lecture 4: diffusion and the fokker-planck equation outline: intuitive treatment diffusion as flow...

118
Lecture 4: Diffusion and the Fokker-Planck equation tline: intuitive treatment • Diffusion as flow down a concentration gradient • Drift current and Fokker-Planck equation

Upload: grace-holland

Post on 19-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Lecture 4: Diffusion and the Fokker-Planck equation

Outline:

• intuitive treatment• Diffusion as flow down a concentration gradient• Drift current and Fokker-Planck equation

Page 2: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Lecture 4: Diffusion and the Fokker-Planck equation

Outline:

• intuitive treatment• Diffusion as flow down a concentration gradient• Drift current and Fokker-Planck equation

• examples:• No current: equilibrium, Einstein relation• Constant current, out of equilibrium:

Page 3: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Lecture 4: Diffusion and the Fokker-Planck equation

Outline:

• intuitive treatment• Diffusion as flow down a concentration gradient• Drift current and Fokker-Planck equation

• examples:• No current: equilibrium, Einstein relation• Constant current, out of equilibrium:

• Goldman-Hodgkin-Katz equation• Kramers escape over an energy barrier

Page 4: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Lecture 4: Diffusion and the Fokker-Planck equation

Outline:

• intuitive treatment• Diffusion as flow down a concentration gradient• Drift current and Fokker-Planck equation

• examples:• No current: equilibrium, Einstein relation• Constant current, out of equilibrium:

• Goldman-Hodgkin-Katz equation• Kramers escape over an energy barrier

• derivation from master equation

Page 5: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law:

J = −D∂P

∂x

Page 6: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

Page 7: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

conservation:

∂P

∂t= −

∂J

∂x

Page 8: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

conservation:

∂P

∂t= −

∂J

∂x

∂P

∂t= D

∂2P

∂x 2

=>

Page 9: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

conservation:

∂P

∂t= −

∂J

∂x

∂P

∂t= D

∂2P

∂x 2

=> diffusion equation

Page 10: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

conservation:

∂P

∂t= −

∂J

∂x

∂P

∂t= D

∂2P

∂x 2

=> diffusion equation

initial condition

P(x | 0) = δ(x)

Page 11: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

conservation:

∂P

∂t= −

∂J

∂x

∂P

∂t= D

∂2P

∂x 2

=> diffusion equation

initial condition

P(x | 0) = δ(x)

solution:

P(x | t) =1

4πDtexp −

x 2

4Dt

⎝ ⎜

⎠ ⎟

Page 12: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Diffusion Fick’s law: cf Ohm’s law

J = −D∂P

∂x

I = −g∂V

∂x

conservation:

∂P

∂t= −

∂J

∂x

∂P

∂t= D

∂2P

∂x 2

=> diffusion equation

initial condition

P(x | 0) = δ(x)

solution:

P(x | t) =1

4πDtexp −

x 2

4Dt

⎝ ⎜

⎠ ⎟

http://www.nbi.dk/~hertz/noisecourse/gaussspread.m

Page 13: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Drift current and Fokker-Planck equationDrift (convective) current:

Jdrift (x, t) = u(x)P(x, t)

Page 14: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Drift current and Fokker-Planck equation

Combining drift and diffusion: Fokker-Planck equation:

Drift (convective) current:

Jdrift (x, t) = u(x)P(x, t)

∂P

∂t= −

∂xJdrift + Jdiff( )

Page 15: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Drift current and Fokker-Planck equation

Combining drift and diffusion: Fokker-Planck equation:

Drift (convective) current:

Jdrift (x, t) = u(x)P(x, t)

∂P

∂t= −

∂xJdrift + Jdiff( )

= −∂

∂xu(x)P − D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥= −

∂xu(x)P( ) + D

∂ 2P

∂x 2

Page 16: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Drift current and Fokker-Planck equation

Combining drift and diffusion: Fokker-Planck equation:

Slightly more generally, D can depend on x:

Drift (convective) current:

Jdrift (x, t) = u(x)P(x, t)

∂P

∂t= −

∂xJdrift + Jdiff( )

= −∂

∂xu(x)P − D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥= −

∂xu(x)P( ) + D

∂ 2P

∂x 2

Jdiff (x, t) = −∂

∂xD(x)P(x, t)( )

Page 17: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Drift current and Fokker-Planck equation

Combining drift and diffusion: Fokker-Planck equation:

Slightly more generally, D can depend on x:

=>

Drift (convective) current:

Jdrift (x, t) = u(x)P(x, t)

∂P

∂t= −

∂xJdrift + Jdiff( )

= −∂

∂xu(x)P − D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥= −

∂xu(x)P( ) + D

∂ 2P

∂x 2

Jdiff (x, t) = −∂

∂xD(x)P(x, t)( )

∂P

∂t= −

∂xu(x)P( ) +

∂ 2

∂x 2D(x)P( )

Page 18: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Drift current and Fokker-Planck equation

Combining drift and diffusion: Fokker-Planck equation:

Slightly more generally, D can depend on x:

=>

Drift (convective) current:

Jdrift (x, t) = u(x)P(x, t)

∂P

∂t= −

∂xJdrift + Jdiff( )

= −∂

∂xu(x)P − D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥= −

∂xu(x)P( ) + D

∂ 2P

∂x 2

Jdiff (x, t) = −∂

∂xD(x)P(x, t)( )

∂P

∂t= −

∂xu(x)P( ) +

∂ 2

∂x 2D(x)P( )

First term alone describes probability cloud moving with velocity u(x)Second term alone describes diffusively spreading probability cloud

Page 19: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocityhttp://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Page 20: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocity

u(x) = u0

P(x, t) =1

4πDtexp −

x − u0t( )2

4Dt

⎣ ⎢ ⎢

⎦ ⎥ ⎥

http://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Solution (with no boundaries):

Page 21: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocity

u(x) = u0

P(x, t) =1

4πDtexp −

x − u0t( )2

4Dt

⎣ ⎢ ⎢

⎦ ⎥ ⎥

http://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Solution (with no boundaries):

Stationary case:

Page 22: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocity

u(x) = u0

P(x, t) =1

4πDtexp −

x − u0t( )2

4Dt

⎣ ⎢ ⎢

⎦ ⎥ ⎥

http://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Solution (with no boundaries):

Stationary case:Gas of Brownian particles in gravitational field: u0 = μF = -μmg

Page 23: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocity

u(x) = u0

P(x, t) =1

4πDtexp −

x − u0t( )2

4Dt

⎣ ⎢ ⎢

⎦ ⎥ ⎥

http://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Solution (with no boundaries):

Stationary case:Gas of Brownian particles in gravitational field: u0 = μF = -μmg

μ =mobility

Page 24: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocity

u(x) = u0

P(x, t) =1

4πDtexp −

x − u0t( )2

4Dt

⎣ ⎢ ⎢

⎦ ⎥ ⎥

http://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Solution (with no boundaries):

Stationary case:Gas of Brownian particles in gravitational field: u0 = μF = -μmg

μ =mobilityBoundary conditions (bottom of container, stationarity):

P(x) = 0, x < 0;

J(x) = 0

Page 25: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Examples: constant drift velocity

u(x) = u0

P(x, t) =1

4πDtexp −

x − u0t( )2

4Dt

⎣ ⎢ ⎢

⎦ ⎥ ⎥

http://www.nbi.dk/~hertz/noisecourse/gaussspreadmove.m

Solution (with no boundaries):

Stationary case:Gas of Brownian particles in gravitational field: u0 = μF = -μmg

μ =mobilityBoundary conditions (bottom of container, stationarity):

P(x) = 0, x < 0;

J(x) = 0 drift and diffusion currents cancel

Page 26: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Einstein relation

FP equation:

μmgP(x) + DdP

dx= 0

Page 27: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Einstein relation

FP equation:

Solution:

μmgP(x) + DdP

dx= 0

P(x) =μmg

D

⎝ ⎜

⎠ ⎟exp −

μmgx

D

⎝ ⎜

⎠ ⎟

Page 28: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Einstein relation

FP equation:

Solution:

But from equilibrium stat mech we know

μmgP(x) + DdP

dx= 0

P(x) =μmg

D

⎝ ⎜

⎠ ⎟exp −

μmgx

D

⎝ ⎜

⎠ ⎟

P(x) =mg

T

⎝ ⎜

⎠ ⎟exp −

mgx

T

⎝ ⎜

⎠ ⎟

Page 29: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Einstein relation

FP equation:

Solution:

But from equilibrium stat mech we know

So D = μT

μmgP(x) + DdP

dx= 0

P(x) =μmg

D

⎝ ⎜

⎠ ⎟exp −

μmgx

D

⎝ ⎜

⎠ ⎟

P(x) =mg

T

⎝ ⎜

⎠ ⎟exp −

mgx

T

⎝ ⎜

⎠ ⎟

Page 30: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Einstein relation

FP equation:

Solution:

But from equilibrium stat mech we know

So D = μT Einstein relation

μmgP(x) + DdP

dx= 0

P(x) =μmg

D

⎝ ⎜

⎠ ⎟exp −

μmgx

D

⎝ ⎜

⎠ ⎟

P(x) =mg

T

⎝ ⎜

⎠ ⎟exp −

mgx

T

⎝ ⎜

⎠ ⎟

Page 31: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions

Page 32: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cell

Page 33: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cellCan vary membrane potential experimentally by adding external field

Page 34: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cellCan vary membrane potential experimentally by adding external fieldQuestion: At a given Vm, what current flows through the channel?

Page 35: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cellCan vary membrane potential experimentally by adding external fieldQuestion: At a given Vm, what current flows through the channel?

outside insidex

x=0 x=d

Page 36: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cellCan vary membrane potential experimentally by adding external fieldQuestion: At a given Vm, what current flows through the channel?

outside insidex

V(x)Vm

Vout= 0

x=0 x=d

Page 37: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cellCan vary membrane potential experimentally by adding external fieldQuestion: At a given Vm, what current flows through the channel?

outside insidex

V(x)Vm

Vout= 0

ρout

ρin

x=0 x=d

Page 38: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Constant current: Goldman-Hodgkin-Katz model of an (open) ion channel

Pumps maintain different inside and outside concentrations of ions Voltage diff (“membrane potential”) between inside and outside of cellCan vary membrane potential experimentally by adding external fieldQuestion: At a given Vm, what current flows through the channel?

outside insidex

V(x)Vm

Vout= 0

ρout

ρin

x=0 x=d?

Page 39: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Reversal potential

If there is no current, equilibrium

=> ρin/ρout=exp(-βV)

Page 40: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Reversal potential

If there is no current, equilibrium

=> ρin/ρout=exp(-βV)

This defines the reversal potential

at which J = 0.

Vr = T logρ out

ρ in

⎝ ⎜

⎠ ⎟

Page 41: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Reversal potential

If there is no current, equilibrium

=> ρin/ρout=exp(-βV)

This defines the reversal potential

at which J = 0.

For Ca++, ρout>> ρin => Vr >> 0€

Vr = T logρ out

ρ in

⎝ ⎜

⎠ ⎟

Page 42: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK model (2)

outside insidex

V(x)

Vout= 0

ρout

ρin

x=0 x=d?

Vm< 0: both diffusive current and drift current flow in

Vm

Page 43: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK model (2)

outside insidex

V(x)Vout= 0

ρout

ρin

x=0 x=d?

Vm< 0: both diffusive current and drift current flow inVm= 0: diffusive current flows in, no drift current

Page 44: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK model (2)

outside insidex

V(x)

Vm

Vout= 0

ρout

ρin

x=0 x=d?

