lecture 07 - z-transform

Upload: imelda-yulistya

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Lecture 07 - Z-Transform

    1/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    1

    Lecture 7: Z-transform

    Instructor:

    Dr. Gleb V. Tcheslavski

    Contact:

    [email protected]

    Office Hours:

    Room 2030

    Class web site:

    http://ee.lamar.edu/gleb/dsp/index.htm

  • 8/6/2019 Lecture 07 - Z-Transform

    2/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    2

    Definitions

    Z-transform converts a discrete-time signal into a complex

    frequency-domain representation. It is similar to the Laplace

    transform for continuous signals.

    ( ) nnn

    X z x z| If (where) it exists!

    (7.2.1)

    n is an integer time index;

    j

    z re[

    ! is a complex number; [ - angular freq.

    When the magnitude r=1,jz e [!

    ( ) j j nnn

    z e x e[ [p ! If it exists!

    (7.2.2)

  • 8/6/2019 Lecture 07 - Z-Transform

    3/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    3

    Region of Convergence (ROC)

    j z re[! (7.3.2)Since z is complex:

    ( ) n j n n j nn nn n

    X z x r e x r e[ [ ! !

    The Region of convergence (ROC) is the set of points zin the complex plane,

    for which the summation is bounded (converges):

    n

    n

    n

    x z g (7.3.1)

    In general, z-transform exists for r r r

    r z r

    (7.3.3)

    (7.3.4)

    (7.3.5)

    r- r+ Re

    Im

  • 8/6/2019 Lecture 07 - Z-Transform

    4/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    4

    Region of Convergence (ROC)

    Examples of ROCs

    from Mitra

  • 8/6/2019 Lecture 07 - Z-Transform

    5/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    5

    Region of Convergence (ROC)

    Example 7.1: Let xn = an _ a2 1 2..., , , , , ,...n x a a a a !

    n

    n

    n

    x z

    ! gThere are no values ofzsatisfying:

    Example 7.2: Let xn = an un a causal sequence

    1 10

    1( )

    1

    nn n

    n

    n n

    X z aaz

    u z azg

    !

    ! !

    !

    1 1o af r az z "

    a Re

    Im

    (7.5.1)

    ROC

    We can modify (7.5.1) as

    ( )( )

    ( )

    z N zz

    z a D z! !

    (7.5.2)

    ( ) 0 0

    ( ) 0

    ( )

    ( )

    N z z

    D

    zero s

    pol z z a e s

    ! !

    ! !

    x

    ( )n

    n

    n

    X z x z|

    roots of numerator: X(z) = 0

    roots of denominator: X(z) p g

  • 8/6/2019 Lecture 07 - Z-Transform

    6/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    6

    Region of Convergence (ROC)

    Example 7.3: Let xn = -an u-n-1 an anticausal sequence

    _ a

    1

    11

    1

    1 1

    1 11

    1 0

    1

    1( )n

    n n n

    n

    n n

    m m

    m m

    a u z n n a z

    az a z

    X z

    a z z

    a z z a

    !g

    g g

    !

    !

    ! ! u e !

    ! !

    !

    !

    (7.6.1)

    a Re

    Imx1 1for a z z a

    Conclusion 1: z-transform exists only within the ROC!

    Conclusion 3: poles cannot exist in the ROC; only on its boundary.

    Note: if the ROC contains the unit circle (|z|=

    1), the system is stable.

    Conclusion 2: z-transform and ROC uniquely specify the signal.

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    7/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    7

    The transfer function

    -i n i j n j

    i j

    a y b x2 1

    ! !

    ! Consider an LCCDE:

    Time shift:( ) { } ( )n

    l m

    n m n m lz

    n l

    x x z z l n m z x z z z p ! ! ! !

    and take z-transform

    utilizing time shift( ) ( )i j

    i j

    i j

    a z Y z b z z2 1

    ! !

    !

    LTI:( )

    ( )

    ( ) ( ) ( )n n m mn n n m n m m n mz

    n m m n

    z

    y h x h x z h xY z Hz zz z ! p ! ! ! 1 44 2 4 43

    The system transfer function0

    0

    ( )( )

    ( )

    M

    j

    j

    j n

    n

    i ni

    i

    b zY z

    z h zX z

    a z

    !

    !

    ! ! !

    (7.7.1)

    (7.7.2)

    (7.7.3)

    (7.7.4)

    (7.7.5)

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    8/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    8

    Rational z-transform

    Frequently, a z-transform can be described as a rational function, i.e. a

    ratio of two polynomials in z-1:1 ( 1)

    0 1 1

    1 ( 1)

    0 1 1

    ...( )( )

    ( ) ...

