lecture #13 - mixedsignal · ee40 summer 2005: lecture 13 instructor: octavian florescu 5 mosfet...

18
EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 1 Lecture #13 OUTLINE MOSFET I D vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Hambley: Chapter 12.1-12.6 Rabaey: Section 3.3 EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 2 At high electric fields, the average velocity of carriers is NOT proportional to the field; it saturates at ~10 7 cm/sec for both electrons and holes: Velocity Saturation

Upload: others

Post on 30-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 1

Lecture #13

OUTLINE

�MOSFET ID vs. VGS characteristic

�Circuit models for the MOSFET

� resistive switch model

�small-signal model

Reading

� Hambley: Chapter 12.1-12.6

� Rabaey: Section 3.3

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 2

At high electric fields, the average velocity of carriers is

NOT proportional to the field; it saturates at ~107 cm/sec

for both electrons and holes:

Velocity Saturation

Page 2: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 3

Current Saturation in Modern MOSFETs� In digital ICs, we typically use transistors with the

shortest possible gate-length for high-speed operation.

� In a very short-channel MOSFET, ID saturates because

the carrier velocity is limited to ~107 cm/sec

v is not proportional to E,

due to velocity saturation

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 4

1. ID is lower than that predicted by the mobility model

2. ID increases linearly with VGS − VT rather than quadratically in the saturation region

Consequences of Velocity Saturation

sat

n

DSAT

satDSAT

TGSoxDSAT

vL

V

vV

VVWCI

µ=

−−=

where

2

Page 3: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5

MOSFET VT Measurement

� VT can be determined by plotting ID vs. VGS,

using a low value of VDS :

DSDS

TGSnD VV

VVL

WkI

−−′=2

ID (A)

VGS (V)VT

0

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 6

Subthreshold Conduction (Leakage Current)� The transition from the ON state to the OFF state

is gradual. This can be seen more clearly when

ID is plotted on a logarithmic scale:

� In the subthreshold

(VGS < VT) region,

This is essentially the channel-

source pn junction current.

(Some electrons diffuse from the

source into the channel, if this

pn junction is forward biased.)

∝nkT

qVI GSD exp

VDS > 0

Page 4: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 7

Qualitative Explanation for Subthreshold Leakage

� The channel Vc (at the Si surface) is capacitively

coupled to the gate voltage VG:

ox

dep

ox

depox

C

C

C

CCn +=

+=⇒ 1

Cox

Cdep+

Vc

VG

Using the capacitive

voltage divider formula:

p-type Si

n+ poly-Si

n+ n+

depletion

region

VG

CIRCUIT MODELDEVICE

The forward bias on

the channel-source pn

junction increases with

VG scaled by the factor

Cox / (Cox+Cdep)

VD G

depox

oxc V

CC

CV ∆

+=∆

Adep

Sidep

NWC

1∝=

ε

Wdep

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 8

Slope Factor (or Subthreshold Swing) S� S is defined to be the inverse slope of the log (ID)

vs. VGS characteristic in the subthreshold region:

VDS > 0

1/S is the slope

)10ln(

q

kTnS

Units: Volts per decade

Note that S ≥ 60 mV/dec

at room temperature:

mV 60)10ln( =

q

kT

Page 5: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 9

VT Design Trade-Off

(Important consideration for digital-circuit applications)� Low VT is desirable for high ON current

IDSAT ∝∝∝∝ (VDD - VT)ηηηη 1 < η < 2

where VDD is the power-supply voltage

…but high VT is needed for low OFF currentLow VT

High VT

IOFF,high VT

IOFF,low VT

VGS

log IDS

0

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 10

The MOSFET as a Resistive Switch� For digital circuit applications, the MOSFET is

either OFF (VGS < VT) or ON (VGS = VDD). Thus,

we only need to consider two ID vs. VDS curves:

1. the curve for VGS < VT

2. the curve for VGS = VDD

ID

VDS

VGS = VDD (closed switch)

VGS < VT (open switch)

Req

Page 6: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 11

Equivalent Resistance Req� In a digital circuit, an n-channel MOSFET in the

ON state is typically used to discharge a

capacitor connected to its drain terminal:

� gate voltage VG = VDD

� source voltage VS = 0 V

� drain voltage VD initially at VDD, discharging toward 0 V

The value of Req should be

set to the value which gives

the correct propagation

delay (time required for

output to fall to ½VDD):

Cload

−≅ DDn

DSATn

DDeq V

I

VR λ

6

51

4

3( )2

2TnDD

nDSATn VV

L

WkI −

′=

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 12

Typical MOSFET Parameter Values� For a given MOSFET fabrication process

technology, the following parameters are known:

� VT (~0.5 V)

� Cox and k′′′′ (<0.001 A/V2)

� VDSAT (≤ 1 V)

� λ λ λ λ (≤ 0.1 V-1)

Example Req values for 0.25 µm technology (W = L):

How can Req be decreased?

