lecture i: introduction, basic mechanics 1...•using inverse u(f) to find u actual •scale callus...

49
Computational Biomechanics 2017 Lecture I: Introduction, Basic Mechanics 1 Ulli Simon, Martin Pietsch, Lucas Engelhardt Scientific Computing Centre Ulm, UZWR Ulm University

Upload: others

Post on 09-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Computational Biomechanics 2017

    Lecture I:

    Introduction,

    Basic Mechanics 1

    Ulli Simon, Martin Pietsch, Lucas Engelhardt

    Scientific Computing Centre Ulm, UZWR Ulm University

  • Scientific Computing

    Centre Ulm

    www.uzwr.de

    • Rerun

    • Lecture times

    • Exam

    • Max. 12 students

    0 Organisation

  • Computational

    Biomechanics

    Biology

    Mechanics

    1 General Information

    Computational

    Biomechanics: Solving biological questions using methods of

    mechanical engineering (Technische Mechanik), incl.

    experiments.

    Mechanobiology: Reaction of biological structures on mechanical

    signals. Mechanotransduction: Melekular cell reaction.

  • Research Fields

    Orthopaedic Biomechanics: Bone-implant contact,

    fracture healing, (artificial) joints,

    musculoskeletal systems, …

    Dental Biomechanics: Dental implants, orthodontics,

    dental movements, braces, brackets, …

    Cell Biomechanics: Cell experiments (cell gym) and

    simulations to study mechenotransduction

    Fluid Biomechanics: Respiratory systems, blood

    flow, heart, …

    Sport Biomechanics: Optimizing performance,

    techniques and equipment of competitive

    sports

    Tree Biomechanics, Traffic Safety, Accident

    Research, …

  • Numerical Methods

    Boundary Value Problems: Finite Elements, static structural

    analyses, displacements, stresses & strains,

    Initial Value Problems: Forward dynamics problem, multi-body

    systems, musculoskeletal systems, movements, inverse

    dynamics problem: Calculating muscle forces from

    measured movements

    Multiscale Modeling: To handle higly complex systems

    Model Reduction: dito

    Fuzzy Logic: Fracture healing in Ulm

  • Contents

  • 1.2 Appetizer:

    Simulation of Bone Healing

  • Computermodell für die Knochenheilung

  • Introduction: Bone Healing

    Healing process

    Mechanical situation Local Blood supply

    Rhinelander (1968)*

    *) From Bone in Clinical Orthopedics

    by permission of AO Publishing.

  • Osteonal healing Callus healing Non-union

    Intramem-

    braneous bone

    formation

    Ha

    ve

    rsia

    n

    rem

    od

    eli

    ng

    Endochodral

    ossification Fibrocartilage

    Inte

    rfra

    gm

    en

    tary

    Mo

    ve

    me

    nt

  • QuickTime™ und der

    Foto-CD-Dekompressor

    werden benötigt, um dieses Bild zu sehen.

    Animal Experiments

    • Sheep methatarsus

    • Fixateur exteren

    • Gap sizes: 1, 2, 6 mm

    • Interfrag. Strain: 7%, 31%

  • Exp. Results: Callus Area

    0

    50

    100

    150

    200

    250

    300

    ca

    llu

    s a

    rea

    (m

    m2

    )

    7%

    31%

    1 Gap size (mm) 1 2 6

  • Introduction: Callus Healing Process

    New bone formation only

    with low strain state !

    Biological Solution:

    1.Callus: larger diameter

    2.Via cartilage to bone

  • Wirklichkeit Modell

  • Geometry: • Idealized osteotomy (sheep)

    • 2D, axi-symmetric

    • Predescribed, fixed healing area

    Discretization: • 3.000 el.

    Material properties:

    Load / Boundary conditions (Claes 97): Case A: Initial movement = 0.25 mm

    Case B: Initial movement = 1.30 mm

    Tissue type Modul Poisson ratio

    Cortical bone 10,000 MPa 0.36

    Woven bone 4,000 MPa 0.36

    Fibro cartilage 200 MPa 0.45

    Connective tissue 3 MPa 0.30

    Methods: Finite Element Model

    F

    Exte

    rna

    l fixa

    tor

    Callus

    Cortex

    Lo

    ng

    bo

    ne

    axis

  • Separation

    0

    250

    500

    750

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Interfragmentary movement u in mm

