lbe-water interaction in lifus v facility under different operating conditions

24
LBE-Water interaction in LIFUS V facility under different operating conditions A. Ciampichetti, D. Bernardi - ENEA T. Cadiou - CEA N. Forgione – Università di Pisa D. Pellini - KIT International DEMETRA Workshop Berlin, March 4th, 2010

Upload: quynn-branch

Post on 30-Dec-2015

29 views

Category:

Documents


3 download

DESCRIPTION

LBE-Water interaction in LIFUS V facility under different operating conditions. A. Ciampichetti, D. Bernardi - ENEA T. Cadiou - CEA N. Forgione – Università di Pisa D. Pellini - KIT International DEMETRA Workshop Berlin, March 4th, 2010. Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: LBE-Water interaction in LIFUS V facility under different operating conditions

LBE-Water interaction in LIFUS V facility under different operating

conditions

A. Ciampichetti, D. Bernardi - ENEAT. Cadiou - CEAN. Forgione – Università di PisaD. Pellini - KIT

International DEMETRA WorkshopBerlin, March 4th, 2010

Page 2: LBE-Water interaction in LIFUS V facility under different operating conditions

Introduction

The XT-ADS and EFIT reactors’ heat exchangers / steam generator modules are designed to be placed in direct contact with the heavy liquid metal in the main vessel. Since the likelihood of a pipe break is not negligible, the interaction between the secondary coolant and LBE represents an important concern for such a configuration. In fact, the consequences might have a strong impact on safety, design and maintenance of these reactors.

Consequences• The peculiarities of the heavy liquid metals (such as high thermal conductivity,

high density and low surface tension) determine their gift to interact with water energetically, thus producing vapour at high pressure.

• The interaction leads to pressures waves propagation which might damage the surrounding structures, causing an escalation of the accident.

• The seriousness of the consequences is determined by the injection pressure and flow rate, the vapour production rate and the intervention of safeguards.

Page 3: LBE-Water interaction in LIFUS V facility under different operating conditions

Description of work

An experimental study focused on LBE/water interaction aimed at assessing physical effects and possible consequences relating to this kind of interaction has been performing in ENEA through LIFUS 5 plant. The main parameters for carrying out the experiments have been selected taking into account the XT-ADS primary heat exchanger design and the indications obtained from the pre-test activity performed with SIMMER code.

The parameters considered have been:- system geometry;- lead temperature;- temperature and pressure of the water The modelling activity with SIMMER code have been performing in CEA and

University of Pisa.

Page 4: LBE-Water interaction in LIFUS V facility under different operating conditions

LIFUS 5 Facility

The main LIFUS 5 components are:• the reaction vessel S1, containing at the bottom the water injection device. Its

volume is 100 l• the expansion vessel S5, connected to S1 through four tubes. Its volume is 10 l• the pressurised water vessel S2 • the safety vessel S3• the liquid metal storage vessel S4• Instrumentation: S1 is equipped with water-cooled high precision piezometric

pressure transducers, which allow to achieve very low time constants. A number of K-type thermocouples are also present. A fast DAQ system with a dedicated software acquires the main test parameters in different positions of the system.

LIFUS 5 has been designed to simulate LOCA accidents and to operate in a wide range of conditions (pressure up to 200 bar, initial LM temperature up to 500 °C)

Page 5: LBE-Water interaction in LIFUS V facility under different operating conditions

LIFUS 5 Facility

Page 6: LBE-Water interaction in LIFUS V facility under different operating conditions

Experimental campaigns

Three experimental campaigns for DEMETRA have been completed and the last one will be completed in March 2010.