Vm< 0: both diffusive current and drift current flow inVm= 0: diffusive current flows in, no drift currentVm> 0: diffusive current flows in, drift current flows out

Page 45: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK model (2)

outside insidex

V(x)

Vm

Vout= 0

ρout

ρin

x=0 x=d?

Vm< 0: both diffusive current and drift current flow inVm= 0: diffusive current flows in, no drift currentVm> 0: diffusive current flows in, drift current flows outAt Vm= Vr they cancel

Page 46: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK model (2)

outside insidex

V(x)

Vm

Vout= 0

ρout

ρin

x=0 x=d?

Vm< 0: both diffusive current and drift current flow inVm= 0: diffusive current flows in, no drift currentVm> 0: diffusive current flows in, drift current flows outAt Vm= Vr they cancel

Jdrift = μqEρ (x) = −μqdV

dxρ (x) = −

μqVm

dρ (x), Jdiff = −D

dx

Page 47: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

Page 48: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

Page 49: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟Use Einstein relation:

Page 50: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

Use Einstein relation:

Page 51: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

ρ (x) = −J

μTκ+ ρ(0) +

J

μTκ

⎝ ⎜

⎠ ⎟exp −κx( )

Use Einstein relation:

Solution:

Page 52: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

ρ (x) = −J

μTκ+ ρ(0) +

J

μTκ

⎝ ⎜

⎠ ⎟exp −κx( )

Use Einstein relation:

Solution:

We are given ρ(0) and ρ(d). Use this to solve for J:

Page 53: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

ρ (x) = −J

μTκ+ ρ(0) +

J

μTκ

⎝ ⎜

⎠ ⎟exp −κx( )

J

μTκ1− exp −κd( )( ) = ρ out exp −κd( ) − ρ (d),

Use Einstein relation:

Solution:

We are given ρ(0) and ρ(d). Use this to solve for J:

Page 54: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

ρ (x) = −J

μTκ+ ρ(0) +

J

μTκ

⎝ ⎜

⎠ ⎟exp −κx( )

J

μTκ1− exp −κd( )( ) = ρ out exp −κd( ) − ρ (d), ρ (d) = ρ in = ρ out exp −βqVr( )

Use Einstein relation:

Solution:

We are given ρ(0) and ρ(d). Use this to solve for J:

Page 55: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

ρ (x) = −J

μTκ+ ρ(0) +

J

μTκ

⎝ ⎜

⎠ ⎟exp −κx( )

J

μTκ1− exp −κd( )( ) = ρ out exp −κd( ) − ρ (d), ρ (d) = ρ in = ρ out exp −βqVr( )

J =μTκ ρ out exp −κd( ) − ρ (d)( )

1− exp −κd( )

Use Einstein relation:

Solution:

We are given ρ(0) and ρ(d). Use this to solve for J:

Page 56: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Steady-state FP equation

dJ

dx=

d

dx−D

dx−

μqVm

⎝ ⎜

⎠ ⎟= 0

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+

βqVm

⎝ ⎜

⎠ ⎟

−J

μT=

dx+ κρ, κ =

βqVm

d

ρ (x) = −J

μTκ+ ρ(0) +

J

μTκ

⎝ ⎜

⎠ ⎟exp −κx( )

J

μTκ1− exp −κd( )( ) = ρ out exp −κd( ) − ρ (d), ρ (d) = ρ in = ρ out exp −βqVr( )

J =μTκ ρ out exp −κd( ) − ρ (d)( )

1− exp −κd( )=

μqVmρ out exp −βqVm( ) − exp −βqVr( )( )

d 1− exp −βqVm( )( )

Use Einstein relation:

Solution:

We are given ρ(0) and ρ(d). Use this to solve for J:

Page 57: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

J = −Ddρ

dx−

μqVm

dρ = const.