    Lo

    ad

    F in N

    F_Fix

    F_ges

    •F

    •Exte

    rna

    l fixa

    tor

    •Callus

    •Cortex

    •Lo

    ng b

    on

    e a

    xis

    • •u

    • FEA of linera part: callus

    from unit displacement uunit • Calculation of callus stiffness

    • Calculation of F(u)

    • Using inverse u(F) to find uactual • Scale callus strains with uactual /uunit

    uact

  • Finite Element

    Connective tissue Cartilage Woven bone

    Blood Perfusion

    Methods: Tissue Mixture

    Rule of Mixture

    Constraint

    Resultant State Variables

    0 ≤ ci ≤ 1

    Volumetric Tissue Concentrations

    Perfusion Index

  • Tim

    e

    Results Data of the healing process

    FE Analysis Strain distribution

    Fuzzy Logic Tissue differentiation and vascularization

    Start Configuration Geometry, mesh, load, initial state

    Blood

    Methods: Iterative Algorithm

    Initial Conditions

    Boundary

    Conditions

  • Methods: Tissue Healing with Fuzzy Logic

    Fuzzy Controler with linguistic rules

    Vasc. adjacent

    Bone concentration

    Change of

    Vascularity

    Input variables Output variables

    dilatational strain

    distortional strain

    Vascularity

    Bone conc. adjacent

    Change of

    cartilage concentr.

    Cartilage concentr.

    Change of

    bone concentration

  • Tissue Transformation Function

    Strain in %

    Hydr.Stress in MPa

    Connective Tiss.

    or

    Fibrocartilage

    Endochondr.

    Ossification

    -0.15 0.15

    15

    5

    -5

    -15

    Intramembr..

    Ossification

    Claes and Heigele 99

    Cartilage

    Dis

    tort

    iona

    l str

    ain

    Connective

    Tissue

    Intramembr.

    Oss.

    Dilatational strain

    Simon et al. 2011

  • pure distortional strain

    In other studies: • octahedral shear stress

    • von Mises equivalent stress

    • von Mises equivalent strain

    pure dilatational strain

    In other studies: • hydrostatic pressure

    • octahedral (normal) stress

    • fluid pressure / flow

    Methods: Mechanical Stimuli

    Two invariants of the strain tensor

  • Processes:

    • Angiogenesis

    • Intramembranous ossification

    • Chondrogenesis

    • Cartilage calcification

    • Endochondral ossification

    • Tissue destruction

    Chondro-

    genesis

    Connective tissue

    Cartilage

    Bone

    destruction

    Cartilage

    destruction

    Intra-

    membranous

    ossification

    Woven bone

    Endochondral

    ossification

    Example: Rule #3, Intramembranous ossification: IF (blood supply is high) AND (bone concentration adjacent is

    high) AND (dilatational strain is neg. low or pos. low) AND

    (distortional strain is low)

    THEN (bone concentration has to increase)

    Methods: Fuzzy Rules

  • 0

    0,5

    1

    0,0001 0,001 0,01 0,1 1

    distortional strain

    pro

    ba

    bilit

    y

    Methods: Membership Functions

    low medium high

    Example: One of 10 membership functions

    destructive

  • Zugehörigkeitsfunktionen für Eingangsgrößen

    30 70

    0

    0,5

    1

    0 20 40 60 80 100

    Blood perfusion, cartilage or bone concentration in %

    Me

    mb

    ers

    hip

    Mem

    bers

    hip

    Blood perfusion, cartilage or bone concentration in %

    medium high low

    -0,02 0,02

    0

    0,5

    1

    -0,12 -0,09 -0,06 -0,03 0 0,03 0,06 0,09 0,12

    dilatational strain

    me

    mb

    ers

    hip

    -0,85 -0,020,02 0,85

    0

    0,5

    1

    -1,2 -0,8 -0,4 0 0,4 0,8 1,2

    dilatational strain

    me

    mb

    ers

    hip

    -0,85 -0,020,02 0,85

    0

    0,5

    1

    -1,2 -0,8 -0,4 0 0,4 0,8 1,2

    dilatational strain

    me

    mb

    ers

    hip

    -0,85-0,020,020,85 5-5

    0

    0,5

    1

    -8 -6 -4 -2 0 2 4 6 8

    dilatational strain

    me

    mb

    ers

    hip

    -0,85-0,020,020,85 5-5

    0

    0,5

    1

    -8 -6 -4 -2 0 2 4 6 8

    dilatational strain

    me

    mb

    ers

    hip

    Mem

    bers

    hip

    Dilatational strain ε0 in %

    +medium +destructive about zero +low -destructive -medium -low

    a)

