lect4-p-t-logic

Upload: md-ashraful-islam

Post on 08-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Lect4-P-T-Logic

    1/39

    Dynamic andDynamic and

    PassPass--TransistorTransistorLogicLogic

    Prof. Vojin G. OklobdzijaProf. Vojin G. Oklobdzija

    ReferencesReferences (used for creation of the presentation material):(used for creation of the presentation material):1.1. Masaki,Masaki, DeepDeep--SubmicronCMOSWarmsUptoHighSubmicronCMOSWarmsUptoHigh--SpeedLogicSpeedLogic ,, IEEEIEEE

    CircuitsandDevicesMagazine, November1992.CircuitsandDevicesMagazine, November1992.2.2. Krambeck, C.M. Lee, H.S. Law,Krambeck, C.M. Lee, H.S. Law,HighHigh--SpeedCompact CircuitswithCMOSSpeedCompact CircuitswithCMOS ,,

    IEEE Journal of SolidIEEE Journal of Solid--StateCircuits, Vol. SCStateCircuits, Vol. SC--13, No3, June1982.13, No3, June1982.3.3. V.G. Oklobdzija, R.K. Montoye,V.G. Oklobdzija, R.K. Montoye,DesignDesign--PerformanceTradePerformanceTrade--OffsinCMOSOffsinCMOS--DominoLogicDominoLogic ,IEEE Journal of Solid,IEEE Journal of Solid--StateCircuits, Vol. SCStateCircuits, Vol. SC--21, No2, April21, No2, April1986.1986.

  • 8/7/2019 Lect4-P-T-Logic

    2/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 2

    References:References:

    4. Goncalves, H.J. DeMan, NORA: A Racefree Dynamic CMOSTechnique for PipelinedLogic Structures , IEEE Journal of Solid-StateCircuits, Vol. SC-18, No3, June1983.

    5. L.G. H eller, et al, Cascode Voltage Switch Logic: A DifferentialCMOS Logic Family, in 1984 Digest of Technical Papers, IEEE

    International Solid-StateCircuitsConference, February 1984.6. L.C.M.G. Pfennings, etal, Differential Split-LevelCMOSLogic for

    Subnanosecond Speeds , IEEE Journal of Solid-State Circuits,Vol. SC-20, No5, October1985.

    7. K.M. C hu, D.L. Pulfrey, "A Comparison ofCMOSCircuit Techniques:Differential Cascode Voltage Switch Logic Versus Conventional

    Logic", IEEE Jouirnal of Solid-State Circuits, Vol. SC-22, No.4,August 1987.

  • 8/7/2019 Lect4-P-T-Logic

    3/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 3

    References:References:Pass-Transistor Logic:

    8. S. Whitaker, Pass-transistor ne tworks optimize n-MOSlogic , Electronics, September1983.

    9. K. Yano, et al, A 3.8-ns CMOS 16x16-b Multiplier UsingComplementary Pass-Transistor Logic , IEEE Journal of Solid-StateCircuits, Vol. 25, No2, April1990.

    10. K. Yano, etal, Lean Integration: Achieving a Quantum Leap inPerformance and Cost of Logic LSIs", Proceedings of theCustom Integrated Circuits Conference, San Diego, California,May 1-4, 1994.

    11. M. Suzuki, et al, A 1.5ns 32b C MOS ALU in Double Pass-Transistor Logic , Journal of Solid-State Circuits, Vol. 28. No11, November1993.

    12. N. Ohkubo, et al, A 4.4-ns CMOS 54x54-b Multiplier UsingPass-transistor Multiplexer , Proceedings of the CustomIntegrated Circuits Conference, San Diego, California, May 1-4, 1994.

  • 8/7/2019 Lect4-P-T-Logic

    4/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 4

    References:References:

    13. V. G. Oklobdzija and B. Duchne, Pass-Transistor Dual ValueLogic For Low-Power CMOS, Proceedings of the 1995International Symposium on VLSI Technology, Taipei, Taiwan,May 31-June 2nd, 1995.