    M M

    M M

    N N

    N N

    n n z n z n zP zz

    z d d z d z d z

    ! !

    Here Mand Nare the degrees of the numerators and denominatorspolynomials. An alternative representation is a ratio of two polynomials in z:

    ( 1)

    0 1 1

    1

    0 1 1

    ...( )( )

    ( ) ...

    M M

    N M M M

    N N

    N N

    n z n z n z nP zz z

    z d z d z d z d

    ! !

    (7.8.1)

    (7.8.2)

    Finally, a rational z-transform can be written in a factorized form:

    1

    0 0

    1 1( )

    1

    0 0

    1 1

    (1 ) ( )

    ( )

    (1 ) ( )

    M M

    j j

    j jN M

    N N

    i i

    i i

    n z z n z z

    z z

    d p z d z p

    ! !

    ! !

    ! !

    (7.8.3)

    zeros: numerator= 0

    Poles: denominator= 0

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    9/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    9

    Notes on poles of a system function

    Positions of poles of a transfer function are used to evaluate system

    stability. Let assume a single real pole at z=E. Therefore:

    ( ) 1( )( )

    Y z z zY z Y z X z

    X z zE

    E! ! !

    The difference equation is:

    1 1 1n n n n n n y y x y y xE E ! !

    Therefore, the impulse response is:

    1 1n n nh hE H !

    for 20,1, 2, 3,... 0,1, , ,...nn h E E ! ! Iff |E| < 1, hn decays as npg and the system is BIBO stable; otherwise, hngrows without limits. Therefore, poles of a stable system (and signals

    in fact) must be inside the unit circle.

    Zeros may be placed anywhere. Zeros at the origin produce a time delay.

    (7.9.1)

    (7.9.2)

    (7.9.3)

    (7.9.4)

  • 8/6/2019 Lecture 07 - Z-Transform

    10/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    10

    The transfer function and the

    Frequency response

    ( )1 jn z en

    jh z RO HC e H z [[

    ! g ! !BIBO:

    0

    0 1

    0

    0 1

    ( )

    ( )

    ( )

    MM

    Mj

    jj

    j jN N

    i N

    i i

    i i

    b z z zb z

    H z

    a z a z z p

    ! !

    ! !

    ! !

    where zj are zeros andpiare poles of the transfer function.

    BIBO:

    10

    0

    1

    0

    ( )

    1

    0

    1

    0

    0

    1

    1

    ( 1

    ( ( ) ( )

    )

    ( )

    )

    M

    M

    j M N j

    j

    jj

    N

    jj

    jj

    N

    j

    i

    i

    M N

    j

    j

    i

    i j j

    j i

    j i

    b e e z

    e zb

    ea

    e pe

    a e

    e b a M N e z e

    p

    p

    [

    [

    [

    [

    [ [

    [

    [

    [ [[

    !

    !

    !

    !

    ! !

    !

    !

    !

    (7.10.1)

    (7.10.2)

    (7.10.3)

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    11/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    11

    The transfer function and the

    Frequency response

    A good way to evaluate the systems frequency response:

    _ a

    _ a

    0

    2

    0k

    M

    mj

    Nkp

    k

    P FT be

    P FT a

    [T

    [ !

    !

    When the frequency approaches a pole, the frequency response has a local

    maximum, a zero forces the response to a local minimum.

    For real systems, poles and zeros are symmetrical with respect to the real axis.

    (7.11.1)

    0 0.1 0.2 0.3 0.4 0.5 0

    0. 5

    1

    1. 5

    MagnitudeofH

    ([)

    Fractional f requency, [

    pole zero

    Zero-padded

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    12/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    12

    The transfer function and the SFG

    1 ( ) ( ) ( )

    ( ) ( ) ( )

    n n n

    T Tzn n n

    S AS bx zS z AS z bX z

    y c S dx Y z c S z dX z

    ! ! p

    ! !

    1

    1

    1

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( )

    T

    T

    zI S z b z S z zI

    Y z c zI b z d z

    H z c zI b d

    b z

    !

    ! !

    !

    Poles ofH(z) correspond to the eigenvalues of the

    system matrix.

    (7.12.1)

    (7.12.2)

    (7.12.3)

  • 8/6/2019 Lecture 07 - Z-Transform

    13/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    13

    More on Transfer function

    0

    1 ( )0 0 1

    00

    0 1 1

    ( ) ( )( )

    ( )( )

    ( ) ( )

    M MMMm

    j mmj M Nm m

    N N N

    k N

    k i k

    k i k

    b z z z z zb zbP z

    z zz a

    a z a z z p z p

    ! ! !

    ! ! !

    ! ! ! !

    | 1 ( )j

    j

    j

    jz e

    e BIB z z e

    e[

    [

    [

    [!

