lead and copper corrosion 101: principles & guidance

29
Lead and Copper Corrosion 101: Principles & Guidance 2 Darren A. Lytle Environmental Engineer U.S. Environmental Protection Agency

Upload: others

Post on 05-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Lead and Copper Corrosion 101 Principles amp Guidance

2

Darren A LytleEnvironmental Engineer

US Environmental Protection Agency

Rationale

bull The viewer will learn about the fundamental basics of lead and copper solubility and factors that impact levels in drinking water

bull The information presented during this webinar will help the viewer in making better decisions regarding lead and copper control in drinking water distribution systems

3

Learning Objectives

The viewers will obtainbull An understanding of basic relationships between lead and copper

concentrations and important water quality parameters in drinking water

bull An understanding of the importance of corrosion by-products and scale properties on lead and copper release

bull A basis for developing lead and copper corrosion control strategies bull Information to be better prepared to make decisions regarding lead

and copper issues

4

Acknowledgments

bull Micheal Schock USEPAbull Christy Muhlen USEPA

Disclaimer

5

This presentation has been reviewed in accordance with US Environmental Protection Agency (EPA) policy and approved for external presentation The views expressed are those of the author[s] and do not necessarily represent the views or policies of EPA

Agenda

bull Major Factors that Impact Copper (Cu) Release

- Oxidation-reduction potential (ORP)persistence of oxidants

- pHAlkalinityDissolved inorganic concentration (DIC) = solubility

- Aging (several variables)

- [Ortho]phosphate

- Stagnation time

bull Chlorine demand and copper corrosion

bull Pitting corrosion

6

ORP-pH Effects on Copper in WaterCu species = 13 mgL DIC = 96 mg CL

I=0 25oslashC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14-150

-100

-050

000

050

100

150

E (

volts

vs

SHE)

CO2- 3

HCO 3

-

HCO 3

-

H CO

32

H

Cu(s)

Cu 2+

Cu O(s)2

Cu(OH) 3-

CuCO

3o Cu(OH) (s)2

Vulnerable to ORP or pH change

Copper Oxidation StateCu1+ or Cu(I)Cu2+ or Cu(II)

pH

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Rationale

bull The viewer will learn about the fundamental basics of lead and copper solubility and factors that impact levels in drinking water

bull The information presented during this webinar will help the viewer in making better decisions regarding lead and copper control in drinking water distribution systems

3

Learning Objectives

The viewers will obtainbull An understanding of basic relationships between lead and copper

concentrations and important water quality parameters in drinking water

bull An understanding of the importance of corrosion by-products and scale properties on lead and copper release

bull A basis for developing lead and copper corrosion control strategies bull Information to be better prepared to make decisions regarding lead

and copper issues

4

Acknowledgments

bull Micheal Schock USEPAbull Christy Muhlen USEPA

Disclaimer

5

This presentation has been reviewed in accordance with US Environmental Protection Agency (EPA) policy and approved for external presentation The views expressed are those of the author[s] and do not necessarily represent the views or policies of EPA

Agenda

bull Major Factors that Impact Copper (Cu) Release

- Oxidation-reduction potential (ORP)persistence of oxidants

- pHAlkalinityDissolved inorganic concentration (DIC) = solubility

- Aging (several variables)

- [Ortho]phosphate

- Stagnation time

bull Chlorine demand and copper corrosion

bull Pitting corrosion

6

ORP-pH Effects on Copper in WaterCu species = 13 mgL DIC = 96 mg CL

I=0 25oslashC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14-150

-100

-050

000

050

100

150

E (

volts

vs

SHE)

CO2- 3

HCO 3

-

HCO 3

-

H CO

32

H

Cu(s)

Cu 2+

Cu O(s)2

Cu(OH) 3-

CuCO

3o Cu(OH) (s)2

Vulnerable to ORP or pH change

Copper Oxidation StateCu1+ or Cu(I)Cu2+ or Cu(II)

pH

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Learning Objectives

The viewers will obtainbull An understanding of basic relationships between lead and copper

concentrations and important water quality parameters in drinking water

bull An understanding of the importance of corrosion by-products and scale properties on lead and copper release

bull A basis for developing lead and copper corrosion control strategies bull Information to be better prepared to make decisions regarding lead

and copper issues

4

Acknowledgments

bull Micheal Schock USEPAbull Christy Muhlen USEPA

Disclaimer

5

This presentation has been reviewed in accordance with US Environmental Protection Agency (EPA) policy and approved for external presentation The views expressed are those of the author[s] and do not necessarily represent the views or policies of EPA

Agenda

bull Major Factors that Impact Copper (Cu) Release

- Oxidation-reduction potential (ORP)persistence of oxidants

- pHAlkalinityDissolved inorganic concentration (DIC) = solubility

- Aging (several variables)

- [Ortho]phosphate

- Stagnation time

bull Chlorine demand and copper corrosion

bull Pitting corrosion

6

ORP-pH Effects on Copper in WaterCu species = 13 mgL DIC = 96 mg CL

I=0 25oslashC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14-150

-100

-050

000

050

100

150

E (

volts

vs

SHE)

CO2- 3

HCO 3

-

HCO 3

-

H CO

32

H

Cu(s)

Cu 2+

Cu O(s)2

Cu(OH) 3-

CuCO

3o Cu(OH) (s)2

Vulnerable to ORP or pH change

Copper Oxidation StateCu1+ or Cu(I)Cu2+ or Cu(II)

pH

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Acknowledgments

bull Micheal Schock USEPAbull Christy Muhlen USEPA

Disclaimer

5

This presentation has been reviewed in accordance with US Environmental Protection Agency (EPA) policy and approved for external presentation The views expressed are those of the author[s] and do not necessarily represent the views or policies of EPA

Agenda

bull Major Factors that Impact Copper (Cu) Release

- Oxidation-reduction potential (ORP)persistence of oxidants

- pHAlkalinityDissolved inorganic concentration (DIC) = solubility

- Aging (several variables)

- [Ortho]phosphate

- Stagnation time

bull Chlorine demand and copper corrosion

bull Pitting corrosion

6

ORP-pH Effects on Copper in WaterCu species = 13 mgL DIC = 96 mg CL

I=0 25oslashC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14-150

-100

-050

000

050

100

150

E (

volts

vs

SHE)

CO2- 3

HCO 3

-

HCO 3

-

H CO

32

H

Cu(s)