Test n.1 Test n.2 Test ELSY Test n.3 Test n.4

LBE temperature 350 °C 350 °C 400 °C 350 °C 350 °C

Water injection pressure

70 bar 6 bar 185 bar 40 bar 40 bar

Water temperature 235 °C 130 °C 300 °C 235 °C 235 °C

Free volume/ LBE volume

5% 20% 20% S1 completely

filled 20%

Water injector device penetration

in the melt 80 mm 80 mm 5 mm 5 mm 5 mm

Reaction system Initial one Modifications on S5 and WI

Possibility to discharge in S3

Possibility to discharge in S3

Possibility to discharge in S3

Time schedule Completed Completed Completed Completed March 2010

Page 7: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.1: experimental results

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

Pre

ssu

re [

bar

]

Pressure evolutions in the

reaction-expansion vessel

First phase: the pressure reaches a maximum of about 65 bar.Second phase: pressure decreases in S1 because of the free flow of gases into S5 is not balanced by an equivalent injection of water.Third phase: there is a further pressure increase in both S1 and S5 due to the further water vaporization. A maximum value of about 80 bar has been reached.Fourth phase: pressure become stable at 70 bar due to the reverse flow-rate.

• Liquid metal temperature: 350 °C

• Water injection pressure: 70 bar

• Water temperature: 235 °C (sub-cooling of 50 °C)

• Test performed with the expansion vessel S5

240

260

280

300

320

340

360

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

Tem

per

atu

re [

°C]

Top

Middle

Bottom

260

280

300

320

340

360

0 1000 2000 3000 4000 5000 6000 7000 8000

Time [ms]

Tem

pera

ture

[°C

]

Page 8: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.1: modelling

SIMMER model of LIFUS5

March 5, 9 2007 9Forschungszentrum Karlsruhe

SIMMER results (pressure)

Pressure à t=0.2 sInitial state

Reaction vessel

Expansion tube

March 5, 9 2007 10Forschungszentrum Karlsruhe

SIMMER results (Pressure)

Pressure à t=0.5 sPressure à t=0.4 s

Pressure evolutions in the interaction vessel (S1) and expansion vessel (S5)

June 21, 22 2006 6ROSSENDORF

Expansion volume

Interaction tank

J = 1,64

Expansion vessel

Expansion tubes

connected to the different

zones

U tubes bundle

Injector

I = 1, 20Boundary conditions at inlet injector Porous wall

LIFUS modeling with SIMMER

S1

S5

Page 9: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.2: experimental results

Pressure evolution detected in gas phase followed the same trend as in LBE but the first sharp peak was not present.

• Liquid metal temperature: 350 °C

• Water injection pressure: 6 bar

•  Water temperature: 130 °C (sub-cooling of 28 °C)

• Test performed without the expansion vessel S5

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

Pre

ssu

re [

bar]

LM

Gas

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000

Time [ms]

Tem

per

atu

re [

°C] Top

Middle

Bottom

320

325

330

335

340

345

350

0 2000 4000 6000 8000 10000 12000 14000 16000

Time [ms]

Te

mp

era

ture

[°C

]

TC10

TC11

Tc12

Temperature evolution detected in three vertical positions.

Page 10: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.2: modelling /1

Page 11: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.2: modelling /2

SIMMER III domains developed by PISA University

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

0 2 4 6 8 10Time [s]

Pre

ssu

re [

Pa]

CM1

CM2

Experimental

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

0 2 4 6 8 10Time [s]

Pre

ssu

re [

Pa]

CM1

CM2

Experimental

Comparison between SIMMER simulations and

experimental results

120

160

200

240

280

320

360

0 2 4 6 8 10Time [s]

Tem

per

atu

re [°

C]

TC18 Bottom- tube n.3

CM2

Pressure evolution

Temperature evolution

University of Pisa

Page 12: LBE-Water interaction in LIFUS V facility under different operating conditions

Experimental and SIMMER results of Test n.2 were used to support the assessment of the accidental scenario of “heat exchanger tube rupture” considered as reference accident in the safety analysis of the ICE activity.

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

Pre

ssur

e [b

ar]

LM

Gas

Test n.2: experimental results

SIMMER domain for Test n.2

Safety activity for ICE /1

Page 13: LBE-Water interaction in LIFUS V facility under different operating conditions

ICE simulations with SIMMER have shown that a double rupture of a HX tube produces a fast pressurisation of CIRCE main vessel that strongly overcomes the design value.

