lecture 4: option pricing - université paris 13kebaier/lecture4.pdf · 2015-02-09 · lecture 4:...

44
Confidence Interval Simulation of Brownian Motion Black-Scholes Model Lecture 4: Option Pricing Ahmed Kebaier [email protected] HEC, Paris

Upload: others

Post on 27-Feb-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Lecture 4: Option Pricing

Ahmed [email protected]

HEC, Paris

Page 2: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Outline of The Talk

1 Confidence Interval

2 Simulation of Brownian Motion

3 Black-Scholes Model

Page 3: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Outline

1 Confidence Interval

2 Simulation of Brownian Motion

3 Black-Scholes Model

Page 4: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

An other version of the CLT

Theorem 1

Let (Xn) be a sequence of independents copies of X such thatE|X |2 <∞ and Var(X ) = σ2 > 0. Let

εn =1

n

n∑i=1

Xi − E(X )

σ2n =

n

n − 1

1

n

n∑i=1

X 2i −

(1

n

n∑i=1

Xi

)2 .

Then, √nεnσn⇒ N (0, 1).

Page 5: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Confidence interval

Our aim is to evaluate Ef (X ).We simulate a sample (X1, . . . ,Xn) of independent copies of X

and let

Sn =1

n

n∑i=1

f (Xi )

σ2n =

n

n − 1

1

n

n∑i=1

f (Xi )2 −

(1

n

n∑i=1

f (Xi )

)2 .

Applying the above CLT we get

√nSn − Ef (X )

σn⇒ N (0, 1).

This yields

P(∣∣∣∣√nSn − Ef (X )

σn

∣∣∣∣ ≤ a

)−→n→∞

P (|G | ≤ a) , G ∼ N (0, 1).

Page 6: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Confidence interval

Our aim is to evaluate Ef (X ).We simulate a sample (X1, . . . ,Xn) of independent copies of X

and let

Sn =1

n

n∑i=1

f (Xi )

σ2n =

n

n − 1

1

n

n∑i=1

f (Xi )2 −

(1

n

n∑i=1

f (Xi )

)2 .

Applying the above CLT we get

√nSn − Ef (X )

σn⇒ N (0, 1).

This yields

P(∣∣∣∣√nSn − Ef (X )

σn

∣∣∣∣ ≤ a

)−→n→∞

P (|G | ≤ a) , G ∼ N (0, 1).

Page 7: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Confidence interval

Our aim is to evaluate Ef (X ).We simulate a sample (X1, . . . ,Xn) of independent copies of X

and let

Sn =1

n

n∑i=1

f (Xi )

σ2n =

n

n − 1

1

n

n∑i=1

f (Xi )2 −

(1

n

n∑i=1

f (Xi )

)2 .

Applying the above CLT we get

√nSn − Ef (X )

σn⇒ N (0, 1).

This yields

P(∣∣∣∣√nSn − Ef (X )

σn

∣∣∣∣ ≤ a

)−→n→∞

P (|G | ≤ a) , G ∼ N (0, 1).

Page 8: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

If we set P (|G | ≤ a) = α, then we say that with a level ofconfidence equal to α our target

E(f (X )) ∈[Sn −

aσn√n, Sn +

aσn√n

]

Example:For a level of confidence equal to 95% we have that

E(f (X )) ∈[Sn −

1.96σn√n

, Sn +1.96σn√

n

]

Page 9: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

If we set P (|G | ≤ a) = α, then we say that with a level ofconfidence equal to α our target

E(f (X )) ∈[Sn −

aσn√n, Sn +

aσn√n

]Example:

For a level of confidence equal to 95% we have that

E(f (X )) ∈[Sn −

1.96σn√n

, Sn +1.96σn√

n

]