Cu 2+

Cu O(s)2

Cu(OH) 3-

CuCO

3o Cu(OH) (s)2

Vulnerable to ORP or pH change

Copper Oxidation StateCu1+ or Cu(I)Cu2+ or Cu(II)

pH

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Agenda

bull Major Factors that Impact Copper (Cu) Release

- Oxidation-reduction potential (ORP)persistence of oxidants

- pHAlkalinityDissolved inorganic concentration (DIC) = solubility

- Aging (several variables)

- [Ortho]phosphate

- Stagnation time

bull Chlorine demand and copper corrosion

bull Pitting corrosion

6

ORP-pH Effects on Copper in WaterCu species = 13 mgL DIC = 96 mg CL

I=0 25oslashC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14-150

-100

-050

000

050

100

150

E (

volts

vs

SHE)

CO2- 3

HCO 3

-

HCO 3

-

H CO

32

H

Cu(s)

Cu 2+

Cu O(s)2

Cu(OH) 3-

CuCO

3o Cu(OH) (s)2

Vulnerable to ORP or pH change

Copper Oxidation StateCu1+ or Cu(I)Cu2+ or Cu(II)

pH

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

ORP-pH Effects on Copper in WaterCu species = 13 mgL DIC = 96 mg CL

I=0 25oslashC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14-150

-100

-050

000

050

100

150

E (

volts

vs

SHE)

CO2- 3

HCO 3

-

HCO 3

-

H CO

32

H

Cu(s)

Cu 2+

Cu O(s)2

Cu(OH) 3-

CuCO

3o Cu(OH) (s)2

Vulnerable to ORP or pH change

Copper Oxidation StateCu1+ or Cu(I)Cu2+ or Cu(II)

pH

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

pH6 7 8 9 10

mg Cu

L

0001

0010

0100

1000

10000

100000 48 mg Cl144 mg CL 96 mg CL

]Cu2O (s)

Cu(OH) (s)

Cu(I) solids

Cu(II) solids are several orders of magnitude moresoluble than Cu(I) solids

Cu(II) solids

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Age Impacts Oxidant-Limited Cu Stagnation

Stagnation t ime hours0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7Cu 161-184 days

DO 161-184 daysCu 455-462 days

DO 455-462 days

Dissolved oxygen

Copper

Loss of oxygen (drop in ORP) during stagnation impacts Cu(II) and Cu(I) stability

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

AgingReDeReCa

ye

CuO

Process (in theory)crystallizingcreasing surface areaacting with CO3 or HCO3

-

n take 20 30 or morears with high DIC

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Impact of Plumbing Age on 2nd Draw Copper Concentrations

Year of Pipe vs Copper Level without questioned data points

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of Pipe

Copp

er L

evel

(ug

L) 2ndDrawSample

Linear(2ndDrawSample)

Slope of the line is ~ -52 ugLyear

Data from MS Thesis of N Turek ldquoInvestigation of Copper Contamination and Corrosion Scale Mineralogy in Aging Drinking Water Distribution Systemsrdquo AFIT 2006

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Chart1

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points
2460
2830
2990
2180
2050
2170
802
2360
528
417
946

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)
Year of Pipes Year of Pipes 2005
2005 2005 2004
2004 2004 2002
2002 2002 2001
2001 2001 1998
1998 1998 1997
1997 1997 1992
1995 1995 1985
1994 1994 1977
1993 1993 1975
1992 1992 1962

Sampling Results

ampCCapt Nadja TurekSampling Data for Thesis WorkFall 2005

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958
RESULTS
Building Rm Collection Date Collection Time Initial Next Day Bottle Number Notes
pH free Cl tot Cl pH free Cl tot Cl A 60 mL for ICP B 250 wet chem C 250 1st draw C Lab s D 250 2nd draw D Lab s
553 125D 24-Oct-05 1620 76 015 02 001A553 002B553
553 125D 25-Oct-05 816 75 00 00 003C553 98 004D553 99 005Z001 - blank washed with bottles 001 (lab 108
441 0-24 2-Nov-05 1642 75 02 03 006A441 007B441 janitors sink in basement mechanical room flushed water was orange
441 0-24 3-Nov-05 845 76 00 00 010C441 96 011D441 97 Bag was full of water - dripped all night
571 155 2-Nov-05 1705 73 0 0 008A571 009B571 sink in HAWC room 155
571 155 3-Nov-05 909 73 00 00 012C571 102 013D571 103 014Z002 - Blank washed with bottles 006-013 (Lab 109)
642 Kitchen 21-Nov-05 1540 73 06 07 015A642 016B642 2-stall kitchen sink sampled in AAFES kitchen in cafeteria
642 Kitchen 22-Nov-05 855 73 00 00 019C642 106 020D642 107 Bag was full of water - dripped all night
645 Restroom 21-Nov-05 1655 73 03 03 017A645 018B645 Only restroom in building sink sampled
645 Restroom 22-Nov-05 905 73 00 00 021C645 94 022D645 95
641 Restroom 5-Dec-05 1700 73 06 06 023A641 024B641 Sampled 2nd floor womens restroom
641 Restroom 6-Dec-05 900 73 00 025C641 100 026D641 101 sampled sink nearest door as you enter the N side of bathroom
620 PI 15 12-Dec-05 1540 73 03 028A620 029A620 027Z003 - Blank washed with bottles 015-026 (Lab 110)
620 PI 15 13-Dec-05 73 00 032C620 204 033D620 203 1st floor mens restroom sampled only sink
620 PII Basement 12-Dec-05 1550 73 03 73 030A620 031B620 Janitors sink in basement (seems to be used frequently)
620 PII Basement 13-Dec-05 750 73 00 034C620 104 035D620 105
441 Womens RR 14-Dec-05 1640 75 02 036A441 037B441 Recently installed shower in womens RR on 1st floor sampled
441 Womens RR 15-Dec-05 915 73 00 038C441 87 040D441 86 I was half hour late due to snow
837 1st Floor Womens RR 19-Dec-05 1530 74 0 041A837 042B837 043Z004 is blank for 028-042 (Lab 111)
837 20-Dec-05 715 74 0 046C837 92 047D837 93
620 PI Basement 19-Dec-05 1550 73 01 044A620 045B620 Janitors sink in basement
620 PI Basement 20-Dec-05 745 73 0 048C620 89 049D620 88 Janitors sink in basement (seems to be used frequently)
306 bathroom sink 20-Dec-05 1505 73 0 050A306 051B306 sink in only bathroom in building
306 21-Dec-05 700 73 0 052C306 90 053D306 91
556 Kitchen 003 3-Jan-06 1605 74 0 054A556 055B556
556 Kitchen 003 4-Jan-06 805 74 0 056C556 205 057D556 206 Blank 058Z005 for bottles 044-057 (EM 215)
653 shop sink 12-Jan-06 1510 73 02 058A653 059B653
653 shop sink 13-Jan-06 715 73 0 062C653 207 063D653 208
464 bath sink 12-Jan-06 1530 73 03 060A464 061B464
464 bath sink 13-Jan-06 730 73 0 064C464 209 065D464 210
676 Mens bath sink 17-Jan-06 1545 72 04 066A676 067B676
676 Mens bath sink 18-Jan-06 745 72 0 070C676 211 071D676 212
11A sink in basement 17-Jan-06 1605 73 0 068A011 069B011
11A sink in basement 18-Jan-06 815 73 0 072C011 213 073D011 214 Blank 074Z006 for bottles 059-073 (EM 216)