Double breakage - Argon Zone

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 2 4 6 8 10Time [s]

Pres

sure

[Pa

]

Injection depht : 900 mm

Injection depht : 450 mm

Injection depht : 100 mm

Double Rupture – Argon RegionDouble breakage - Argon Zone

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 2 4 6 8 10Time [s]

Pres

sure

[Pa

]

Injection depht : 900 mm

Injection depht : 450 mm

Injection depht : 100 mm

Double Rupture – Argon Region

ICE design team has

developed another

solution for the HX

based on the adoption

of water at 1 bar and

double wall tubes

Dead volume

Cylindricalskirt

Dead volume

Cylindricalskirt

Primary coolant Heat Exchanger

(old solution)

Heat Exchanger

(new solution)

Fluid LBE Water Boiling Water

Temperature

in-out 400 – 300 °C 115 – 150 °C 60°C – 100°C

Pressure 1.2 bar (cover

gas) 6 bar

2.5 bar (liquid side)

1 bar (steam side)

Flow rate 55.2 kg/s 5.5 kg/s 0.6-0.8 kg/s

Velocity 0.2 m/s 1.3 m/s 0.5 m/s (liquid)

Material T91 AISI 304

Tubes

- Triangular assembly - “U” shape - Diameter and thickness: 26.7 / 2.9 - Length: 895 mm - Number: 13

- Bayonet double wall (helium gap)

- Diameter 1”, ¾”, ½” - Length: 5000 mm - Number: 91

Safety activity for ICE /2University of

Pisa

Page 14: LBE-Water interaction in LIFUS V facility under different operating conditions

In order to simulate the possibility to discharge the vapour/liquid metal mixture outside the steam generator module during a tube rupture accident, the reaction system of Lifus5 facility has been modified. A discharge line directly connecting the reaction vessel S1 with the safety vessel S3 has been designed and constructed.

Modification of LIFUS5

Page 15: LBE-Water interaction in LIFUS V facility under different operating conditions

S2

LIFUS5: old and new configuration

Page 16: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.3: experimental results /1

Pressure evolution detected by the different transducers placed in S1

• Liquid metal temperature: 350 °C

•  Water injection pressure: 40 bar

• Water temperature: 235 °C (sub-cooling of 15 °C)

• Possibility to discharge in S3

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000

Time [ms]

Pre

ss

ure

[b

ar]

PT in S1

Page 17: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.3: experimental results /2

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [ms]

Pre

ss

ure

[b

ar]

PT in the flange of S1

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [ms]

Pre

ssu

re [

ba

r]

PT close to the water injector

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [ms]

Tem

per

atu

re [

°C]

Top

Middle

Bottom

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [ms]

Tem

per

atu

re [

°C]

TC closest to the water injector

TC in the discharge line

Pressure

Temperature

PT close to the water injector PT in the flange of S1

TCs in front of the water injector

Page 18: LBE-Water interaction in LIFUS V facility under different operating conditions

Features of the domainSimplified  geometry:  cylindrical  coordinates  (r-z) with 30 radial and 39 axial meshes.In  LIFUS  5  there  is  a  strong  asymmetry  in  the geometry

 Assumptions1. The  overall  volume  of  the  main  elements    is 

conserved 2. The  injector and vent pipe are placed coaxially 

with the reaction vessel S13. The flow area of the various pipes is conserved

Test n.3: modelling /1

In  the  reaction vessel  S1, U  tubes are  represented by 12 “no calculation” regions

The  strong  asymmetry  due  to  U  tube  shape  and position cannot be adequately accounted for

U tubes are simulated through annular elements which conserve the overall volume

SIMMER III Model (2D): GeometrySIMMER III Model (2D): Geometry

University of Pisa

Page 19: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.3: modelling /2

Comparison between calculated and experimental pressure in S1 vessel 

SIMMER III overestimates the maximum value  of  the  pressure  in  the  reaction vessel  S1  even  though  the  trend  is  in agreement  especially  for  the pressurization

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

Pres

sure

[MPa

]