Page 10: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Outline

1 Confidence Interval

2 Simulation of Brownian Motion

3 Black-Scholes Model

Page 11: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Brownian Motion

A Brownian motion is a continuous process with independentand stationary increments such that Wt ∼ N (0, t)

m=5;

n=300;

t=linspace(0,1,n+1)’;

h=diff(t(1:2)); // step size

dw=sqrt(h)*rand(n,m,’normal’);

w=cumsum([zeros(1,m);dw]);

plot(t,w)

Page 12: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 13: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 14: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}

One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 15: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 16: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 17: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 18: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 19: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 20: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Options

European options

Vanilla options

Call (ST − K )+, put (K − ST )+

Digital 1{ST>B}

exotic options

Barrier (ST − K )+1{maxt≤T St>B}One touch 1{maxt≤T St>B}

Asian ( 1T

∫ T

0Sudu − K )+

options on several assets (S1T , . . . ,S

dT )

Basket Call (∑d

i=1 SiT − K )+

options on several assets (S1T ∧ . . . Sd

T − K )+

American Option

Call (Sτ − K )+ where τ is a stopping time.

Page 21: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Outline

1 Confidence Interval

2 Simulation of Brownian Motion

3 Black-Scholes Model

Page 22: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model

In the Black-Scholes model, the risky asset satisfies the SDE

dSt = rStdt + σStdWt,

under the martingale measure Q. The solution S follows ageometric Brownian motion

St = S0 exp

(σWt + (r − σ2

2)t

).

The price of a call option with payoff (ST − K )+ is

π = e−rTE(ST − K )+ = e−rTE(ST1{ST>K})− Ke−rTE(1{ST>K})

Page 23: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Call option

{ST > K} =

{log(S0) + σWT + (r − σ2

2)T > log(K )

}=

{WT >

1

σ

(log

(K

S0

)− (r − σ2

2)T

)}

and that WT =√TG where G ∼ N (O, 1). Let us introduce

φ(x) = P(G ≤ x).Now, use that 1− φ(x) = φ(−x) to deduce that

E(1{ST>K}) = P(ST > K ) = φ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))Applying Girsanov’s theorem, we get

π = S0φ

(1

σ√T

(log

(S0

K

)+ (r +

σ2

2)T

))− Ke−rTφ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))

Page 24: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Call option

{ST > K} =

{log(S0) + σWT + (r − σ2

2)T > log(K )

}=

{WT >

1

σ

(log

(K

S0

)− (r − σ2

2)T

)}and that WT =

√TG where G ∼ N (O, 1). Let us introduce

φ(x) = P(G ≤ x).

Now, use that 1− φ(x) = φ(−x) to deduce that

E(1{ST>K}) = P(ST > K ) = φ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))Applying Girsanov’s theorem, we get

π = S0φ

(1

σ√T

(log

(S0

K

)+ (r +

σ2

2)T

))− Ke−rTφ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))

Page 25: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Call option

{ST > K} =

{log(S0) + σWT + (r − σ2

2)T > log(K )

}=

{WT >

1

σ

(log

(K

S0

)− (r − σ2

2)T

)}and that WT =

√TG where G ∼ N (O, 1). Let us introduce

φ(x) = P(G ≤ x).Now, use that 1− φ(x) = φ(−x) to deduce that

E(1{ST>K}) = P(ST > K ) = φ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))

Applying Girsanov’s theorem, we get

π = S0φ

(1

σ√T

(log

(S0

K

)+ (r +

σ2

2)T

))− Ke−rTφ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))

Page 26: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Call option

{ST > K} =

{log(S0) + σWT + (r − σ2

2)T > log(K )

}=

{WT >

1

σ

(log

(K

S0

)− (r − σ2

2)T

)}and that WT =

√TG where G ∼ N (O, 1). Let us introduce

φ(x) = P(G ≤ x).Now, use that 1− φ(x) = φ(−x) to deduce that

E(1{ST>K}) = P(ST > K ) = φ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))Applying Girsanov’s theorem, we get