Analysis Status

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018
Status No action
In Progress
Complete
Building Pipe Year Water Sampled Pipe Cut XPS Complete XRD Complete Cu Analysis ICP Wet Chemistry
20441S (new shower installed Oct 05 project 051972) 2005
20837 (2004) 2004 112
20571 Fitness Center (2002) 2002 Green = 72 643
20553 (2001) 2001 Yellow = 31 277
20645 (1998) 1998 Red = 9 80
20306 (1997) 1997 112
20556 (1995) 1995
620 Phase II (1994) 1994
20441 (Renovated 1993) 1993
620 Phase I (1992) 1992
20642 AFIT (1989) 1989
20676 (1985) 1985
20011A (sink installed in basement 1984) 1984
20641 AFIT (1977) 1977
20653 (1975baths cosmetically renovated 2004) 1975
20464 (AAFES gas station 1958) 1958

Copper Level Results

Copper Level Results

1st Draw Sample
2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level

XPS Results

2nd Draw Sample
Year of Pipe
Copper Level (ugL)
Year of Pipe vs Copper Level without questioned data points

Baseline Data

TurekArea 4 and 2 are the same solid Area 3 is different Area 4 and 2 are Cu+2 cmpds Area 3 looks like Cu+1 and has the distinct carbonate double peak

Baseline Data

Pure Copper Data
Physical Electronics
Deroubaix and Marcus
BE
KE
Pure copper data over time

All Buildings

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data from Chawla et al (1992) Deroubaix and Marcus (1992) and Moulder et al (1995)
9189
9173
9181
9166
9163
9186
9165
9178
9167
9186
9162
9181
9162
9187
9162
91801
9163
9186
9166
91802
9187
9172
9186

441S 2005

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
641
441S
620 PI
837
464
620 PII
11A
653
306
676
556
571
553
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
91687
91714
91661
91471
91602
91669
91566
9167
91472
91671
91658
91634
91533
9186
9165
9178
9167
91696
91726
91572
91737
9168
91518
91575
91668
91578
91645
91512
9169
91611
91641
91486
9186
9162
9181
9162
91688
91795
91678
91737
91653
91558
915
91629
91579
91609
91477
91682
91647
91616
91483
9187
9162
91801
9163
91722
91639
9167
91893
91639
91679
91641
91648
917
91662
91476
91665
91655
91648
91571
9186
9166
91802
9163
91679
91619
919
91675
91693
91561
91674
91706
91647
91378
91727
9165
91657
91606
9187
9172
91665
91647
91696
91658
91667
91523
91648
9169
91648
91456
91698
91676
91607
9186

837 2004

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
441S
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 441 (2005) Compared to Baseline Data
9189
9173
9181
9166
9169
91714
9186
9165
9178
9167
91696
91737
9186
9162
9181
9162
91688
91737
9187
9162
91801
9163
91722
91893
9186
9166
91802
9163
919
9187
9172
91696
9186

571 2002

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
837
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 837 (2004) Compared to Baseline Data
9189
9173
9181
9166
9169
91471
9186
9165
9178
9167
91696
91518
9186
9162
9181
9162
91688
91558
9187
9162
91801
9163
91722
91679
9186
9166
91802
9163
91693
9187
9172
91667
9186

553 2001

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
571
3
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 571 (2002) Compared to Baseline Data
9189
9173
9181
9166
9169
91634
91929
9186
9165
9178
9167
91696
91641
91636
9186
9162
9181
9162
91688
91616
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91657
9187
9172
9186

645 1998

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
553
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Building 553 (2001) Compared to Baseline Data
9189
9173
9181
9166
9169
91533
9145
9145
9153
9186
9165
9178
9167
91696
91486
9186
9162
9181
9162
91688
91483
9187
9162
91801
9163
91722
91571
9186
9166
91802
9163
91606
9187
9172
91607
9186

306 1997

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
645
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91721
9186
9165
9178
9167
91696
91726
9186
9162
9181
9162
91688
91795
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91679
9187
9172
91665
9186

556 1995

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
306
CuCN
CuC(CN)3
Cu(NO3)2
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91472
9145
9145
9153
9186
9165
9178
9167
91696
91512
9186
9162
9181
9162
91688
91477
9187
9162
91801
9163
91722
91476
9186
9166
91802
9163
91378
9187
9172
91456
9186

620PII 1994

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
556
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91658
9186
9165
9178
9167
91696
91611
9186
9162
9181
9162
91688
91647
9187
9162
91801
9163
91722
91655
9186
9166
91802
9163
9165
9187
9172
91676
9186

441 1993

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PII
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91669
9186
9165
9178
9167
91696
91668
9186
9162
9181
9162
91688
91629
9187
9162
91801
9163
91722
91648
9186
9166
91802
9163
91674
9187
9172
91648
9186

620PI 1992

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
441
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91713
9186
9165
9178
9167
91732
91742
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

642 1989

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
620 PI
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91661
9186
9165
9178
9167
91696
9168
9186
9162
9181
9162
91688
91653
9187
9162
91801
9163
91722
91639
9186
9166
91802
9163
91675
9187
9172
91658
9186

676 1985

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
Cu avg after sputtering
642
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
Baseline data Chawla et al Deroubaix and Marcus Physical Electronics Turek and Kasten
9189
9173
9181
9166
9163
91866
91658
9186
9165
9178
9167
91732
91669
9186
9162
9181
9162
91668
9187
9162
91801
9163
91696
9186
9166
91802
91715
9187
9172
91685
9186
91687

11A 1984

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
676
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91671
9186
9165
9178
9167
91696
9169
9186
9162
9181
9162
91688
91682
9187
9162
91801
9163
91722
91665
9186
9166
91802
9163
91727
9187
9172
91698
9186