Page 58: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

Page 59: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( )

Page 60: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

Page 61: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

Integrate from 0 to d:

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

Page 62: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

Integrate from 0 to d:

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

J

κexp κd( ) −1( ) = −μT ρ in exp κd( ) − ρ out( )

Page 63: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

Integrate from 0 to d:

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

J

κexp κd( ) −1( ) = −μT ρ in exp κd( ) − ρ out( )

J = −μTκρ in exp κd( ) − ρ out

exp κd( ) −1

Page 64: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

Integrate from 0 to d:

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

J

κexp κd( ) −1( ) = −μT ρ in exp κd( ) − ρ out( )

J = −μTκρ in exp κd( ) − ρ out

exp κd( ) −1= −

μqVm ρ in exp βqVm( ) − ρ out( )

d exp βqVm( ) −1( )

Page 65: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

Integrate from 0 to d:

(as before)

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

J

κexp κd( ) −1( ) = −μT ρ in exp κd( ) − ρ out( )

J = −μTκρ in exp κd( ) − ρ out

exp κd( ) −1= −

μqVm ρ in exp βqVm( ) − ρ out( )

d exp βqVm( ) −1( )

L =μqVmρ out exp −βqVm( ) − exp −βqVr( )( )

d 1− exp −βqVm( )( )

Page 66: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current, another wayStart from

Note

Integrate from 0 to d:

(as before)

Note: J = 0 at Vm= Vr

J = −Ddρ

dx−

μqVm

dρ = const.

= −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟

J exp κx( ) = −μTdρ

dx+ κρ

⎝ ⎜

⎠ ⎟exp κx( ) = −μT

d

dxρ exp κx( )( )

J

κexp κd( ) −1( ) = −μT ρ in exp κd( ) − ρ out( )

J = −μTκρ in exp κd( ) − ρ out

exp κd( ) −1= −

μqVm ρ in exp βqVm( ) − ρ out( )

d exp βqVm( ) −1( )

L =μqVmρ out exp −βqVm( ) − exp −βqVr( )( )

d 1− exp −βqVm( )( )

Page 67: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

V

J

Page 68: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

Vm → −∞ : qJ ≈ −μq2ρ out

Vm

d

V

J

Page 69: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

Vm → −∞ : qJ ≈ −μq2ρ out

Vm

d= σE, E = −Vm /d,

V

J

Page 70: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

Vm → −∞ : qJ ≈ −μq2ρ out

Vm

d= σE, E = −Vm /d, σ = μq2ρ out

V

J

Page 71: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

Vm → −∞ : qJ ≈ −μq2ρ out

Vm

d= σE, E = −Vm /d, σ = μq2ρ out

Vm → +∞ : qJ ≈ −μq2ρ out exp(−βqVr)Vm

d= σE,

V

J

Page 72: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

Vm → −∞ : qJ ≈ −μq2ρ out

Vm

d= σE, E = −Vm /d, σ = μq2ρ out

Vm → +∞ : qJ ≈ −μq2ρ out exp(−βqVr)Vm

d= σE, σ = μq2ρ out exp(−βqVr) = μq2ρ in

V

J

Page 73: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

GHK current is nonlinear

(using z, Vr for Ca++)

Vm → −∞ : qJ ≈ −μq2ρ out

Vm

d= σE, E = −Vm /d, σ = μq2ρ out

Vm → +∞ : qJ ≈ −μq2ρ out exp(−βqVr)Vm

d= σE, σ = μq2ρ out exp(−βqVr) = μq2ρ in

Vm ≈ Vr: qJ ≈μβq3Vr

d⋅

ρ outρ in

ρ out − ρ in

⋅(Vr −Vm )

V

J

Page 74: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Kramers escape

Rate of escape from a potential well due to thermal fluctuations

www.nbi.dk/hertz/noisecourse/demos/Pseq.matwww.nbi.dk/hertz/noisecourse/demos/runseq.m

V1(x)P1(x)