    14. F.S. Lai, W. Hwang, Differential Cascode Voltage Switch with

    the Pass-Gate (DCVSPG) Logic Tree for High PerformanceCMOS Digital Systems, Proceedings of the 1993 InternationalSymposium on VLSI Technology, Taipei, Taiwan, June 2-4, 1995

    15. A. Parameswar, H. Hara, T. Sakurai, A Swing Restored Pass-Transistor Logic Based Multiply and Accumulate Circuit forMultimedia Applications, Proceedings of the Custom IntegratedCircuits Conference, San Diego, California, May 1-4, 1994.

    16. T. Fuse, et al, 0.5V SOI CMOS Pass-Gate Logic, Digest ofTechnical Papers, 1996 IEEEInternational Solid-State CircuitsConference, San Francisco February 8, 1996.

  • 8/7/2019 Lect4-P-T-Logic

    5/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 5

    PassPass--Transistor LogicTransistor Logic

  • 8/7/2019 Lect4-P-T-Logic

    6/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 6

    PassPass--Transistor LogicTransistor Logic

    (a) XOR function implemented with pass-transistor circuit(b) Karnaough map showing derivation of the XOR function

    (a) (b)

  • 8/7/2019 Lect4-P-T-Logic

    7/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 7

    PassPass--Transistor LogicTransistor Logic

    B

    B

    B

    B

    B

    A

    BA

    BA

    BA

    BA

    BA

    BA

    BA

    BA

    General topology of pass-

    transistor function generator

    Karnaough map of 16 possiblefunctions that can be realized

  • 8/7/2019 Lect4-P-T-Logic

    8/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 8

    PassPass--Transistor LogicTransistor Logic

    Function generator

    implemented with pass-transistor logic

  • 8/7/2019 Lect4-P-T-Logic

    9/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 9

    PassPass--Transistor LogicTransistor Logic

    Voltage drop does notexceed Vth when thereare multiple transistors inthe path

    Threshold voltage drop atthe output of the pass-transistor gate

  • 8/7/2019 Lect4-P-T-Logic

    10/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 10

    PassPass--Transistor LogicTransistor Logic

    Elimination of the threshold voltage drop by:(a) pairing nMOS transistor with a pMOS(b) using a swing-restoring inverter

  • 8/7/2019 Lect4-P-T-Logic

    11/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 11

    Complementary PassComplementary Pass--TransistorTransistorLogic (CPL)Logic (CPL)

  • 8/7/2019 Lect4-P-T-Logic

    12/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 12

    Basic logic functions in CPLBasic logic functions in CPLA ABB

    B

    B

    A ABB

    B

    B

    A B

    A B

    A A

    B

    B

    A A

    A ABB

    C

    C

    A B

    A C B C

  • 8/7/2019 Lect4-P-T-Logic

    13/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 13

    CPL LogicCPL Logic

    AA

    S S

    A A

    B

    B

    C

    C

    SS(a) (b)

    B

    B

    Q Qb

    n1 n2

    n4n3

    CPL provides an efficient implementation of XOR function

    XOR gateSum circuit

  • 8/7/2019 Lect4-P-T-Logic

    14/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 14

    CPL InverterCPL Inverter

  • 8/7/2019 Lect4-P-T-Logic

    15/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 15

    Double PassDouble Pass--Transistor Logic (DPL):Transistor Logic (DPL):

    A

    B

    A B B A

    VDD

    B

    A

    OO

    A B

    A

    B

    A B BA

    B

    A

    OO

    B

    A

    B A B A

    B

    A

    A B

    XOR/XNOR

    AND/NAND

  • 8/7/2019 Lect4-P-T-Logic

    16/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 16

    Double PassDouble Pass--Transistor Logic (DPL):Transistor Logic (DPL):