π = S0φ

(1

σ√T

(log

(S0

K

)+ (r +

σ2

2)T

))− Ke−rTφ

(1

σ√T

(log

(S0

K

)+ (r − σ2

2)T

))

Page 27: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes Formula

function y=BScall(S0,K,T,r,sigma)

tic();

d1=(log(S0/K)+(r+sigma^ 2/2)*T)/(sigma*sqrt(T));

d2=(log(S0/K)+(r-sigma^ 2/2)*T)/(sigma*sqrt(T));

price=S0*cdfnor("PQ",d1,0,1)-K*exp(-r*T)*cdfnor("PQ",d2,0,1);

time=toc();

y=[price time]

endfunction

Page 28: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Exercise

Create a function to evaluate the price of an European Calloption with maturity T and strike K , on the Black-Sholes model(St)0≤t≤T with a Monte Carlo method.

In other words approximate e−rTE(ST − K )+ with

e−rT

N

N∑i=1

(ST ,i − K )+

where (ST ,i )1≤i≤N are i.i.d copies of ST .

Page 29: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Exercise

Create a function to evaluate the price of an European Calloption with maturity T and strike K , on the Black-Sholes model(St)0≤t≤T with a Monte Carlo method.

In other words approximate e−rTE(ST − K )+ with

e−rT

N

N∑i=1

(ST ,i − K )+

where (ST ,i )1≤i≤N are i.i.d copies of ST .

Page 30: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Solution

function y=BSMCcall(S0,K,T,r,sigma,M) stacksize(’max’)

tic();

X=rand(1,M,’normal’);

S=S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T);

C=exp(-r*T)*max(S-K,0);

price=sum(C)/M;

VarEst=sum((C-price)^ 2)/(M-1);

RMSE=sqrt(VarEst)/sqrt(M);

CI95=[price-1.96*RMSE,price+1.96*RMSE];

CI99=[price-2.58*RMSE,price+2.58*RMSE];

time=toc();

y=[price time RMSE; CI95 0; CI99 0]

endfunction

Page 31: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Asian option

The price of an Asian option at t = 0 is given by

π := e−rTE(

1

T

∫ T

0Sudu − K

)+

This quantity have no explicit formula, so we need toapproximate π. How to proceed ?

1 At first approximate 1T

∫ T0 Sudu by S̄n := 1

n

∑n−1i=0 S iT

n

2 Then, approximate π by a Monte Carlo method

π ∼ e−rT

N

N∑j=1

(S̄n,j − K )+,

where (S̄n,j)1≤j≤N are i.i.d copies of S̄n.

Page 32: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Asian option

The price of an Asian option at t = 0 is given by

π := e−rTE(

1

T

∫ T

0Sudu − K

)+

This quantity have no explicit formula, so we need toapproximate π. How to proceed ?

1 At first approximate 1T

∫ T0 Sudu by S̄n := 1

n

∑n−1i=0 S iT

n

2 Then, approximate π by a Monte Carlo method

π ∼ e−rT

N

N∑j=1

(S̄n,j − K )+,

where (S̄n,j)1≤j≤N are i.i.d copies of S̄n.

Page 33: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Black-Scholes model: Asian option

The price of an Asian option at t = 0 is given by

π := e−rTE(

1

T

∫ T

0Sudu − K

)+

This quantity have no explicit formula, so we need toapproximate π. How to proceed ?

1 At first approximate 1T

∫ T0 Sudu by S̄n := 1

n

∑n−1i=0 S iT

n

2 Then, approximate π by a Monte Carlo method

π ∼ e−rT

N

N∑j=1

(S̄n,j − K )+,

where (S̄n,j)1≤j≤N are i.i.d copies of S̄n.

