learning targets i can explain the absorption and transport systems of plants. i can describe the...

Download Learning Targets  I can explain the absorption and transport systems of plants.  I can describe the effect of light on plants.  I can describe a plant’s

If you can't read please download the document

Upload: vivien-osborne

Post on 16-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Slide 2
  • Learning Targets I can explain the absorption and transport systems of plants. I can describe the effect of light on plants. I can describe a plants temperature needs. I can explain how the quality of air affects plants. I can describe a plants water needs.
  • Slide 3
  • Terms Day neutral plant (DNP) Foot-candles Hardiness Long day plant (LDP) Photoperiod Short day plant (SDP) Visible light spectrum Wilted
  • Slide 4
  • Interesting Approach Lab Time Allow the class 10 to 15 plants. by the whole. Tell the students they need to study the effects of light, temperature, air, and water on plants. For example, you might use four plants and put one in a bright window, one on the teachers desk, one in a greenhouse or under a bright light, and one in a dark closet to study the effects of light. Within a week you will start to see some serious differences. Students can check and measure the progress of the plants at the beginning of each class as a gathering and interest activity. You may ask students to draw conclusions from their data. This can take the form of a discussion, paper, or an oral presentation.
  • Slide 5
  • How does light affect plants? Plants have adapted, over millions of years, to use sunlight as their source of energy. As previously covered in the previous lesson, they do this using a pigment called chlorophyll to photosynthesize.
  • Slide 6
  • Plants use light in the visible light spectrum, a narrow band of radiant energy that we can see with our eyes. Plants need mostly the colors blue and red to activate the chlorophyll. Other pigments collect other colors of light and pass that energy to the chlorophyll to make more sugar.
  • Slide 7
  • The fact that plants need a lot of both blue and red light means that neither regular light bulbs nor regular fluorescent tubes provide adequate light for most plants. Light bulbs are deficient in blue and tubes are deficient in red. Special grow-lights are made which have more of the correct wavelengths of light.
  • Slide 8
  • The intensity of the light matters a great deal to the plant. Light intensity in measured in foot-candles, the amount of light given off by a candle a foot away. Plants have adapted to a wide variety of light intensities. Many plants require full sun. Most plants that do well in a house can survive or even thrive in lower light intensities.
  • Slide 9
  • Plants also respond to the length of time they are exposed to light, or photoperiod. Plants can generally be separated into three groups by how they respond to photoperiod.
  • Slide 10
  • Short day plants (SDP) are plants that begin to flower when the nights are over 12 hours long.
  • Slide 11
  • Long day plants (LDP) are plants that begin to flower when the nights are under 12 hours long.
  • Slide 12
  • Day neutral plants (DNP) are plants whose flowering response is unaffected by photoperiod.
  • Slide 13
  • Geotropism
  • Slide 14
  • Lab Activity
  • Slide 15
  • What temperatures are best for plants? Plants have adapted to a wide range of temperatures. There are plants which thrive within the arctic circle and others that can survive in the blazing sun of a desert.
  • Slide 16
  • Plants tend to adapt for higher temperatures with smaller leaves in lighter colors with thicker cuticles.
  • Slide 17
  • Plants adapt to low temperatures by growing lower to the ground with short life cycles and parabolic dish-shaped flowers to collect light and heat.
  • Slide 18
  • Although plants can survive higher and lower extremes, plants dont really grow at temperatures below 32 degrees Fahrenheit or above 100 degrees Fahrenheit.
  • Slide 19
  • A plants ability to withstand low temperatures is called its hardiness. A plant which is very hardy can survive in a cold climate. Hardiness is measured using the USDA plant hardiness zone map. Each area of the country is assigned a zone numbered from one to ten. Hardiness zones are derived from the average coldest temperatures for the year.
  • Slide 20
  • How cold is the average low temperature in zone 11? What is our hardiness zone, according to this map?
  • Slide 21
  • Plants have difficulties growing at extremely high temperatures. This usually has to do with the ability to pick up and move enough water to keep up with the higher rate of photosynthesis.
  • Slide 22
  • When it gets too hot, the plant starts to lose water and become flat, a condition known as wilted. The guard cells also wilt, causing the stomata to close, thus effectively shutting the plant down.
  • Slide 23
  • Slide 24
  • What time is it? Its lab time!
  • Slide 25
  • How does the quality of air affect plants? Air contains carbon dioxide and oxygen, both of which are necessary for plant growth.
  • Slide 26
  • Oxygen is necessary for cellular respiration to occur in a normal manner. Oxygen is picked up mainly by the roots of the plant.
  • Slide 27
  • Carbon dioxide is used for photosynthesis in very high amounts. Carbon dioxide usually enters the plant through the leaves via the stomata. In greenhouses, we often try to boost the level of carbon dioxide to speed up photosynthesis.
  • Slide 28
  • How do plants get water? Water and nutrients are primarily absorbed by the roots and transported throughout the plant by various tissues in the roots, stems, and leaves.
  • Slide 29
  • 1. Osmosis is the movement of water from greater concentration in the soil or media to lower concentration in the root. 2. Water enters until the concentration in the root is equal to the concentration outside the root. 3. The water entering roots also carries inorganic substances known as nutrients. B. After absorption by roots, water is passed from cell to cell until it reaches the xylem.
  • Slide 30
  • 1. Xylem is tissue, formed as tubes, that conducts water up the stem and to the leaves. C. Leaves lose water by transpiration. 1. Transpiration occurs through tiny stomata on leaves. 2. Transpiration creates somewhat of an upward pull that assists the xylem in moving water and nutrients.
  • Slide 31
  • Transpiration Lab Activity Lab Time Arrange yourselves in three groups Pick up one of the lab sheet per group Gather needed materials and begin lab activity
  • Slide 32
  • One of the most difficult things about watering plants is that the roots need both water and oxygen. While some plants are very adept at removing the oxygen they need from the water, others drown in a very short time.
  • Slide 33
  • Plants should be watered all the way through the root zone to encourage even root growth. Plants should be grown in pots with drainage holes, so the water can drain and allow oxygen into the root zone.