lec12_metalsemic

23
ECE 663 Metal-Semiconductor Interfaces Metal-Semiconductor contact Schottky Barrier/Diode Ohmic Contacts MESFET

Upload: saikat-payra

Post on 25-Nov-2015

3 views

Category:

Documents


0 download

DESCRIPTION

ppt

TRANSCRIPT

  • ECE 663Metal-Semiconductor InterfacesMetal-Semiconductor contactSchottky Barrier/DiodeOhmic ContactsMESFET

    ECE 663

  • ECE 663Device Building BlocksSchottky (MS)p-n junctionHBTMOS

    ECE 663

  • ECE 663Energy band diagram of an isolated metal adjacent to an isolated n-type semiconductorq(fs-c) = EC EF = kTln(NC/ND) for n-type = EG kTln(Nv/NA) for p-type

    ECE 663

  • ECE 663Energy band diagram of a metal-n semiconductor contact in thermal equilibrium.qfBn = qfms + kTln(NC/ND)

    ECE 663

  • ECE 663

    Measured barrier height fms for metal-Si and metal-GaAs contactsTheory still evolving (see review article by Tung)

    ECE 663

  • ECE 663Energy band diagrams of metal n-type and p-type semiconductors under thermal equilibrium

    ECE 663

  • ECE 663Energy band diagrams of metal n-type and p-type semiconductors under forward bias

    ECE 663

  • Energy band diagrams of metal n-type and p-type semiconductors under reverse biasECE 663

    ECE 663

  • ECE 663Charge distributionelectric-field distribution(Vbi-V) = - E(x)dx = qNDW2/Kse00WVbi = fms (Doping does not matter!)fBn = fms + kTln(NC/ND)

    ECE 663

  • ECE 663Depletionq

    ECE 663

  • ECE 663CapacitancePer unit area:Rearranging:Or:

    ECE 663

  • ECE 6631/C2 versus applied voltage for W-Si and W-GaAs diodes

    ECE 663

  • ECE 6631/C2vs VIf straight line constant doping profile slope = doping concentrationIf not straight line, can be used to find profileIntercept = Vbi can be used to find Bn

    ECE 663

  • ECE 663Current transport by the thermionic emission processThermal equilibriumforward biasreverse biasJ = Jsm(V) Jms(V) Jms(V) = Jms(0) = Jsm(0)

    ECE 663

  • Barrier from metal side is pinned

    Els from metal must jump over barrier

    Current is limited by speed of jumping electrons (that the ones jumping from the right cancel at equilibrium)

    Unipolar majority carrier device, since valence band is entirely inside metal band

    Note the difference with p-n junctions!! Barrier is not pinned

    Els with zero kinetic energy can slide down negative barrier to initiate current

    Current is limited by how fast minority carriers can be removed (diffusion rate)

    Both el and hole currents important (charges X-over and become min. carriers) In both cases, were modulating the population of backflowing electrons, hence the Shockley form, but V > 0V < 0V > 0V < 0

  • ECE 663Lets roll up our sleeves and do the algebra !!Jsm = 2qf(Ek-EF)vxvx > vmin,vy,vz= 2q Ek-EF = (Ek-EC) + (EC -EF) EC - EF = q(fBn-Vbi)Ek - EC = m(vx2 + vy2 + vz2 )/2m*vmin2/2 = q(Vbi V)kx,y,z = m*vx,y,z/V > 0Vbi - V

    ECE 663

  • ECE 663This meansx e-q(fBn-Vbi)/kT

    = qm*k2T2/2p23e-q(fBn-V)kT = A*T2e-q(fBn-V)kT A* = 4pm*qk2/h3 = 120 A/cm2/K2

    ECE 663

  • J = A*T2e-qfBN/kT(eqV/kT-1)

    ECE 663

  • In regular pn junctions, charge needs to move throughdrift-diffusion, and get whisked away by RG processes

    MS junctions are majority carrier devices, and RG is notas critical. Charges that go over a barrier already have high velocity, and these continue with those velocities togive the current

  • ECE 663

    Forward current density vs applied voltage of W-Si and W-GaAs diodes

    ECE 663

  • ECE 663Thermionic Emission over the barrier low doping

    ECE 663

  • ECE 663Tunneling through the barrier high dopingSchottky barrier becomes Ohmic !!

    ECE 663

  • ECE 663

    ECE 663

    **********************