Experimental

SIMMER III calculations

Comparison between calculated and experimental 

temperature in LBE region: top thermocouple

0

50

100

150

200

250

300

350

400

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

Tem

pera

ture

[°C

]

Experimental

SIMMER III calculations

University of Pisa

Page 20: LBE-Water interaction in LIFUS V facility under different operating conditions

SIMMER IV Model (3D): GeometrySIMMER IV Model (3D): Geometry

• 3-D model of LIFUS 5 facility performed with SIMMER IV code

• Simplified geometry: Cartesian coordinates (x-y-z) with 20 meshes along x, 15 along y and 18 along z

• The correct position of the water injector and of the vent tube is preserved

Test n.3: modelling /3 University of Pisa

Page 21: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.3: modelling /4

The  3D  version  of  the  code  is  able  to evaluate the first pressure peak associated with the  impact between the water jet and the “rigid surface” of the liquid metal.

A  better  agreement  concerning  the maximum values reached  with respect to SIMMER  III  results  even  though  some discrepancies still remain.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.3 0.6 0.9 1.2 1.5

Time [s]

Pres

sure

[M

Pa]

Experimental

SIMMER IV calculations

0.0

0.5

1.0

1.5

2.0

2.5

0.000 0.002 0.004 0.006 0.008

Time [s]

Pres

sure

[MPa

]

ExperimentalSIMMER III calculationsSIMMER IV calculations

University of Pisa

Page 22: LBE-Water interaction in LIFUS V facility under different operating conditions

Test n.3: modelling /5

TestTotal mass of injected water

[kg]

SIMMER III 1.66

SIMMER IV 1.13

Experimental data 1.60

Mass Flow Rate: Comparison between SIMMER III and SIMMER IV calculation results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

Mas

s Fl

ow R

ate

[kg/

s]

SIMMER III calculations

SIMMER IV calculations

University of Pisa

Page 23: LBE-Water interaction in LIFUS V facility under different operating conditions

Possible consequences

The pressure evolution detected during Test n.3 has shown a first sharp peak and a following slower pressurisation of the system. In reactor scale the latter event can be avoided using adequate countermeasures (e.g. rupture disks, stop and check valves on the steam generator tubes). The first sharp peak reached about 15 bar in the pressure transducer closest to the water injector and smaller values in the other pressure sensors. This peak is originated from the impact of the water jet on the liquid metal and it could be a threat for the integrity of the surrounding tubes. Further tests are necessary to investigate this issue.

Page 24: LBE-Water interaction in LIFUS V facility under different operating conditions

Conclusions

Experimental results concerning the simulation of water  large leaks in LBE have been obtained under different operating  conditions. Maximum pressure values higher  than  the water  injection pressure have been detected during Test n.1 and 2.

The experimental results provided helpful data to prove the capability of the SIMMER code to simulate such an accident. SIMMER  III was able to reproduce the  interaction between a water  jet   and LBE, even  though  the  2D  feature  of  the  code  has  represented  a  limitation  in  reproducing  the  LIFUS  5 results.  A  new  activity  with  SIMMER  IV  (3D)  has  been  recently  launched  and  is  giving  promising results.

Test n.2 was used to support the safety analysis of ICE. In this case simulations showed that a double rupture  in  the  LBE–pressurized water  shell  heat  exchanger  leads  to  a  fast  pressurisation  of  CIRCE main vessel that strongly overcomes the design value. Considering this warning, the ICE design team has adopted another solution with water at atmospheric pressure.

LIFUS 5 has been modified  in order to simulate the possibility of discharging the vapour/liquid metal mixture outside the steam generator module during a  tube rupture accident as  it might happen  in lead  cooled  reactors. After  that,  Test n.3 was  carried out  in  the operating  conditions fixed  for  the heat exchanger of XT-ADS. 

Test n.3 has shown a first sharp pressure peak and a following slower pressurisation of the system. In reactor scale,  the first peak could be dangerous  for  the surrounding structures while  the  following pressurisation can be avoided with adequate safeguards.