    ! p p

    1) N> M: zeros at z= 0 of multiplicity N-M

    2) M> N: poles at z= 0 of multiplicity M-N

    zeros

    poles

    ( )

    ( )

    ( )

    1

    ( ) .

    j M N

    j M N

    j M N

    e const magnitudee distortionless

    e M N lin phase

    [[

    [ [

    ! p

    !

    (7.13.1)

    ( ) 0 ( ) 0; ( ) ( )i i i i

    H z Y z H p Y pp p p g p g (7.13.2)

  • 8/6/2019 Lecture 07 - Z-Transform

    14/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    14

    Types of digital filters

    0( ) 0

    M

    nm

    m n

    m

    b n MH z b z h otherwise

    !

    e e! p !

    1. FIR (all-zero) filter:

    (7.14.1)

    All poles are at z= 0: a nest of poles

    ROC: the entire z-plane except of the origin (z= 0).

    FIR filters are stable.

  • 8/6/2019 Lecture 07 - Z-Transform

    15/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    15

    Types of digital filters

    2. IIR (all-pole) filter:

    0

    0

    ( )N

    k

    k

    k

    bH z

    a z

    !

    !

    All zeros are at z= 0: a nest of zeros

    (7.15.1)

  • 8/6/2019 Lecture 07 - Z-Transform

    16/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    16

    Types of digital filters

    3. General IIR (zero-pole) filter:

    0

    0

    ( )

    M

    m

    mm

    N

    k

    k

    k

    b zH z

    a z

    !

    !

    !

    (7.16.1)

  • 8/6/2019 Lecture 07 - Z-Transform

    17/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    17

    On test signals

    ( ) ( ) ( ) n n nz

    Y z H z X z y h x! p !

    n nhH p

    n k n k n

    k

    x x yH ! p %

    Calculate and compare ton k n kk

    y x h! ny

    %

    (7.17.1)

    (7.17.2)

    (7.17.3)

    We dont need any other that a delta function test signals since a unit-pulse

    response is a complete systems description.

  • 8/6/2019 Lecture 07 - Z-Transform

    18/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    18

    Types of sequences and convergence

    1. Two-sided:

    ( )N

    n

    n M

    nG z g z

    !

    !

    Converges everywhere except ofz= 0 and z=g

    (7.18.1)

  • 8/6/2019 Lecture 07 - Z-Transform

    19/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    19

    Types of sequences and convergence

    2. Right-sided:

    1

    0

    ( ) n n nn n nn nM Mn

    G z g z g z g z g

    g

    ! !!

    ! ! (7.19.1)

    Assume: if converges at z = z0, converges for |z| > | z0|

    Blows up at z=g

    ROC: r-

    < |z| < g - exterior ROC

    For a causal sequence: |z| > r- = max|pk| - a max pole ofG(z)

    To be causal, a sequence must be right-sided (necessary but not sufficient)

  • 8/6/2019 Lecture 07 - Z-Transform

    20/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    20

    Types of sequences and convergence

    3. Left-sided:

    1

    0

    ( ) n n nn n nn n n

    N N

    G z g z g z g z

    ! !g !

    g

    ! ! (7.20.1)

    Blows up at z= 0Converges at z0

    ROC: 0 < |z| < r+

    - interior ROC

    When encountering an interior ROC, we need to check convergence at

    z= 0. If the sequence blows up at zero its an anti-causal sequence

  • 8/6/2019 Lecture 07 - Z-Transform

    21/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    21

    Properties

    from Mitra

  • 8/6/2019 Lecture 07 - Z-Transform

    22/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    22

    Common pairs

  • 8/6/2019 Lecture 07 - Z-Transform

    23/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    23

    Inverse z-transform

    11 ( )2

    n

    n

    c

    x z z dzjT

    ! i (7.23.1)

    WhereC

    is a counterclockwise closed path encircling the origin and is entirely inthe ROC. ContourCmust encircle all the poles ofX(z).

    In general, there is no simple way to compute (7.23.1)

    A special case:C is the unit circle (can be used when the ROC includes the unit circle).

    The inverse z-transform reduces to the IDTFT.

    12

    j j n

    n x X e e d

    T[ [

    T

    [T

    ! (7.23.2)

  • 8/6/2019 Lecture 07 - Z-Transform

    24/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    24

    Inverse z-transform

    A. Via Cauchy residue theorem

    n i

    i

    x V! For all poles ofX(z)zn-1 inside C (contour of integration)

    WhereViare the residues ofX(z)zn-1

    1

    1

    ( )1

    ( 1)! i

    k

    i

    i k

    z p

    d z

    kdz

    JV

    !