Page 34: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

// S0: the spot price of the underlying

// K: the strike price of the option

// T: the maturity of the option

// n: the number of time intervals

// r: the risk free interest rates

// sigma: the volatility of the underlying

// N: the number of Monte Carlo iterations

function [price ] = AsianCall(S0, K, T, n, r, sigma, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

payoff = max(mean(S, ’c’)-K, 0);

price=exp(-r*T)*mean(payoff);

Page 35: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

// S0: the spot price of the underlying

// K: the strike price of the option

// T: the maturity of the option

// n: the number of time intervals

// r: the risk free interest rates

// sigma: the volatility of the underlying

// N: the number of Monte Carlo iterations

function [price ] = AsianCall(S0, K, T, n, r, sigma, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

payoff = max(mean(S, ’c’)-K, 0);

price=exp(-r*T)*mean(payoff);

Page 36: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

// S0: the spot price of the underlying

// K: the strike price of the option

// T: the maturity of the option

// n: the number of time intervals

// r: the risk free interest rates

// sigma: the volatility of the underlying

// N: the number of Monte Carlo iterations

function [price ] = AsianCall(S0, K, T, n, r, sigma, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

payoff = max(mean(S, ’c’)-K, 0);

price=exp(-r*T)*mean(payoff);

Page 37: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

// S0: the spot price of the underlying

// K: the strike price of the option

// T: the maturity of the option

// n: the number of time intervals

// r: the risk free interest rates

// sigma: the volatility of the underlying

// N: the number of Monte Carlo iterations

function [price ] = AsianCall(S0, K, T, n, r, sigma, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

payoff = max(mean(S, ’c’)-K, 0);

price=exp(-r*T)*mean(payoff);

Page 38: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

// S0: the spot price of the underlying

// K: the strike price of the option

// T: the maturity of the option

// n: the number of time intervals

// r: the risk free interest rates

// sigma: the volatility of the underlying

// N: the number of Monte Carlo iterations

function [price ] = AsianCall(S0, K, T, n, r, sigma, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

payoff = max(mean(S, ’c’)-K, 0);

price=exp(-r*T)*mean(payoff);

Page 39: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Exercise

Create a function to compute the price a Barrier option withmaturity T , strike K and barrier B given by

π := e−rTE

(ST − K )+1{max

0≤t≤TSt > B

}

Page 40: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Solution

function [price] = BarrierUpInCall(S0, K, T, n, r,

sigma,B, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

indic=1*(max(S,’c’)>B)

payoff = max( S(:,n+1) - K, 0).*indic;

price=exp(-r*T)*mean(payoff);

Page 41: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Solution

function [price] = BarrierUpInCall(S0, K, T, n, r,

sigma,B, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

indic=1*(max(S,’c’)>B)

payoff = max( S(:,n+1) - K, 0).*indic;

price=exp(-r*T)*mean(payoff);

Page 42: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Solution

function [price] = BarrierUpInCall(S0, K, T, n, r,

sigma,B, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

indic=1*(max(S,’c’)>B)

payoff = max( S(:,n+1) - K, 0).*indic;

price=exp(-r*T)*mean(payoff);

Page 43: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Solution

function [price] = BarrierUpInCall(S0, K, T, n, r,

sigma,B, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

indic=1*(max(S,’c’)>B)

payoff = max( S(:,n+1) - K, 0).*indic;

price=exp(-r*T)*mean(payoff);

Page 44: Lecture 4: Option Pricing - Université Paris 13kebaier/Lecture4.pdf · 2015-02-09 · Lecture 4: Option Pricing Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris. Con dence IntervalSimulation

Confidence Interval Simulation of Brownian Motion Black-Scholes Model

Solution

function [price] = BarrierUpInCall(S0, K, T, n, r,

sigma,B, N)

z = rand(N,n,’norm’);

dt = T/n;

LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +

sigma*sqrt(dt)*z],’c’);

S = exp(LogPaths);

indic=1*(max(S,’c’)>B)

payoff = max( S(:,n+1) - K, 0).*indic;

price=exp(-r*T)*mean(payoff);