQx

    ee

    z

    iQxiQx

    sin0,1cos0,0

    sincos2

    12

    1

    S F1 F2

    FF kkQ

    1,10,1

    1,1

    0,12

    1z

    long-range triplet components

    short-range triplet component

    k

    E

    -kF-kF kF kF

  • M. Houzet and A. I. Buzdin, PRB 76, 060504R 2007

    Triplet contribution to the critical current is observed only for dX (0.5–2.5) F.

    Optimization of triplet generation

    0 2 4 6 8 10

    0.1

    1

    10

    100

    I CR N

    (nV)

    dx (nm)

    Ni

    PdNi

    CuNi

    CuNiF

    PdNiF

    NiF

    CuNiex

    PdNiex

    Niex EEE

  • Log(Ic)

    dF

    singlet:

    triplet:

    homogeneous M

    inhomogeneous M

    Does triplet disappear after we magnetize the samples?(makes M more homogeneous)

  • Does triplet disappear after we magnetize the samples?

    0 1000 2000 3000 4000

    100

    1000

    I cRN

    (nV)

    Happlied (Oe)

    X = Ni

    dX = 1 nm

    Why does Ic increase?

    No!!!unpublished

    data

  • Nb

    Nb

    Cu

    Cu

    CoCo

    Cu

    Cu

    Ni

    Ni

    MNi MCo

    S F1 F2M tilted by spin-triplets

    maximized for= 90

    H = 0 H largeH

    H = 0

    -

    sin

    cos

    sin

    0,1 z

    Co/Ru/Co undergoes “spin-flop” transition

  • • Tunneling – Energy dependence of triplet pair correlations– Independent signature of odd-frequency triplet– No need for Ru layer

    • Lateral geometry– Longer distances in F– Measure proximity effect & Josephson effect

    Future Experiments

    Nb

    PdNi

    Co

    Nb

    PdNi

    Co

    Normal metaloxide tunnel barrier

    0.2 -- 1 m

    Cu

  • Summary• New type of Fermion pairing occurs in S/F systems: odd-

    frequency, spin-triplet, s-wave. – Triplet long-range penetration in F– S-wave insensitive to disorder

    • S/F/S Josephson junctions with PdNi and Co: clear signature of spin-triplet supercurrent– Separately optimize generation and propagation

    • Stay tuned for future results!

    Nb

    X

    CoRuCo

    X

    Nb

    CuCu

    CuCu

  • For a general introduction to this subject, read “Spin-Polarized Supercurrents for Spintronics“ by Matthias Eschrig in Physics Today, January 2011:

    See also the “News & Views” commentary by TeunKlapwijk, “Magnetic nanostructures: Supercurrentsin ferromagnets” in Nature Physics 6, 329 (2010).

    References

    Lecture III: Spin-triplet supercurrent in ferromagnetic Josephson junctionsSlide Number 2Prologue: Fermion pairingPrologue:��What we remember from quantum mechanicsPrologue:��What we remember from quantum mechanicsAllowed Cooper pair symmetriesProposal by Berezinskii (1974):Allowed Cooper pair symmetriesAllowed Cooper pair symmetriesAllowed Cooper pair symmetriesOutlineAndreev Reflection: N/S vs. F/SProximity effect: S/N vs. S/F Slide Number 14Slide Number 15Prediction: long-range spin-triplet pair correlations induced by noncollinear magnetizationFeatures of odd-frequency, spin-triplet �pair correlationsPossible observation of triplet:Our approach:�Systematic study of S/F/S junctions: Signature of spin-triplet:Slide Number 21Slide Number 22Slide Number 23MeasurementS/F/S junctions with a weak F: Pd88Ni12 alloySlide Number 26Slide Number 27Slide Number 28Why don’t we see spin-triplet supercurrent in S/F/S Josephson junctions with PdNi?How to measure the spin memory length using Giant Magnetoresistance (GMR)Dependence of GMR signal on dPdNiRaw GMR signalGMR signal vs. dPdNiFit to Valet-Fert theoryPd1-xNix magnetic characterizationAlternate “spoiler” spin valve geometryWhy don’t we see spin-triplet supercurrent in S/F/S Josephson junctions with PdNi?Aside: Characterization of Josephson Junctions by the Fraunhofer patternLarge-area Nb/Co/Nb junctionsTrick: achieve flux cancellation with Co/Ru/Co synthetic antiferromagnet Co/Ru/Co synthetic antiferromagnet restores Fraunhofer pattern!S/F/S junction with a strong F: CoS/F/S junction with a strong F: CoS/F/S junction with a strong F: CoWhy don’t we see spin-triplet supercurrent in S/F/S Josephson junctions with Co/Ru/Co?Co domain structureWhy haven’t we seen spin-triplet correlations?New Idea: combine best of two materialsFinally, the triplet appears!Finally, the triplet appears!Control amplitude of triplet with dXSlide Number 52Slide Number 53Pure Ni works well for X layer (no need for inhomogeneous X layer)Slide Number 55Slide Number 56Microscopic mechanism for triplet generation�(from discussion with M. Eschrig)Slide Number 58Slide Number 59Does triplet disappear after we magnetize the samples?Slide Number 61Future ExperimentsSummarySlide Number 64