    !

    for a pole of multiplicity k:

    Residue function: 1( ) ( ) kni i

    z X z z z pJ !

    (7.24.1)

    (7.24.2)

    (7.24.3)

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    25/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    25

    Inverse z-transform: Example

    ( ) ;z

    z a zz a

    !

    a Re

    Im

    xC

    1

    0

    01 1

    02 2

    nan

    n

    aC C

    nz z x z dz dz

    nj z a j z a

    V

    V VT T

    u! ! !

    i i

    Example:

    V0 is a residue ofX(z)z-n-1 at z=0 involves pole of

    multiplicity n wnen n < 0.1

    1

    1

    1( )

    ( 1)!

    k nk n n

    a k z ak

    d z z a z a

    k d z z aV

    !!

    ! ! !

    multiplicity1 1

    0 1 0

    1 ( ) 1( 0) ( 1)( 2)...( ( 1))( )

    ( 1)! ( 1)!

    k

    k k k n

    k k z

    d z aLet n k n z k z a a a

    k dz z kV

    !

    ! ! ! ! !

    0

    0 0nn

    n n

    n

    nn

    a nx

    a aa u

    nx

    u !

    !

    !

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    26/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    26

    Inverse z-transform

    B. Via recognition (table look-up)

    Example:

    ( )a

    zz e!

    0 0

    1( ) ; 1

    !!

    na

    z

    n

    nn

    n

    a a X z e z a

    z n

    az

    n z

    g

    !

    g

    !

    ! ! ! "

    !

    n

    n n

    ax u

    n!Therefore:

    Sometimes, the z-transform can be modified such way that it can be

    found in a table

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    27/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    27

    Inverse z-transform

    C. Via long division

    1. Right-sided z-transform sequences can be expanded into a power series in

    z-1. The coefficient multiplying z-n is the nth sample of the inverse z-transform.

    Example:2 1

    1

    2 2( ) ; 1

    1

    z z X z z

    z

    ! "

    Lower powers first:

    1 2

    1

    2 2( ) ; 1

    1

    z zz z

    z

    !

    and long division:11 |z

    2 3 42 ... z z z 1 2

    1

    2 2

    2 2

    z z

    z

    2

    2 3

    z

    z z

    {2, 0,1, 1,1,...}nx !

    x0x1x2 x3 x4

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    28/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    28

    Inverse z-transform

    2. Left-sided z-transform sequences into a power series in z1

    Example: 2 1

    1

    2 2( ) ; 1

    1

    z z X z z

    z

    !

    Multiply both numerator and denominator by z2

    2 2 1 2

    2 1 2

    2 2 1 2 2( )

    1

    z z z z zz

    z z z z

    ! !

    Long division

    1 2 3 4( ) 1 ...X z z z z z z!

    x0 x-1 x-2 x-3 x-4x1 Non-causal

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    29/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    29

    Inverse z-transform

    Example:

    2 1

    1 1

    2 2 1( ) ; 1

    21 2

    z zX z z

    z z

    !

    not suitable for

    long division!

    Example: 1

    1

    1 1

    ( ) 1 ; 1

    1

    ( 1)nn n n n

    zX z z z

    zz

    x uH H

    !

    q q

    !

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    30/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    30

    Inverse z-transform

    D. Via partial fraction expansion (PFE)

    ( )( ) ;

    ( )

    N zLet G z r z r

    D z

    !

    If the degree of the numerator is equal or greater than the degree of the

    denominator: Mu N, G(z) is an improper polynomial. Then:

    1

    0

    (( )(

    ( ))

    )

    ( )

    M Nl

    l

    l

    N zG z

    D

    N zc z

    zz D

    !

    ! !

    A proper fraction: M1 < N

    (7.30.1)

    (7.30.2)

    Then:1

    0 1

    ( )1

    M N N

    l ll

    l l l

    cp

    G z zz

    V

    ! ! !

    Simple poles: multiplicity of 1.

    (7.30.3)

    ( )n

    n

    n

    X z x z|

  • 8/6/2019 Lecture 07 - Z-Transform

    31/31

    ELEN 5346/4304 DSP and Filter Design Fall 2008

    31

    Inverse z-transform

    Here Vl is a residue

    ( ) ( )l

    n l

    l l z pz p G z zV

    !!

    poles

    Therefore:

    0 1

    :

    :

    n M N N

    l n l

    n l n l l nl l l n l l

    p u ifexternal ROC p rg c

    p u ifinternal ROC p rH V

    ! !

    e!

    u

    (7.31.1)

    (7.31.2)

    This method is suitable for complex poles.

    Problem: large polynomials are hard to manipulate

    ??QUESTIONS??

    ( )n

    n

    n

    X z x z|