P2(x)

V2(x)

Page 75: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Kramers escape (2)

a b c

V(x)

Page 76: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Kramers escape (2)

a b c

V(x)

J

Page 77: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Kramers escape (2)

a b c

V(x)

Basic assumption: (V(b) – V(a))/T >> 1

J

Page 78: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥Conservation (continuity):

Page 79: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −∂

∂xμ

∂V

∂xP + D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Conservation (continuity):

Page 80: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −∂

∂xμ

∂V

∂xP + D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −D∂

∂x

∂(βV )

∂xP +

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Conservation (continuity):

Use Einstein relation:

Page 81: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −∂

∂xμ

∂V

∂xP + D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −D∂

∂x

∂(βV )

∂xP +

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

J = −Dexp −βV (x)( )∂

∂xexp βV (x)( )P[ ]

Conservation (continuity):

Use Einstein relation:

Current:

Page 82: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −∂

∂xμ

∂V

∂xP + D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −D∂

∂x

∂(βV )

∂xP +

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

J = −Dexp −βV (x)( )∂

∂xexp βV (x)( )P[ ]

If equilibrium, J = 0,

Conservation (continuity):

Use Einstein relation:

Current:

Page 83: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −∂

∂xμ

∂V

∂xP + D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −D∂

∂x

∂(βV )

∂xP +

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

J = −Dexp −βV (x)( )∂

∂xexp βV (x)( )P[ ]

If equilibrium, J = 0,

P(x)∝ exp −βV (x)( )

Conservation (continuity):

Use Einstein relation:

Current:

Page 84: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Fokker-Planck equation

−∂P

∂t=

∂J

∂x=

∂xu(x)P −

∂xD(x)P( )

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −∂

∂xμ

∂V

∂xP + D

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= −D∂

∂x

∂(βV )

∂xP +

∂P

∂x

⎡ ⎣ ⎢

⎤ ⎦ ⎥

J = −Dexp −βV (x)( )∂

∂xexp βV (x)( )P[ ]

If equilibrium, J = 0,

Here: almost equilibrium, so use this P(x)

P(x)∝ exp −βV (x)( )

Conservation (continuity):

Use Einstein relation:

Current:

Page 85: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ] (J is constant)

Page 86: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

(J is constant)

integrate:

Page 87: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

≈ −exp βV (a)( )P(a)

(J is constant)

(P(c) very small)

integrate:

Page 88: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

≈ −exp βV (a)( )P(a)

⇒ J =Dexp βV (a)( )P(a)

exp βV (x)( )dxa

c

(J is constant)

(P(c) very small)

integrate:

Page 89: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

≈ −exp βV (a)( )P(a)

⇒ J =Dexp βV (a)( )P(a)

exp βV (x)( )dxa

c

If p is probability to be in the well, J = pr, where r = escape rate

(J is constant)

(P(c) very small)

integrate:

Page 90: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

≈ −exp βV (a)( )P(a)

⇒ J =Dexp βV (a)( )P(a)

exp βV (x)( )dxa

c

If p is probability to be in the well, J = pr, where r = escape rate

p = P(x)dxa−Δ

a +Δ

(J is constant)

(P(c) very small)

integrate:

Page 91: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

≈ −exp βV (a)( )P(a)

⇒ J =Dexp βV (a)( )P(a)

exp βV (x)( )dxa

c

If p is probability to be in the well, J = pr, where r = escape rate

p = P(x)dx = P(a)a−Δ

a +Δ

∫ exp β V (a) −V (x)( )[ ]dxa−Δ

a +Δ

(J is constant)

(P(c) very small)

integrate:

Page 92: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Calculating the current

−J

Dexp βV (x)( ) =

∂xexp βV (x)( )P(x)[ ]

−J

Dexp βV (x)( )dx

a

c

∫ = exp βV (x)( )P(x)[ ]a

c

≈ −exp βV (a)( )P(a)