    0,03

    0

    0,5

    1

    0 0,05 0,1 0,15 0,2 0,25 0,3

    distortional strain in %

    pro

    ba

    bili

    ty

    0,03 7 16

    0

    0,5

    1

    -5 0 5 10 15 20

    distortional strain in %

    pro

    ba

    bili

    ty

    medium destructive about zero low

    Distortional strain γ0 in %

    Mem

    bers

    hip

    b) c)

  • Zugehörigkeitsfunktionen für Ausgangsgrößen

    -5 5

    0

    0.5

    1

    -30 -20 -10 0 10 20 30

    Change in blood perfusion in %

    Me

    mb

    ers

    hip

    stay increase decrease

    a)

    Mem

    bers

    hip

    Change in blood perfusion in %

    -2.5 2.5

    0

    0.5

    1

    -30 -20 -10 0 10 20 30

    Change in cartilage concentration in %

    Me

    mb

    ers

    hip

    stay increase decrease

    b)

    Mem

    bers

    hip

    Change in cartilage concentration in %

    -15 15

    0

    0.5

    1

    -30 -20 -10 0 10 20 30

    Change in bone concentration in %

    Me

    mb

    ers

    hip

    stay unchanged increase decrease

    c)

    Mem

    bers

    hip

    Change in bone concentration in %

  • Case B Large initial movement 1.25 mm

    Case A Small initial movement 0.25 mm

    Results

    Blood Bone Cartilage Blood Bone Cartilage

    Day

    0

    Day

    7

    Day

    14

    Day

    21

    Day

    28

    Day

    35

    Day

    42

    Day

    49

    Day

    56

    Day

    63

  • Case B Large initial movement 1.25 mm

    Case A Small initial movement 0.25 mm

    Results: Interfragmentary Movement

    0.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    0 7 14 21 28 35 42 49 56

    Healing days

    IFM

    in

    mm

    1032

    1044

    1057

    1100

    FE

    0.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    0 7 14 21 28 35 42 49 56

    Healing days

    IFM

    in

    mm

    1030

    1054

    1063

    1129

    FE

    Animal experiments: Claes, et al. 97

  • Shear movement Axial movement

    Simulation of 3D bone healing under axial and shear movement

  • Tag 17

    Tag 25

    Tag 40

    Tag 42

    Tag 50

    3D Stiffness Directions

    Axial Shear

  • Simon et al., DGfB, Münster 2009

    Healing + Remodeling

    Day 95

    Day 58 Day 20

    Day 20

    Day 200

    Day 200

    Remodeling

    Healing

  • Optimal Implant Stiffness?

    Fracture Healing Model

    “Complex Functional”

    Implant

    Properties (Stiffness)

    Healing time

    Optimization Algorithm

    Bridge Detector

    Implant stiffness

    Hea

    ling t

    ime

  • Complex Fracture Geometry

    Wehner et al., Clin Biom 2010

  • IFM (mm)

    0.15

    3.00

    Day 1 15 30 50 70 90 200+

    Cortex Distraction

    Load

    Distraction Osteogenesis

  • Mechanical Basics

  • 1.3 Variables, Dimensions and Units

    Standard: ISO 31, DIN 1313

    Variable = Number Unit

    Length L = 2 m = 2 m

    {Variable} = Number

    [Variable] = Unit

    Three mechanical SI-Units:

    m (Meter)

    kg (Kilogram)

    s (Seconds)

    Length L [m] Length L / m Length L in m

    2 1

    Tem

    pera

    ture

  • Note to Remember:

    „A force is the cause of acceleration or

    deformation of a body”

    Newton’s 2nd Law [Axiom]:

    Force = Mass times Acceleration or F = m a

    • We all believe to know what a force is.

    • But, force is an invention not a discovery!

    • … it can not be measured directly.

    2.1 Force

    2 STATICS OF RIGID BODIES

    F F

  • ... with arrows

    Forces are Vectors with

    Magnitude

    Direction

    Sense of Direction

    Representation of Forces

    5 N

    Line of action

    Screw

  • Units of Force

    Newton

    N = kgm/s2

    1 N

    Note to Remember:

    1 Newton Weight of a bar of chocolate (100 g)

    FG = mg = 0,1 kg 9,81 m/s2

    = 0,981 kg m/s2

    1 N

  • 2.2 Method of Sections (Euler) [Schnittprinzip]

    Note to Remember:

    First, cut the system, then include forces and moments.