641 1977

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
11A
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91566
9186
9165
9178
9167
91696
91578
9186
9162
9181
9162
91688
91579
9187
9162
91801
9163
91722
917
9186
9166
91802
9163
91706
9187
9172
9169
9186

653 1975

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
641
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91687
9186
9165
9178
9167
91696
91572
9186
9162
9181
9162
91688
91678
9187
9162
91801
9163
91722
9167
9186
9166
91802
9163
91619
9187
9172
91647
9186

464 1962

Cu
Cu2O
CuO
Cu(OH)2
CuCO3
653
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
9167
9186
9165
9178
9167
91696
91645
9186
9162
9181
9162
91688
91609
9187
9162
91801
9163
91722
91662
9186
9166
91802
9163
91647
9187
9172
91648
9186
Cu
Cu2O
CuO
Cu(OH)2
CuCO3
464
Cu2p(32) Binding Energy eV
Cu(LMM) Kinetic Energy eV
All Buildings Compared to Baseline Data
9189
9173
9181
9166
9169
91602
9186
9165
9178
9167
91696
91575
9186
9162
9181
9162
91688
915
9187
9162
91801
9163
91722
91641
9186
9166
91802
9163
91561
9187
9172
91523
9186

12

Aqueous Chemistry of Cu(II) Very Complicated

pH6 7 8 9 10 11

log

(mol

Cu

L)

-900

-800

-700

-600

-500

-400

Cu(OH)20

Cu(CO3)22-

CuOH+ CuCO 30

CuHCO3+

Cu2+

Cu(OH)2(s)

Cu(OH) 3

-

Cu2(OH)2

2+

Cu3(OH)42+

CuCO3(OH)2

2-

Cu(O

H)4

2-

Action level

Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)

Model predictions based on Cu(OH)2

Cu(II) Solubility amp pH Adjustment

bull If pH gt 75 no problems if DIC lt 35

bull If DIC lt 5 no problems if pH gt 7

bull If DIC gt 35-40 scaling amp buffering prevents sufficient pH adjustment to solve problems

bull Lime softening blending of anion exchange or RO treated water can achieve lowered DIC and acceptable Cu without phosphate

31

mg CL DIC0 10 20 30 40 50 60 70

mg

CuL

00

10

20

30

ACTION LEVEL

7075

80

859590100

Orthophosphate Inhibits Aging

pH60 70 80

mg

CuL

0 01

01

1

10

100

Ideal Cu2(OH)2CO3 Film

Cu(OH)2 Fresh Scale

H

Cu3(PO4)32 H2O A

sl

ginSlPr

o

N

g Process is Impeded

o real benefit at high pH

ows oxidationevents or drastically

ws reaction with CO32- or

CO3-

Immediate benefitDoes not continue on to stable malachite deposit

Orthophosphate Inhibits Aging

DIC = 50 mg CL PO4= 30 mgL (upper pipes)bull Tradeoff between

short-term health goal and long-term Cu passivation that takes years to decades

bull Aging wonrsquot proceed ldquonormallyrdquo when orthophosphate is added

bull Enough ortho-P must be added to immediately offset elevation of copper by the carbonate level for new plumbing

pH 80

pH 70

PO4

No PO4

PO4

No PO4

Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)

pH

60 65 70 75 80 85

Solu

ble

Copp

er m

gL

1

10

0 mg PO4L3 mg PO4L2 mg PO4L1 mg PO4L

13 mgL

Model predictions based on Cu3(PO4)22H2O and Cu(OH)2

Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building

Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper

- Intent is to predict solubility of lead and copper in the field with DS water

- Evaluate lead and copper reduction strategies

Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)

Orthophoshate mgL

0 1 2 3 4 5

Cop

per

mg

L

0

1

2

3

4

5

Actual first-draw samplesLab precipitation results

Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL

pH65 70 75 80 85

Log

solu

ble c

oppe

r m

gL

01

1

10

0 mg PO4L010 mg PO4L055 mg PO4L145 mg PO4L305 mg PO4L13 mgL copper AL

Soluble Copper

pH65 70 75 80 85

CuP

O4

mol

ar ra

tio

0

2

4

6

8

10

CuPO4 in Solid

pH65 70 75 80 85

Solu

ble P

O4

mg

L

0

1

2

3

4

5

6

Soluble Phosphate

Precipitation Studies

Model and Experimental Fit

Actual copper values of field laboratory and pilot data versus the copper values predicted by the empirical model based on pH dissolved inorganic carbon (DIC) and orthophosphate dose

bullBench- and pilot-scale laboratory data and full scale field data collected from a multitude of studies reported over 20 years

bull851 observations

bullR2= 0857

Actual Copper mgL001 01 1 10

Pred

icte

d C

oppe

r mg

L

001

01

1

10

Field dataLaboratory dataPilot data

Regression equation11 line

log (y)= 0737(log(x))+0097 R2=0857

Range

pH 642-923

DIC 41-73

PO4 00-45

Cu 001-282

Model Predicted Orthophosphate Dose Necessary to Reach Copper Action Level (13 mgL)

Copper Recirculation Test Loop

Copper Concentration over Time Impact of Recirculation Time

(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed time days

0 50 100 150 200

Cop

per

conc

entr

atio

n m

gL

00

05

10

15

20

24hr48hr72+hr

ldquoAgingrdquo observed

Chlorine Demand Associated with Corroding Copper pH 7 10 mg CL 100 mg Cl-L 100 mg SO4

2-L 2 mg Cl2L

Without PO4

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Initial6hr18hr66hr

With 3 mg PO4L

Elapsed time days

0 50 100 150 200

Free

chl

orin

e co

ncen

trat

ion

mg

L

00

05

10

15

20

25

30

Total Chlorine Consumption over Time Impact of Orthophosphate

(10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)

Elapsed Time Day

0 50 100 150 200

Con

sum

ed C

hlor

ine

mg

L

0

100

200

300

400

500

600

pH 920pH 920 amp PO4

pH 720pH 720 amp PO4

Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)

28

Copper Stagnation Profiles with Time

0 10 20 30 40 50 60 70

Lu

g C

m

001

01

1LCR Guidance 6-16h

Theoretical stagnation curve similar to LCR assumptions

Some experimental data for copper represents slow oxidation rate surplus of oxidant barrrier film

LCR Guidance

Time Hours

Copper Pitting Corrosion and Water QualityBased on practical experience and research low alkalinity high pH water has been associated with copper pitting corrosion

- Low DIC (lt 10-15 mg CL)- High pH (gt 85-9)- Chloride (gt10 mgL)- Sulfate ()