Page 7: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 13

MOSFET Model for Analog Circuits

� For analog circuit applications, the MOSFET is biased in the saturation region, and the circuit is designed to process incremental signals.� A DC operating point is established by the bias voltages VBIAS

and VDD, such that VDS > VGS – VT

� Incremental voltages vs and vds that are much smaller in magnitude perturb the operating point

� The MOSFET small-signal model is a circuit which models the change in the drain current (id) in response to these perturbations

MOSFET+–

+–

RD

VDDVBIAS

vs

G

S S

D

ID + id

+

VDS + vds

−−−−

−−−− +

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 14

NMOSFET Small-Signal Model

gmvgs ro

+

vgs

−−−−

id

( )

D

DS

Do

TGS

GS

Dm

dsogsmds

DS

Dgs

GS

Dd

Iv

ig

VVkL

W

v

ig

vgvgvv

iv

v

ii

λ≅∂∂

−′≅∂∂

+=∂∂

+∂∂

=S

D

S

G

transconductance

output conductance

+

vds

−−−−

Page 8: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 15

Notation� Subscript convention (Lecture 2, Slide 11):

� VDS ≡≡≡≡ VD – VS , VGS ≡ VG – VS , etc.

� Double-subscripts denote DC sources (Lecture 23, Slide 7):� VDD , VCC , ISS , etc.

• To distinguish between DC and AC components of an electrical quantity, the following convention is used:

– DC quantity: upper-case letter with upper-case subscript

� ID , VDS , etc.

– AC quantity: lower-case letter with lower-case subscript

� id , vds , etc.

– Total (DC + AC) quantity:

lower-case letter with upper-case subscript

� iD , vDS , etc.

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 16

P-Channel MOSFET Example� In a digital circuit, a p-channel MOSFET in the

ON state is typically used to charge a capacitor

connected to its drain terminal:

� gate voltage VG = 0 V

� source voltage VS = VDD (power-supply voltage)

� drain voltage VD initially at 0 V, charging toward VDD

Cload

−≅ DDp

DSATp

DDeq V

I

VR λ

6

51

4

3

VDD

0 V

iD

( )22

TpDD

p

DSAT VVL

WkI −

′−=

Page 9: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 17

Common-Source (CS) Amplifier� The input voltage

vs causes vGS to

vary with time,

which in turn

causes iD to vary.

VDD

RD

+

vOUT = vDS

−−−−

+

vIN = vGS

−−−−

+–

VBIAS

vs−−−− +

iD

� The changing voltage

drop across RD causes

an amplified (and

inverted) version of the

input signal to appear

at the drain terminal.

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 18

Load-Line Analysis of CS Amplifier� The operating point of the circuit can be determined

by finding the intersection of the appropriate

MOSFET iD vs. vDS characteristic and the load line:

DSDDDD viRV +=

vGS (V)

vDS (V)

iD (mA) load-line equation:

Page 10: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 19

Voltage Transfer Function

(1): transistor biased in cutoff region

(2): vIN > VT ; transistor biased in saturation region

(3): transistor biased in saturation region

(4): transistor biased in “resistive” or “triode” region

Goal:

Operate the amplifier

in the high-gain region,

so that small changes

in vIN result in large

changes in vOUTvIN

vOUT

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 20

Quiescent Operating Point� The operating point of the amplifier for zero input

signal (vs = 0) is often referred to as the quiescent

operating point or Q point.

� The Q point should be chosen so that the output voltage

is approximately centered between VDD and 0 V.

� vs varies the input voltage around the Q point.

Note: The relationship between vOUT and vIN is not linear;

this results in a distorted output voltage signal. If the

input signal amplitude is very small, however, we can

have amplification with negligible distortion.

Page 11: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 21

Bias Circuit Example

VDD

RD

R1

R2

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 22

Rules for Small-Signal Analysis

� A DC supply voltage source acts as a short circuit

� Even if AC current flows through the DC voltage source,

the AC voltage across it is zero.

� A DC supply current source acts as an open circuit

� Even if AC voltage is applied across the current source,

the AC current through it is zero.

Page 12: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 23

Small-Signal Equivalent Circuit

gmvgs ro

+

vgs

−−−−

RD

+

vout

−−−−

R1 R2

G

S S

D

+

vin

−−−−

( )