    Free-body diagram = completely isolated part.

    Free-Body Diagramm (FBD) [Freikörper-Bild]

    Leonhard Euler, 1707 - 1783

    1 kg

    F

    F

    Freikörperbild

    10 N

  • Cut through

    bone (2D)

    Cut through

    joint (2D)

    2.2 Method of Sections

  • Cut through

    bone (2D)

    Cut through

    joint (2D)

    2.2 Method of Sections

    FN

    FN

    FQ

    FQ

    M

    M

    FH

    FV FV

    FH

    F

    φ

  • 2.3 Combining and Decomposing Forces

    Summation of Magnitudes

    Subtraction of Magnitudes

    Decomposition into Components

    Vector Addition

    8 N

    2 N

    FR 7 N

    Ftrans

    Faxial

  • 2.4 The Moment [Das Moment]

    Note to remember:

    The moment M = F a is equivalent to a force couple (F, a).

    A moment is the cause for angular acceleration or angular de-formation (Torsion, Bending) of a body.

    Screw Blade

    Slotted screw with

    screwdriver blade M = Fa

    Force Couples (F, a) Moment M

    F

    F a

    F

    F

  • Units for Moment

    Newton-Meter

    Nm = kgm2/s2

    Representation of Moments

    ... with rotation arrows or double arrows

    Moments are Vectors with ...

    Magnitude

    Direction

    Sense of Direction

    Rechte-Hand-Regel:

    5 Nm

    Achse

    Drehpfeil

    5 Nm

    Doppelpfeil

    oder

  • 2.5 Moment of a Force about a Point [Versetzungsmoment]

    Note to Remember:

    Moment = Force times lever-arm

    F

    P

    P M = Fh

    F

    F

    h P

    P M

    Faxial

    Fquer

    F

    F

    „Versetzungsmoment“

  • 2.7 Static Equilibrium

    Important:

    Free-body diagram (FBD) first, then equilibrium!

    For 2D Problems max. 3 equations for each FBD:

    (For 3D Problems max. 6 equations for each FBD)

    F

    F

    10 N

    Free-body diagram

    (FBD)

    The sum of all forces in x-direction equals zero:

    The sum of all forces in y-direction equals zero:

    The sum of Moments with respect to P equals zero:

    0...!

    ,2,1 yy FF

    0...!

    ,2,1 P

    z

    P

    z MM

    0...!

    ,2,1 xx FF

  • .0...:P toresp. w.moments all of Sum

    ,0...:direction-yin forces all of Sum

    ,0...:direction-in x forces all of Sum

    !

    ,2,1

    !

    ,2,1

    !

    ,2,1

    P

    z

    P

    z

    yy

    xx

    MM

    FF

    FF

    Force EEs can be substituted by moment EEs

    3 moment reference points should not lie on one line

    3 equations of equilibrium for each FBD in 2D:

    2.7 Static Equilibrium

    Important:

    Free-body diagram (FBD) first, then equilibrium!

    F

    F

    10 N

    Free-body diagram

    (FBD)

  • .0 :RPunkt bezüglich Achse-z um Momentealler Summe

    .0 :QPunkt bezüglich Achse-y um Momentealler Summe

    .0 :PPunkt bezüglich Achse- xum Momentealler Summe

    ,0 :Richtung-zin Kräftealler Summe

    ,0 :Richtung-yin Kräftealler Summe

    ,0 :Richtung-in x Kräftealler Summe

    !

    !

    !

    !

    !

    !

    i

    R

    iz

    i

    Q

    iy

    i

    P

    ix

    i

    iz

    i

    iy

    i

    ix

    M

    M

    M

    F

    F

    F

    6 equlibrium equations for one FBD in 3D:

    Force EEs can be substituted by moment EEs

    Max. 2 moment axis parallel to each other

    Determinant of coef. matrix not zero

  • 2.8 Recipe for Solving Problems in Statics

    Step 1: Model building. Generate a simplified replacement model

    (diagram with geometry, forces, constraints).

    Step 2: Cutting, Free-body diagram. Cut system and develop

    free-body diagrams. Include forces and moments at cut, as well

    as weight.

    Step 3: Equilibrium equations. Write the force- and moment

    equilibrium equations (only for free-body diagrams).

    Step 4: Solve the equations. One can only solve for as many

    unknowns as equations, at most.

    Step 5: Display results, explain, confirm with experimental

    comparisons. Are the results reasonable?