⇒ J =Dexp βV (a)( )P(a)

exp βV (x)( )dxa

c

If p is probability to be in the well, J = pr, where r = escape rate

p = P(x)dx = P(a)a−Δ

a +Δ

∫ exp β V (a) −V (x)( )[ ]dxa−Δ

a +Δ

≈ P(a) exp − 12 β ′ ′ V (a)y 2

[ ]dy−∞

∫ = P(a)2π

β ′ ′ V (a)

⎝ ⎜

⎠ ⎟

12

(J is constant)

(P(c) very small)

integrate:

Page 93: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

Page 94: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

Page 95: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

= exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

Page 96: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

= exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

r =J

p=

Dexp βV (a)( )P(a)

p exp βV (x)( )dxa

c

Page 97: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

= exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

r =J

p=

Dexp βV (a)( )P(a)

p exp βV (x)( )dxa

c

=Dexp βV (a)( )P(a)

P(a)2π

β ′ ′ V (a)

⎝ ⎜

⎠ ⎟

12

exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

Page 98: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

= exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

r =J

p=

Dexp βV (a)( )P(a)

p exp βV (x)( )dxa

c

=Dexp βV (a)( )P(a)

P(a)2π

β ′ ′ V (a)

⎝ ⎜

⎠ ⎟

12

exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

=Dβ

⎝ ⎜

⎠ ⎟ ′ ′ V (a) ′ ′ V (b)( )

12 exp −β V (b) −V (a)( )[ ]

Page 99: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

= exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

r =J

p=

Dexp βV (a)( )P(a)

p exp βV (x)( )dxa

c

=Dexp βV (a)( )P(a)

P(a)2π

β ′ ′ V (a)

⎝ ⎜

⎠ ⎟

12

exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

=Dβ

⎝ ⎜

⎠ ⎟ ′ ′ V (a) ′ ′ V (b)( )

12 exp −β V (b) −V (a)( )[ ] =

μ

⎝ ⎜

⎠ ⎟ ′ ′ V (a) ′ ′ V (b)( )

12 exp −βEb( )

Page 100: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

calculating escape rate

In integral integrand is peaked near x = b

exp βV (x)( )dxa

c

exp βV (x)( )dxa

c

∫ ≈ exp βV (b)( ) exp − 12 β ′ ′ V (b) x − b( )

2

( )−∞

∫ dx

= exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

r =J

p=

Dexp βV (a)( )P(a)

p exp βV (x)( )dxa

c

=Dexp βV (a)( )P(a)

P(a)2π

β ′ ′ V (a)

⎝ ⎜

⎠ ⎟

12

exp βV (b)( )2π

β ′ ′ V (b)

⎝ ⎜

⎠ ⎟

12

=Dβ

⎝ ⎜

⎠ ⎟ ′ ′ V (a) ′ ′ V (b)( )

12 exp −β V (b) −V (a)( )[ ] =

μ

⎝ ⎜

⎠ ⎟ ′ ′ V (a) ′ ′ V (b)( )

12 exp −βEb( )________

Page 101: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

More about drift current

Notice: If u(x) is not constant, the probability cloud can shrink or spread even if there is no diffusion

Page 102: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

More about drift current

Notice: If u(x) is not constant, the probability cloud can shrink or spread even if there is no diffusion(like density of cars on a road where the speed limit varies)

Page 103: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

More about drift current

Notice: If u(x) is not constant, the probability cloud can shrink or spread even if there is no diffusion(like density of cars on a road where the speed limit varies)

http://www.nbi.dk/~hertz/noisecourse/driftmovie.m

Demo: initial P: Gaussian centered at x = 2u(x) = .00015x

Page 104: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation

∂P(x, t)

∂t= d ′ x w(x ← ′ x )P( ′ x , t) − w( ′ x ← x)P(x, t)[ ]∫ w(x ← ′ x ) ≡ r( ′ x ;x − ′ x ) :