Other factors include age of plumbing history of treatment corrosion control and others

  • Webinar Info
  • Lead and Copper Corrosion 101 Principles amp Guidance
  • Rationale
  • Learning Objectives
  • Acknowledgments
  • Agenda
  • ORP-pH Effects on Copper in Water
  • Slide Number 8
  • Age Impacts Oxidant-Limited Cu Stagnation
  • Evolution of Scale Model for High DIC Low pH WatersCopper ldquoAgingrdquo
  • Impact of Plumbing Age on 2nd Draw Copper Concentrations
  • Aqueous Chemistry of Cu(II) Very Complicated
  • Batch Testing- Solubility Results Effect of DIC and pH on Copper Solubility (23oC)
  • Cu(II) Solubility amp pH Adjustment
  • Orthophosphate Inhibits Aging
  • Orthophosphate Inhibits Aging
  • Batch Testing- Solubility Results Effect of Orthophosphate and pH on Copper Solubility (23oC 10 mg CL)
  • Full-scale Demonstration of Orthophosphate Addition to Control Copper in a Building
  • Jar Testing as a Tool to Estimate Orthophosphate Dose to Reduce Copper
  • Value of Jar Testing to Predicting Copper Solubility in the Field Case Study (pH= 74 73 mg CL DIC)
  • Impact of pH and Orthophosphate on Cu(II) Solubility DIC = 10 mg CL
  • Model and Experimental Fit
  • Slide Number 23
  • Copper Recirculation Test Loop
  • Copper Concentration over Time Impact of Recirculation Time(pH 820 10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Chlorine Demand Associated with Corroding Copper
  • Total Chlorine Consumption over Time Impact of Orthophosphate (10 mg CL 100 mg Cl-L 100 mg SO4L 2 mg Cl2L)
  • Polyphosphates ne OrthophosphateEffect of Hexametaphosphate on Copper (10 mg CL)
  • Copper Stagnation Profiles with Time
  • Copper Pitting Corrosion and Water Quality
9325 9324 9337 9345 93444 9326
9327 9325 9336 9347 93438 93249
9326 9325 9337 9351 93292 9325
9326 9325 93371 93475 93288 93293
9326 9325 93369 935 93287
9326 9325 93262
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93246
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 93411
9326 9325 93369 935 9338
9326 9325 93311
9327
9325 9324 9337 9345 93444 93383
9327 9325 9336 9347 93438 9327
9326 9325 9337 9351 93292 93297
9326 9325 93371 93475 93288 93329
9326 9325 93369 935 9326
9326 9325 93323
9327
9325 9324 9337 9345 93444 93259
9327 9325 9336 9347 93438 93304
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 93219
9326 9325 93369 935 93236
9326 9325 93243
9327
9325 9324 9337 9345 93444 93258
9327 9325 9336 9347 93438 93259
9326 9325 9337 9351 93292 93245
9326 9325 93371 93475 93288 93294
9326 9325 93369 935 93223
9326 9325 93208
9327
9325 9324 9337 9345 935 9326166666667 93417
9327 9325 9336 9347 93464 93278
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93292
9327 9325 9336 9347 93438 93279
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93272
9326 9325 93262
9327
9325 9324 9337 9345 935 9326166666667 93348
9327 9325 9336 9347 93464 93321
9326 9325 9337 9351 93461
9326 9325 93371 93475 93461
9326 9325 93369 93461
9326 9325 93453
9327 93435
9325 9324 9337 9345 93444 93263
9327 9325 9336 9347 93438 93237
9326 9325 9337 9351 93292 93257
9326 9325 93371 93475 93288 93264
9326 9325 93369 935 93258
9326 9325 9324
9327
9325 9324 9337 9345 93444 93285
9327 9325 9336 9347 93438 93267
9326 9325 9337 9351 93292 93279
9326 9325 93371 93475 93288 9328
9326 9325 93369 935 93274
9326 9325 93261
9327
9325 9324 9337 9345 93444 93259 9331 9332 9355
9327 9325 9336 9347 93438 93248
9326 9325 9337 9351 93292 93265
9326 9325 93371 93475 93288 93263
9326 9325 93369 935 93258
9326 9325 93258
9327
9325 9324 9337 9345 93444 93272
9327 9325 9336 9347 93438 93216
9326 9325 9337 9351 93292 9323
9326 9325 93371 93475 93288 93301
9326 9325 93369 935 9327
9326 9325 93265
9327
9325 9324 9337 9345 93444 9329 9331 9332 9355
9327 9325 9336 9347 93438 93272
9326 9325 9337 9351 93292 9327
9326 9325 93371 93475 93288 93258
9326 9325 93369 935 93249
9326 9325 93257
9327
9325 9324 9337 9345 93444 93293 92979
9327 9325 9336 9347 93438 93252 93267
9326 9325 9337 9351 93292 93274
9326 9325 93371 93475 93288 9327
9326 9325 93369 935 93286
9326 9325
9327
9325 9324 9337 9345 93444 93462
9327 9325 9336 9347 93438 93282
9326 9325 9337 9351 93292 93255
9326 9325 93371 93475 93288 933
9326 9325 93369 935 93267
9326 9325 93272
9327
9325 9324 9337 9345 93444 93242
9327 9325 9336 9347 93438 93229
9326 9325 9337 9351 93292 93161
9326 9325 93371 93475 93288 92962
9326 9325 93369 935 9299
9326 9325 93198
9327
9325 9324 9337 9345 93444 93272 93383 93242 93292 93462 9326 93263 93259 93258 93259 93258 93285 93293 9329
9327 9325 9336 9347 93438 93216 9327 93229 93279 93282 93249 93237 93304 93246 93248 93259 93267 93252 93272
9326 9325 9337 9351 93292 9323 93297 93161 9327 93255 9325 93257 93279 93255 93265 93245 93279 93274 9327
9326 9325 93371 93475 93288 93301 93329 92962 933 933 93293 93264 93219 93411 93263 93294 9328 9327 93258
9326 9325 93369 935 9327 9326 9299 93272 93267 93287 93258 93236 9338 93258 93223 93274 93286 93249