    XOR

    One bit full-adder:Sum circuit

  • 8/7/2019 Lect4-P-T-Logic

    17/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 17

    Double PassDouble Pass--Transistor Logic (DPL):Transistor Logic (DPL):

    The critical path traverses twotransistors only(not counting the buffer)

    DPL Full Adder

  • 8/7/2019 Lect4-P-T-Logic

    18/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 18

    Formal Method for CPL LogicFormal Method for CPL Logic

    DerivationDerivationMarkovic et al. 2000Markovic et al. 2000

    (a)Cover the Karnaugh-map with largest possible cubes

    (overlapping allowed)(b)Express the value of the function in each cube in

    terms of input signals

    (c) Assign one branch of transistor(s)to each of the

    cubes and connect all the branches to one commonnode, which is the output of NMOS pass-transistornetwork

  • 8/7/2019 Lect4-P-T-Logic

    19/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 19

    Formal Method for PFormal Method for P--T LogicT LogicDerivationDerivation

    Complementary function can be implemented from the samecircuit structure by applying complementarity principle:

    Complementarity Principle: Using the same circuittopology, with pass signals inverted, complementary logicfunction is constructed in CPL.

    By applying duality principle, a dual function is synthesized:

    Duality Principle: Using the same circuittopology, with

    gate signals inverted, dual logic function is constructed.Following pairs of basic functions are dual:

    AND-OR (and vice-versa)NAND-NOR (and vice-versa)

    XOR and XNOR are self-dual (dual to itself)

  • 8/7/2019 Lect4-P-T-Logic

    20/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 20

    Derivation of PDerivation of P--T LogicT Logic

    0 0

    0 1

    0 1

    0

    1A

    B

    L1

    L2

    B

    B

    AND

    A B

    L2

    L1

    1 1

    1 0

    0 1

    0

    1A

    B

    L1

    L2

    1 1

    1 0

    0 1

    0

    1

    A

    B

    L1

    L2

    B

    B

    NAND (OR)

    A B

    L2

    L1

    B

    B

    OR

    A B

    L1

    L2

    B

    A A

    B

    A

    B

    A

    B

    AND NAND

    OR OR

    Copmplementarity: AND>

    NAND; Duality: AND>

    OR

  • 8/7/2019 Lect4-P-T-Logic

    21/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 21

    Derivation of CPL LogicDerivation of CPL Logic

    Duality: AND > ORNAND > NOR

    0 0

    0 1

    BA 0 1

    0

    1A

    B

    L1

    L2

    a

    B

    B

    AND

    A A

    B

    B

    N

    A A

    c

    NAND

    b

    B B BB

    L2

    L1

    Complementarity: AND > NAND

  • 8/7/2019 Lect4-P-T-Logic

    22/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 22

    TwoTwo--InputFunction with balancedInputFunction with balancedinput loadinput load

    Each input A, B, or A, B has FO=2

    B

    B

    AND

    A B

    A

    A

    NAND

    B A

    B

    B

    OR

    B A

    A

    A

    NOR

    A B

    (a) (b)

    gatedraininCCC !

  • 8/7/2019 Lect4-P-T-Logic

    23/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 23

    Derivation of CPL LogicDerivation of CPL Logic

    (a) XOR function Karnaugh map, (b) XOR/XNOR circuit

    0 1

    1 0

    BA 0 1

    0

    1A

    B

    L1

    L2

    ( )

    B

    B

    XOR

    A A

    XNOR

    ( )

    A A

    L2

    L1

  • 8/7/2019 Lect4-P-T-Logic

    24/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 24

    Synthesis of threeSynthesis of three--inputCPL logicinputCPL logic

    0 0

    0 0

    BC

    A 00 01

    0

    1A

    C

    L 3

    L 2

    (a)

    A

    B

    AND

    C

    (b)