( )Dom

in

outv

Dogsmout

Rrgv

vA

Rrvgv

||

||

−==

−=

voltage gain

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 24

1. Voltage amplifier

input & output signals are voltages

2. Current amplifier

input and output signals are currents

3. Transconductance amplifier

input signal is voltage;

output signal is current

4. Transresistance amplifier

input signal is current;

output signal is voltage

Amplifier Types

amplifier+vin−−−−

+vout−−−−

amplifier

ioutiin

amplifier

iout+vin−−−−

amplifier

iin+vout−−−−

Page 13: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 25

Two-Port Amplifier Model

for a transconductance amplifier

gmvin Rout

+

vin

−−−−

Rin

iout

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 26

Effect of Source and Load Resistances

� Overall transconductance is degraded by the

source resistance Rs and load resistance RL

gmvin Rout

+

vin

−−−−

RLRin+–vs

+

+=

outL

outm

sin

in

s

out

RR

Rg

RR

R

v

i

ioutRs

Page 14: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 27

NMOSFET Summary: Current Flow

Gate current iG = 0

Body current iB = 0

� iS = −iD

G

S D

p-type Si

n+ poly-Si

NMOSFET Structure

n+ n+

iG

NMOSFET Circuit Symbol

iDiS

iB

+vGS

−−−−

−−−− vDS +

If vGS ≤ VT, iD = 0

If vGS > VT, iD > 0

Current is limited by either

• the resistance of the

inversion-charge layer, or

• velocity saturation

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 28

• When vGS ≤ VT, an n-type channel is not formed.

� No electrons flow from SOURCE to DRAIN

“CUTOFF mode”

• When vGS > VT, an n-type channel (“inversion” layer of

electrons at the surface of the semiconductor) is formed.

� Electrons may flow from SOURCE to DRAIN (iD > 0)

If vDS < vGS–VT, the inversion layer exists across the

entire channel length, and current iD increases with vDS

“LINEAR mode” or “TRIODE mode”

If vDS ≥ vGS–VT, the inversion layer is pinched off at the

drain end, and current iD does not increase with vDS

“SATURATION mode”

NMOSFET Summary: Modes of Operation

Page 15: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 29

NMOSFET Summary: I-V Characteristics

vDS

iD

0

pn+n+

“SATURATION”

“LINEAR”

or

“TRIODE” vGS = VG3 > VG2

vGS = VG2 > VG1

vDS= vGS–VT ≡ VDSAT

pn+ n+

pn+n+

“CUTOFF”( vGS ≤≤≤≤ VT )

pn+n+

vGS = VG1 > VT

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 30

NMOSFET Summary: I-V Equations

“SATURATION”“LINEAR” or “TRIODE”

DSDS

TGSnD vv

VvL

Wki

−−′=2

( )22

TGSn

D VvL

Wki −

′=

vDS

iD

0

vGS > VT

vDS= vGS–VT ≡ VDSAT

Page 16: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 31

PMOSFET I-V Equations

“SATURATION” “LINEAR” or “TRIODE”

DSDS

TpGSpD vv

VvL

Wki

−−′−=2

( )22

TpGS

p

D VvL

Wki −

′−=

vDS

iD

0

|vGS| > |VTp|

vDS= vGS–VT ≡ VDSAT

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 32

Channel-length modulation:

� The length of the pinch-off region, ∆L, increases with increasing vDS above vGS–VT. It reduces the length of the

inversion layer and hence the resistance of this layer.

→ iD increases noticeably with vDS, if L is small

NMOSFET Summary: Non-Ideal Behavior

vDS

iD

0

cross-sectional

view of channel:

inversion layer

VDSAT

λ λ λ λ is the slope(channel-length

modulation parameter)

Page 17: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 33

sat

n

DSAT

satDSAT

TGSoxDSAT

vL

V

vV

VvWCi

µ=

−−=

where

2

Velocity Saturation:

� In a very-short-channel MOSFET, iD saturates because

the carrier velocity is limited to ~107 cm/sec

� iD reaches a limit before pinch-off occurs

(continued)

< vGS–VT

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 34

(continued)

Subthreshold Leakage:

� For vGS ≤ VT, iD is exponentially dependent on vGS:

� The leakage current specification sets the lower limit for

the threshold voltage VT

leakage current, IOFFvGS

log iDS

0 VT

1/S is the slope

Page 18: Lecture #13 - MiXeDsIgNaL · EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 5 MOSFET VTMeasurement VTcan be determined by plotting IDvs.VGS, using a low value of VDS :

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 35

NMOSFET Summary: Circuit Models

� For analog circuit applications (where we are concerned

only with changes in current and voltage signals, rather

than their total values), the small-signal model is used:

( )

Do

TGSnm

Ig

VVkL

Wg

λ≅

−′≅

gmvgs 1/go

+

vgs

−−−−

id

S

D

S

G

transconductance

output conductancewhere VGS & ID are the

DC bias (Q point) values

EE40 Summer 2005: Lecture 13 Instructor: Octavian Florescu 36

NMOSFET Summary: Circuit Models

� For digital circuit applications, the MOSFET is modeled

as a resistive switch:Req

−≅ DDn

DSATn

DDeq V

I

VR λ

6

51

4

3

( )22

TnDDn

DSATn VVL

WkI −

′=

vDS

iD

0 VDDVDD/2

MOSFET is turned on

(VGS = VDD) when VDS = VDD

As the load capacitor discharges,

VDS decreases to 0 V

slope ≅≅≅≅ VDD

/ IDSAT

slope ≅≅≅≅ VDD / 2 IDSAT