9326 9325 93265 93323 93198 93262 93272 93262 9324 93243 93311 93258 93208 93261 93257
9327
9325 9324 9337 9345 935
9327 9325 9336 9347
9326 9325 9337 9351
9326 9325 93371 93475
9326 9325 93369
9326 9325
9327
Literature Results
Authors Chawla Sankarraman Payer ADJUSTED
Xray source Mg K-alpha Cu 5978 C1s peak 2846 Cu 5978
C1s peak 2847
Cu2p32 Cu2p12 D Cu(LMM) Da O1s12 S2p Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p
Cu 9326 9524 198 3348 0 5301 Cu 9325 9523 198 3347 9189 0 530
Cu2O 9325 9528 203 3364 -17 5296 Cu2O 9324 9527 203 3363 9173 -17 5295
CuO 9338 9541 203 3356 04 5312 CuO 9337 954 203 3355 9181 04 5311
Cu(OH)2 9346 9542 196 3371 -03 5312 Cu(OH)2 9345 9541 196 337 9166 -03 5311
Cu2S 9326 9525 199 3356 -08 1618 Cu2S 9325 9524 199 3355 9181 -08 1617
CuS 9325 9524 199 3355 -08 1625 CuS 9324 9523 199 3354 9182 -08 1624
CuSO4 9352 9555 203 3377 -03 5319 1688 CuSO4 9351 9554 203 3376 916 -03 5318 1687
Chemisorbed Water 5324 Chemisorbed Water 5323
Authors Deroubaix and Marcus
Xray source Mg K-alpha Authors Physical Electronics
C1s peak 2846 Cu 5977 Xray source Mg
C1s peak 2848
Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 S2p Cu2p32 Cu(LMM) KE Cu2p32 Cu(LMM) KE
Cu 9327 -9327 335 9186 0 Cu 9326 9186 CuO 9337 9181
Cu2O 9325 -9325 3371 9165 -23 5304 Cu 9326 9187 Cu(OH)2 9351 9162
CuO 9336 -9336 3358 9178 01 5296 Cu 9326 9186 CuCO3 935 9163
Cu(OH)2 9347 3369 9167 01 5313 Cu 9326 9187 CuCN 9331 9145
Ref 8 Cu(OH)2 93475 Cu 9327 9186 CuC(CN)3 9332 9145
Ref 18 Cu(OH)2 9163 Cu2O 9325 9162 Cu(NO3)2 9355 9153
Cu2S 9329 -9329 3369 9167 -17 1619 Cu2O 9325 9162 Cu64Zn36 9326 9186
Cu + S ads 9328 -9328 3351 9185 0 1616 Cu2O 9325 9166
Cu2O 9325 9172
Authors Turek and Kasten XPS of copper carbonate standard
Authors Shim and Kim Xray source Mg K-alpha
Xray source Mg K-alpha Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
C1s peak 285 CuCO3 93444 2846 -2846 3367 9169 5313 40314 -2467
CuCO3 93438 2846 28931 471 33664 91696 53132 40306 -24672
Cu2p32 CuCO3 93292 2846 28932 472 33672 91688 53121 40171 -24661
Cu2O 932564-932759 CuCO3 93288 2846 28926 466 33638 91722 53127 40161 -24667
CuO 934093-934266 after sputtering CuCO3 93282 2846 28931 471 33681 91679 53133 40149 -24673
Cu(OH)2 935353-935452 CuO 93371 2846 33559 91801 52964
CuO spt 93369 2846 33558 91802 52957
Authors Squarcialupi et al Pure Copper Data
Xray source Al K-alpha For Buildings Cu2p32 Cu(LMM) Diff KE Cu avg after sputtering CuCO3
C1s peak 2848 Lindas final adjustment 93264 Cu2p32 Cu(LMM) time cum Time Cu2p32 C1s peak Satellite peak diff CuLMM CuLMM KE O1s12 diff diff C O
645 93258 3349 59768 9187 9326166666667 33494 91866 5 5 93464 2846 28928 468 33628 91732 5313 40334 -2467
Carbonates 288 641 93246 33486 5976 91874 8 13
441S 93238 3349 59748 9187 6 19 93461 2846 28918 458 33692 91668 53123 40338 -24663
620 PI 01 9326 33498 59762 91862 after sputtering 5 24 93453 2846 28928 468 33664 91696 53126 40327 -24666
EXPERIMENTAL DATA C1s peak 2846 620 PI 02 837 93235 33486 59749 91874 5 29 93435 2846 28928 468 33645 91715 53106 40329 -24646
464 620 PII 01 9325 33504 59746 91856 5 34 93426 2846 28928 468 33675 91685 53139 40287 -24679
620 PII 02 11A 653 01 93236 33678 59558 91682 double LMM hump - 33495 5 39 93452 2846 28928 468 33673 91687 53128 40324 -24668
653 02 306 676 01 93248 33685 59563 91675 double LMM hump - 33506
676 02 556 571 02 9324 33668 59572 91692 douple LMM hump - 33505
571 05 553 93261 3349 59771 9187 after sputtering
642 441 93249 33661 59588 91699 double LMM hump - 33501
Atomic
Building Sample Area Cu2p32 Cu2p12 D Cu(LMM) Cu(LMM) KE Da O1s12 P2p C1s O1s Cu2p Cl2p S2s P2p Ca
645 2 1 95266 93272 1994 33639 91721 -135 53221 0953 004 0004 0003 Cu +1
2 95217 93216 2001 33634 91726 -186 53214 0952 004 0007 0002 Cu+1 shape
3 95171 9323 1941 33565 91795 -103 53181 0973 0024 0003 0001 Cu+1 shape
1 1 95297 93301 1996 33721 91639 -188 53113 0655 0284 0057 0004 Cu+1 shape
2 95366 9327 2096 33681 91679 -179 53122 0628 0282 0064 0006 002 Cu+1 shape
3 95244 93265 1979 33695 91665 -198 53116 13294 0624 0298 0074 0004 lt0001 Cu+1 shape
641 1 2 95373 93383 199 33673 91687 -058 53068 0432 047 0079 0007 0011 0001 CaCO3 present
3 95266 9327 1996 33788 91572 -286 53196 0564 0352 0058 0008 0018 Carbonate present but not CaCO3
4 95278 93297 1981 33682 91678 -153 5311 0363 0533 0092 0005 lt001 0007 CaCO3 present
2 2 95355 93329 2026 3369 9167 -129 53148 0266 055 0006 00018 Evidence of CaCO3 satellite peak on C1s
3 95244 9326 1984 33741 91619 -249 53205 0588 0318 0009 Bump on C1s and 2 Cu2ps
4 953 93323 1977 33713 91647 -158 53149 0248 061 0006 lt001 hump on O1s baby peak with C1s
441S 1 1 none 93242 0 33646 91714 -172 53213 0938 0061 lt001
2 none 93229 0 33623 91737 -162 53213 0918 0079 0003 lt001
3 none 93161 0 33623 91737 -230 53215 095 0049 0001 lt001
2 3 none 92962 0 33467 91893 -273 53156 0913 0081 0007 lt001 Double carbon peak no Ca