    11 10

    0 0

    1 0

    L 1

    NAND

    C

    A

    B

    B

    A B A B

    L 3L 2L 1

    (a) AND function Karnaugh map, (b) AND/NAND circuit

  • 8/7/2019 Lect4-P-T-Logic

    25/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 25

    Circuit realization of 3Circuit realization of 3--inputinputAND/NAND functionAND/NAND function

    0 0

    0 0

    BC

    A 00 01

    0

    1A

    C

    ( )

    A

    B

    AND

    C

    ( )

    11 10

    0 0

    1 0

    NAND

    C

    A

    B

    B

    A B A B

    C3

    C2

    C1

    C1

    C2

    C3

  • 8/7/2019 Lect4-P-T-Logic

    26/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 26

    Double PassDouble Pass--Transistor Logic (DPL):Transistor Logic (DPL):Synthesis RulesSynthesis Rules

    1. Two NMOS branches can not be overlapped coveringlogic 1s. Similarly, two PMOS branches can not beoverlapped covering logic 0s.

    2. Pass signals are expressed in terms of input signals orsupply. Every inputvector has to be covered with exactlytwo branches.

    At anytime, excluding transitions, exactlytwotransistor branches are active (any of the pairsNMOS/PMOS, NMOS/NMOS and PMOS/PMOS arepossible), i.e. they both provide output current.

  • 8/7/2019 Lect4-P-T-Logic

    27/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 27

    Double PassDouble Pass--Transistor Logic (DPL):Transistor Logic (DPL):Synthesis RulesSynthesis Rules

    Complementarity Principle: Complementary logicfunction in DPL is generated after the followingmodifications:

    Exchange PMOS and NMOS devices. Invert all passand gate signals

    Duality Principle: Dual logic function in DPL is

    generated when: PMOS and NMOS devices are exchanged, and VDDand GND signals are exchanged.

  • 8/7/2019 Lect4-P-T-Logic

    28/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 28

    DPL Synthesis:DPL Synthesis:

    0 0

    0 1

    BA 0 1

    0

    1A

    B

    L1

    L2

    ( )

    A B

    B A

    ( )

    L

    L

    3

    4

    BA

    GND GND

    AND

    A B

    B A

    BA

    NAND

    +V DD +V DD

    L2

    L4

    L1

    L3

    (a) AND function Karnaugh map (b) AND/NAND circuit

  • 8/7/2019 Lect4-P-T-Logic

    29/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 29

    DPL Synthesis:DPL Synthesis: OR/NOR circuitOR/NOR circuit

    A B

    BA

    B A

    OR

    A B

    B A

    BA

    GND GND

    NOR

    +V DD +V DD

  • 8/7/2019 Lect4-P-T-Logic

    30/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 30

    XOR/XNOR in DPLXOR/XNOR in DPL

    Circuit realization of 2-input XOR/XNORfunction in DPL, with balanced input load

    0 1

    1 0

    BA 0 1

    0

    1A

    B

    ( )

    B B

    A A

    ( )

    AA

    B B

    XNOR

    B B

    A A

    AA

    B B

    XOR

    (PMO )

    (NMO )

    (PMO )

    (NMO )

    C4

    C3

    C1

    C2

    C1 C2

    C3

    C4

  • 8/7/2019 Lect4-P-T-Logic

    31/39

  • 8/7/2019 Lect4-P-T-Logic

    32/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 32

    DVL LogicDVL LogicAdvantage of CPL and DPL were recognized in DVL which

    attempts to generalize pass-transistor networks andminimize the number of transistors and input loads.

