lec17_293

Upload: mohamed-ayman

Post on 05-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 lec17_293

    1/6

    Review

    For cases when Z 1>> N condition is not met:

    • Fermi-Dirac Distribution (fermions)

    • Bose-Einstein Distribution (bosons)

    nFD =

    1

    e(ε −μ ) / kT  +1

    n BE  =1

    e(ε −μ )/kT  −1

    Fermi-Dirac Distribution• Consider cases looking at ε and μ 

    nFD =1

    e(ε −μ )/ kT  +1

  • 8/15/2019 lec17_293

    2/6

    Fermi-Dirac Distribution

    • Consider cases looking at ε and μ 

    Relation to Boltzmann Distribution• Calculate occupancy n

     Boltzmann = NP(s)

  • 8/15/2019 lec17_293

    3/6

    Comparison of Distributions

    Quantum Gas• For ideal gas, single-particle partition function

    • For to hold, Z 1 >> N 

     Z 1 =VZ int

    υ Q

     Z  = Z 1 N   N !

  • 8/15/2019 lec17_293

    4/6

    Application of Fermi-Dirac Distribution• Modelling behavior of conduction electrons in metal

     – Gas of fermions at very low temperature

    • Condition for Boltzmann statistics is not met

     N 

  • 8/15/2019 lec17_293

    5/6

    At Zero Temperature

    • At T =0, Fermi-Dirac distribution becomes step function

     –   ε F  ≡ μ (T =0)

    • When nearly all states below ε F are occupied and those above

    are empty

     – Called degenerate gas

    •   ε F depends on total number of electrons in system

    Degenerate Fermi Gas• Electrons in the system are free particles

     – Ignoring attractive forces from ions in the crystal lattice

    • Wavefunctions for free electron in metal block 

     – Represented by standing wave modes

    λ n =

    2 L

    n ;  pn =

    h

    λ n =

    hn

    2 L

  • 8/15/2019 lec17_293

    6/6

    Degenerate Fermi Gas

    • Wavefunctions for free electron in metal block 

     – Represented by standing wave in a box wavefunctions

     – Each “lattice point” (n x, n y, n z) is pair of electron states

    • One for each spin orientation

     – Surface of sphere => radius nmax

     

    ε  =

    r

     p

    2

    2m= h

    2

    8mL2n x

    2 + n y2 + n z

    2(