4 none 9299 0 3346 919 -238 53158 0949 0048 0002 lt001 Double carbon peak no Ca
5 none 93198 0 33664 91696 -234 53192 0948 0048 0003 0002 Double carbon peak no Ca
620 PI 1 2 953 93292 2008 33699 91661 -175 5309 13291 0136 0568 0143 0136 0153 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
3 95294 93279 2015 3368 9168 -169 53092 13301 0255 0483 0127 0135 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
4 953 9327 203 33707 91653 -205 53104 13305 0301 0461 0115 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 1 95344 933 2044 33721 91639 -189 53112 13319 022 052 0133 0123 lt001 hump on side of carbon peak Ca present at 347 (where CaCO3 is found)
2 95266 93272 1994 33685 91675 -181 53096 13303 0289 05 0137 0074 lt001 hump on carbon peak
3 95244 93262 1982 33702 91658 -208 53095 13294 018 0586 0156 0077 lt001 carbon double peak looks just like CuCO3 Ca is present
837 1 1 95244 93462 1782 33889 91471 -195 531 13097 065 0255 0036 0059 lt001 definate CuCO3 characteristic hump on C peak O P and Cu peaks have similar but smaller humps as well
2 95333 93282 2051 33842 91518 -328 53121 1328 0653 0263 0048 0035 lt001 carbon peak has a hump half way up
3 953 93255 2045 33802 91558 -315 53127 13326 0665 0263 0042 003 lt001 carbonate shaped double carbon peak present
2 1 95322 933 2022 33681 91679 -149 53119 13288 0391 0423 0103 0082 lt001 slight hump on carbon peak Ca present
2 95233 93267 1966 33667 91693 -168 53115 13288 0548 0319 0106 0027 lt001 double hump shape in both Cu2p peaks and CuLMM peak
3 95266 93272 1994 33693 91667 -189 5311 1329 0419 0337 0116 0128 lt001
464 1 1 95244 9326 1984 33758 91602 -266 53131 13339 0444 0464 0059 0033 lt001
2 95244 93249 1995 33785 91575 -304 53132 13349 0405 0467 0084 0044 lt001
3 95244 9325 1994 3386 915 -378 53127 13326 0437 0473 006 003 lt001
2 1 95333 93293 204 33719 91641 -194 5312 1332 lt001 0742 0163 0095 lt001
2 95263 93287 1976 33799 91561 -280 53135 13329 lt001 0809 0127 0064 lt001
3 95244 93262 1982 33837 91523 -343 53139 13337 0429 047 0067 0035 lt001
620 PII 1 1 95389 93263 2126 33691 91669 -196 53094 13306 0599 031 0052 0038 lt001
2 95233 93237 1996 33692 91668 -223 53099 13288 0447 0404 0082 0067 lt001
3 95244 93257 1987 33731 91629 -242 53101 13292 0437 0404 0093 0065 lt001
2 3 95245 93264 1981 33712 91648 -216 531 13286 0489 0386 008 0045 lt001
4 95244 93258 1986 33686 91674 -196 53115 13303 0619 0286 0056 0039 lt001
5 95244 9324 2004 33712 91648 -240 5311 13311 0627 0285 0048 004 lt001
11A 1 1 9544 93259 2181 33794 91566 -303 53145 13294 lt001 0749 0223 0028 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 953 93304 1996 33782 91578 -246 53171 13322 lt001 0752 0218 003 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
3 95289 93279 201 33781 91579 -270 53153 13329 lt001 0748 0218 0034 small double peaks on Cu2 peaks and P and Cu3 peaks seem connected
2 1 95222 93219 2003 3366 917 -209 53084 1327 lt001 0678 0234 0088 lt001
2 95233 93236 1997 33654 91706 -186 53079 13486 0047 0651 0214 0088 slight hump on carbon peak
3 95222 93243 1979 3367 9169 -195 53075 13273 0067 0618 0231 Fe 0084 slight hump on carbon peak P and Cu3 peaks connected
653 1 1 95233 93258 1975 3369 9167 -200 53098 13312 0231 0521 0098 0076 0075 lt001 hump on left side of carbon peak
2 95222 93246 1976 33715 91645 -237 53098 1328413787 lt001 0674 0126 0105 0094 lt001 hump on left side of carbon peak
3 95233 93255 1978 33751 91609 -264 53119 1329013801 0218 0536 0099 0085 0072 lt001 hump on left side of carbon peak
2 1 95411 93411 20 33698 91662 -055 53127 13289 0267 055 0103 0063 0016 second hump to left of carbon peak
2 95346 9338 1966 33713 91647 -101 53128 13303 0273 0528 0126 0057 0015 carbon double peak 28936 and 2846
3 95302 93311 1991 33712 91648 -169 53131 1332 0253 0531 0127 0069 N 0019 carbon double peak 28956 and 2846
306 1 1 95263 93259 2004 33888 91472 -397 53147 1331 0535 0347 0014 008 0019 0005 Cu+1 shape
2 95237 93248 1989 33848 91512 -368 53123 13308 0549 033 0015 008 0022 0005 Cu+1 shape
3 9525 93265 1985 33883 91477 -386 5313 13342 0557 0316 0016 0086 002 0005 Cu+1 shape
2 1 95224 93263 1961 33884 91476 -389 53182 13311 0664 026 002 0064 001 Cu+1 shape
2 9525 93258 1992 33982 91378 -492 53173 13376 0597 0307 0008 007 0015 0003 Cu+1 shape
3 95237 93258 1979 33904 91456 -414 53165 13342 063 027 0009 Cl2p 0076 0014 0002 Cu+1 shape
676 1 1 95239 93258 1981 33689 91671 -199 5321 1336 0912 0073 0008 0005 0003 Cu+1 shape
2 95251 93259 1992 3367 9169 -179 53148 1334 0903 0079 0011 0007 Cu+1 shape
3 95214 93245 1969 33678 91682 -201 53174 13285 0918 0069 0007 0006 Cu+1 shape
2 1 95222 93294 1928 33695 91665 -169 53169 13303 0896 0094 0004 0007 lt001 Cu+1 shape
2 95244 93223 2021 33633 91727 -178 53192 13316 0908 008 0005 0007 lt001 Cu+1 shape
3 95211 93208 2003 33662 91698 -222 532 0939 0056 0003 0003 Cu+1 shape
556 1 1 95263 93285 1978 33702 91658 -185 53092 13306 032 0484 0106 0083 0007 hump on left side of carbon peak
