lecture 6 intersection of hyperplanes and matrix inverse shang-hua teng

29
Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Post on 19-Dec-2015

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Lecture 6Intersection of Hyperplanes and

Matrix Inverse

Shang-Hua Teng

Page 2: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Expressing Elimination by Matrix Multiplication

Page 3: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Elementary or Elimination Matrix

• The elementary or elimination matrix

That subtracts a multiple l of row j from row i can be obtained from the identity matrix I by adding (-l) in the i,j position

jiE ,

jiE ,

10

010

001

1,3

l

E

Page 4: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Elementary or Elimination Matrix

3,33,12,32,11,31,1

3,22,21,2

3,12,11,1

3,32,31,3

3,22,21,2

3,12,11,1

3,32,31,3

3,22,21,2

3,12,11,1

1,3

10

010

001

alaalaala

aaa

aaa

aaa

aaa

aaa

laaa

aaa

aaa

E

Page 5: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Pivot 1: The elimination of column 1

12510

4110

2242

1

2

Elimination matrix

10732

8394

2242

10732

4110

2242

10732

8394

2242

100

012

001

12510

4110

2242

10732

4110

2242

101

010

001

Page 6: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

The Product of Elimination Matrices

101

012

001

100

012

001

101

010

001

111

012

001

101

012

001

110

010

001

Page 7: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Elimination by Matrix Multiplication

8400

4110

2242

10732

8394

2242

111

012

001

Page 8: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Linear Systems in Higher Dimensions

9

5

2

0

201041

10631

4321

1111

x

Page 9: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Linear Systems in Higher Dimensions

9201041

510631

24321

01111

919930

59520

23210

01111

310300

36300

23210

01111

04000

36300

23210

01111

Page 10: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Linear Systems in Higher Dimensions

04000

36300

23210

01111

01000

36300

23210

01111

01000

30300

20210

00111

01000

10100

20210

00111

01000

10100

00010

10011

01000

10100

00010

10001

Page 11: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

310300

36300

23210

01111

919930

59520

23210

01111

1030

0120

0010

0001

Booking with Elimination Matrices

919930

59520

23210

01111

9201041

510631

24321

01111

1001

0101

0011

0001

04000

36300

23210

01111

310300

36300

23210

01111

1100

0100

0010

0001

Page 12: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Multiplying Elimination Matrices

04000

36300

23210

01111

9201041

510631

24321

01111

1131

0121

0011

0001

Page 13: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverse Matrices

• In 1 dimension

13333

39393

11

1

xx

Page 14: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverse Matrices• In high dimensions

IAAAAA

bAx

bAx

11

1

1

such that? matrix a thereIs

write?Can we

Page 15: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverse Matrices• In 1 dimension

0 iff exists existnot does 0

1

1

a a

!!matrices!singular exist?not doesWhen 1A

• In higher dimensions

Page 16: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Some Special Matrices and Their Inverses

nn d

d

d

d

II

/1

/1

1

1

1

1

Page 17: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverses in Two Dimensions

ac

bd

bcaddc

ba 11

Ibcad

bcad

bcaddc

ba

ac

bd

bcad

0

011

Ibcad

bcad

bcadac

bd

bcaddc

ba

0

011

Proof:

Page 18: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Uniqueness of Inverse Matrices

CICCBABACACBBIB

CB IACIBA

:Proof

then and

Page 19: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverse and Linear System

bAxbAIx

bAAxA

bA

bAxA

1

1

11

1

:Proof

by given solution unique a has

theninvertible is if

Page 20: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverse and Linear System

• Therefore, the inverse of A exists if and only if elimination produces n non-zero pivots (row exchanges allowed)

Page 21: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Inverse, Singular Matrix and Degeneracy

Suppose there is a nonzero vector x such that Ax = 0 [column vectors of A co-linear] then A cannot have an inverse

00

:Proof11

xAAxA

Contradiction:So if A is invertible, then Ax =0 can only have the zero

solution x=0

Page 22: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

One More Property

Proof

111 ABAB

IBBBAABABAB 11111

So

1111 ABCABC

Page 23: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Gauss-Jordan Elimination for Computing A-1

• 1D1 implies 1 axax

• 2D

10

01then

1

0 and

0

1

22

11

2221

1211

2

1

2221

1211

2

1

2221

1211

yx

yx

aa

aa

y

y

aa

aa

x

x

aa

aa

Page 24: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Gauss-Jordan Elimination for Computing A-1

• 3D

100

010

001then

100

and 010

, 001

333

222

111

333231

232221

131211

3

2

1

333231

232221

131211

3

2

1

333231

232221

131211

3

2

1

333231

232221

131211

zyx

zyx

zyx

aaa

aaa

aaa

zzz

aaa

aaa

aaa

yyy

aaa

aaa

aaa

xxx

aaa

aaa

aaa

Page 25: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Gauss-Jordan Elimination for Computing A-1

• 3D: Solving three linear equations defined by A simultaneously

• n dimensions: Solving n linear equations defined by A simultaneously

11 , AIIAA

Page 26: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Example:Gauss-Jordan Elimination for Computing A-1

100

010

001

210

121

012

X

100

010

001

210

121

012

• Make a Big Augmented Matrix

Page 27: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Example:Gauss-Jordan Elimination for Computing A-1

100

010

001

210

121

012

100

012/1

001

210

12/30

012

13/23/1

012/1

001

3/400

12/30

012

Page 28: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Example:Gauss-Jordan Elimination for Computing A-1

13/23/1

012/1

001

3/400

12/30

012

13/23/1

4/32/34/3

001

3/400

02/30

012

13/23/1

4/32/34/3

2/112/3

3/400

02/30

002

Page 29: Lecture 6 Intersection of Hyperplanes and Matrix Inverse Shang-Hua Teng

Example:Gauss-Jordan Elimination for Computing A-1

13/23/1

4/32/34/3

2/112/3

3/400

02/30

002

4/32/14/1

2/112/1

4/12/14/3

100

010

002