    Rules:

    1. Cover all inputvectors that produce 0 atthe output,with

    largest possible cubes (overlapping allowed) and representthose cubes with NMOS devices,with sources connected toGND

    2.Repeat step 1 for inputvectors that produce 1 atthe outputand representthose cubes with PMOS devices,with sources

    connected to Vdd3.Finish with mapping inputvectors, not mapped in steps 1 and 2(overlapping with cubes from steps 1 and 2 allowed)thatproduce0 or 1 atthe output. Representthose cubes withparallel NMOS (good pull-down) and PMOS (good pull-up)branches,with sources connected to one of the input signals

  • 8/7/2019 Lect4-P-T-Logic

    33/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 33

    Two input AND/NAND in DVL LogicTwo input AND/NAND in DVL Logic

    Circuit realization of 2-input AND/NAND function in DVL

    0 0

    0 1

    BA 0 1

    0

    1A

    B

    C1

    ( )

    B

    A

    ( )

    C

    BA

    AND

    A

    B

    BA

    NAND

    Vdd Vdd

    (A*)

    (B*)

    C2

    C3

    C1

    C2

  • 8/7/2019 Lect4-P-T-Logic

    34/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 34

    Two input OR/NOR in DVL LogicTwo input OR/NOR in DVL Logic

    Circuit realization of 2-input OR/NOR circuit in DVLXOR/XNOR realization is identical to that of DPL.

    B

    A

    A

    NOR

    A

    B

    BA

    OR

    Vdd Vdd

    B

  • 8/7/2019 Lect4-P-T-Logic

    35/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 35

    Three input AND function in DVLThree input AND function in DVLLogicLogic

    0 0

    0 0

    BC

    A 00 01

    0

    1A

    C

    ( )

    AND

    ( )

    11 10

    0 0

    1 0 A B B B

    A A

    C

    B

    C3

    C2

    C1

    C2

    C1

    C3

    C3

  • 8/7/2019 Lect4-P-T-Logic

    36/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 36

    Three input OR/NOR in DVLThree input OR/NOR in DVL

    Circuit realization of 3-input OR/NORfunctions in DVL

    NOR

    A B B B

    A A

    C

    OR

    A B B B

    A A

    CV dd

  • 8/7/2019 Lect4-P-T-Logic

    37/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 37

    ComparisonComparison

    Realization# ofinput

    signals

    Signaltermination

    Trans.Count

    Outputload

    CMOS 9 10G 10 4S

    DVL (b) 9 8G + 6S 8 6S

    DVL (c) 9 7G + 3S 7 4S

    TABLEI. Realizations of 3-input functionF=BC+ABC

  • 8/7/2019 Lect4-P-T-Logic

    38/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 38

    ComparisonComparison

    Realizations of 3-input function F=BC+ABC(a) Standard CMOS, (b) DVL, (c) DVL

    0 1

    0 1

    BC

    A 00 01

    0

    1A

    C

    F

    11 10

    0 0

    0 1

    B C

    C

    C

    B

    B

    B

    A

    A B C

    Vdd

    0 1

    0 1

    BC

    A 00 01

    0

    1A

    C

    11 10

    0 0

    0 1

    B

    0 1

    0 1

    BC

    A 00 01

    0

    1A

    C

    11 10

    0 0

    0 1

    B

    C

    B

    C

    C

    B C B

    F

    BCC

    A

    B

    B

    A

    B B

    C

    F

    C

    B

    C

    B

    C

    A

    (a) (b) ( )

    B C A B CF = +

    C2 C

    1

    C2

    C1

    C1

    C1

    C2

    C2

    C3

    C3

    C3

    C2

    C1

    C1

    C2

    C3

    C2

    C3

    C3

  • 8/7/2019 Lect4-P-T-Logic

    39/39

    Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 39

    ConclusionConclusion

    General rules for synthesizing logic gates in threerepresentative pass-transistor techniques wereshown.

    An algorithmic way for generation of various circuittopologies (complementary and dual circuits) is

    discussed.Generation of circuits with balanced input loads is

    suitable for library based designs is possible ifcomplementarity and commutative principles areapplied.

    This lays the foundation for development of computeraided design (CAD)tools capable of generating fastand power-efficient pass-transistor logic.