2 95244 93267 1977 33749 91611 -250 53098 13303 0315 0125 0125 0083 0005 hump on left side of carbon peak
3 95255 93279 1976 33713 91647 -202 53102 1331 0321 0472 012 0085 0002 hump on left side of carbon peak
2 1 95278 9328 1998 33705 91655 -193 53109 13312 029 054 0098 0072 lt001 hump on left side of carbon peak
2 95267 93274 1993 3371 9165 -204 oops 13304 hump on left side of carbon peak
3 95244 93261 1983 33684 91676 -191 5311 1331 0285 0489 0114 0108 0004 hump on left side of carbon peak
571 2 1 95263 93293 197 33726 91634 -201 53123 13296 0699 0232 0037 0032 lt001
2 95255 93252 2003 33719 91641 -235 53123 13278 0698 0231 0041 003 lt001
3 95267 93274 1993 33744 91616 -238 53135 13328 0692 0235 0041 0033 lt001
5 1 953 9327 203 33712 91648 -210 53122 13286 0652 0272 0046 003
2 95278 93286 1992 33703 91657 -185 53116 13298 0677 0251 0044 0028
94956 92979 1977 33431 91929 -220
3 95244 93267 1977 33724 91636 -225 53115 13324 0648 0237 0083 N Zn 0032
553 2 1 95244 9329 1954 33827 91533 -305 53139 0581 0299 0034 0081 0006 very slight Cu+2 satellite peaks
2 95263 93272 1991 33874 91486 -370 53135 061 0256 0051 0075 0008 looks like Cu+1
3 9525 9327 198 33877 91483 -375 53136 061 0258 0046 0079 0007 S looks like Cu+2
5 1 95243 93258 1985 33789 91571 -299 53126 0755 0171 0067 0007 very slight Cu+2 satellite peaks
2 95237 93249 1988 33754 91606 -273 53144 0764 0154 0073 0008 very slight Cu+2 satellite peaks
3 95231 93257 1974 33753 91607 -264 53131 0782 0139 0074 P 0005 looks like Cu+1
642 1 1 95414 93417 1997 33702 91658 -053 53109 13309 0362 047 0108 006 lt001 Cu+2 peak small hump on side of C peak
2 95263 93278 1985 33691 91669 -18066666667 53112 1331 0331 0475 0123 0071 lt001 Cu+2 peak small hump on side of C peak
441 3 1 NOTHING 0997
2 NOTHING 0994
6 1 95341 93348 33647 91713 53099 0643 0258 01 Cu+2 shape
2 95389 93321 33618 91742 53058 063 0253 0117 Cu+2 shape
COPPER RESULTS Without background
Building Collection Date Collection Time 1st Draw Sample 2nd Draw Sample 1st Draw Sample 2nd Draw Sample Notes
Year of Pipes C 250 1st draw C Lab s Copper Level (ugL) D 250 2nd draw D Lab s Copper Level (ugL) Copper Level (ugL) Copper Level (ugL) Building Cu Sequential Sampling of building 641
441 15-Dec-05 915 2005 038C441 87 1740 040D441 86 2460 1482 2202 I was half hour late due to snow 441S 026 258 Location of Stagnation Cu (mgL) Cu (mgL)
837 20-Dec-05 715 2004 046C837 92 2720 047D837 93 2830 203418 214418 043Z004 is blank for 028-042 (Lab 111 = ND for Cu) 837 069 686 Background (taken after 1 min flush before stagnation) 0114
571 3-Nov-05 909 2002 012C571 102 2550 013D571 103 2990 1705 6105 014Z002 - Blank washed with bottles 006-013 (Lab 109 = ND for Cu) 571 238 2380 1st 30mL Faucet fixture and 14 supply line 128
553 25-Oct-05 816 2001 003C553 98 2360 004D553 99 2180 219711 201711 005Z001 - blank washed with bottles 001 (lab 108 = ND for Cu) 553 016 163 2nd 30mL 14 faucet supply line and supply line within wall 107
645 22-Nov-05 905 1998 021C645 94 2480 022D645 95 2050 15802 11502 645 090 900 1st 60mL Supply line in wall 108
306 21-Dec-05 700 1997 052C306 90 2230 053D306 91 2170 85713 79713 306 137 1373 2nd 60mL 12 cold water domestic copper pipe 0866
556 4-Jan-06 805 1995 056C556 205 1740 057D556 206 1850 141507 152507 Blank 058Z005 for bottles 044-057 (EM 215 = ND for Cu) 556 032 325 3rd 60mL 12 cold water domestic copper pipe 0431
620 PII 13-Dec-05 750 1994 034C620 104 1860 035D620 105 2130 16289 18989 027Z003 - Blank washed with bottles 015-026 (Lab 110 = ND for Cu) 620 PII 023 231 4th 60mL 12 cold water domestic copper pipe 0285
441 3-Nov-05 845 1993 010C441 96 2800 011D441 97 442 231285 -4515 Bag was full of water - dripped all night 441B 049 487 5th 60mL 12 cold water domestic copper pipe 0264
620 PI B 20-Dec-05 745 1992 048C620 89 2130 049D620 88 2530 162722 202722 Janitors sink in basement 620 PI B 050 503 6th 60mL 12 cold water domestic copper pipe 0294 Copper Concentration (mgL)
620 PI 12-Dec-05 1540 1992 032C620 204 1320 033D620 203 802 84459 32659 1st floor mens restroom sampled only sink 620 PI 048 475 Avg of first 240mL from sequential sampling 1st Draw 250 mL
642 22-Nov-05 855 1989 019C642 106 1930 020D642 107 668 181522 55322 Bag was full of water - dripped all night 642 011 115 1074 196
676 18-Jan-06 745 1985 070C676 211 2210 071D676 212 2360 178937 193937 676 042 421 Avg of second 180 mL from sequential sampling 2nd Draw 250 mL
11A 18-Jan-06 815 1984 072C011 213 1640 073D011 214 1950 135207 166207 Blank 074Z006 for bottles 059-073 (EM 216 = ND for Cu) 11A 029 288 0281 0528
641 6-Dec-05 900 1977 025C641 100 1960 026D641 101 528 18086 3766 sampled sink nearest door as you enter the N side of bathroom 641 015 151 Percent Decrease
653 13-Jan-06 715 1975 062C653 207 930 063D653 208 417 7874 2744 653 014 143 262 269
464 13-Jan-06 730 1962 064C464 209 1390 065D464 210 946 121146 76746 464 018 179 641 (add smp) 011
464 018