Page 105: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation

∂P(x, t)

∂t= d ′ x w(x ← ′ x )P( ′ x , t) − w( ′ x ← x)P(x, t)[ ]∫ w(x ← ′ x ) ≡ r( ′ x ;x − ′ x ) :

(1st argument of r: starting point; 2nd argument: step size)

Page 106: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation

∂P(x, t)

∂t= d ′ x w(x ← ′ x )P( ′ x , t) − w( ′ x ← x)P(x, t)[ ]∫ w(x ← ′ x ) ≡ r( ′ x ;x − ′ x ) :

= d ′ x r( ′ x ;x − ′ x )P( ′ x , t) − r(x; ′ x − x)P(x, t)[ ]∫ ′ x = x − s :

(1st argument of r: starting point; 2nd argument: step size)

Page 107: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation

∂P(x, t)

∂t= d ′ x w(x ← ′ x )P( ′ x , t) − w( ′ x ← x)P(x, t)[ ]∫ w(x ← ′ x ) ≡ r( ′ x ;x − ′ x ) :

= d ′ x r( ′ x ;x − ′ x )P( ′ x , t) − r(x; ′ x − x)P(x, t)[ ]∫ ′ x = x − s :

= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

(1st argument of r: starting point; 2nd argument: step size)

Page 108: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation

∂P(x, t)

∂t= d ′ x w(x ← ′ x )P( ′ x , t) − w( ′ x ← x)P(x, t)[ ]∫ w(x ← ′ x ) ≡ r( ′ x ;x − ′ x ) :

= d ′ x r( ′ x ;x − ′ x )P( ′ x , t) − r(x; ′ x − x)P(x, t)[ ]∫ ′ x = x − s :

= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

Small steps assumption: r(x;s) falls rapidly to zero with increasing |s| on the scale on which it varies with x or the scale on which P varies with x.

(1st argument of r: starting point; 2nd argument: step size)

Page 109: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation

∂P(x, t)

∂t= d ′ x w(x ← ′ x )P( ′ x , t) − w( ′ x ← x)P(x, t)[ ]∫ w(x ← ′ x ) ≡ r( ′ x ;x − ′ x ) :

= d ′ x r( ′ x ;x − ′ x )P( ′ x , t) − r(x; ′ x − x)P(x, t)[ ]∫ ′ x = x − s :

= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

Small steps assumption: r(x;s) falls rapidly to zero with increasing |s| on the scale on which it varies with x or the scale on which P varies with x.

(1st argument of r: starting point; 2nd argument: step size)

x

s

Page 110: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

expand:

Page 111: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

expand:

Page 112: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

expand:

Page 113: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

expand:

Page 114: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

expand:

Kramers-Moyal expansion

Page 115: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

expand:

Kramers-Moyal expansionFokker-Planck eqn if drop terms of order >2

Page 116: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

rn (x) = snr(x,s)ds∫

expand:

Kramers-Moyal expansionFokker-Planck eqn if drop terms of order >2

Page 117: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t)

⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

rn (x) = snr(x,s)ds∫

expand:

rn(x)Δt = nth moment of distribution of step size in time Δt

Kramers-Moyal expansionFokker-Planck eqn if drop terms of order >2

Page 118: Lecture 4: Diffusion and the Fokker-Planck equation Outline: intuitive treatment Diffusion as flow down a concentration gradient Drift current and Fokker-Planck

Derivation from master equation (2)

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= ds r(x;s)P(x, t) − s∂

∂xr(x,s)P(x, t)( ) + 1

2 s2 ∂ 2

∂x 2 r(x,s)P(x, t)( ) +L − r(x;−s)P(x, t) ⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

rn (x) = snr(x,s)ds∫

r1(x) = u(x), r2(x) = 2D(x)

expand:

rn(x)Δt = nth moment of distribution of step size in time Δt

Kramers-Moyal expansionFokker-Planck eqn if drop terms of order >2