laurent boudin marco caponigro lara trussardi...optimal control in multi-agents model laurent...

51
Optimal control in multi-agents model Laurent Boudin 1,3 Marco Caponigro 2 Lara Trussardi 3,4 1 UPMC Paris (France) 2 CNAM Paris (France) 3 INRIA Paris (France) 4 Uni Wien (Austria) January 18, 2018 – DK Winter Workshop SFB P D M E Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 1 / 28

Upload: others

Post on 17-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control in multi-agents model

Laurent Boudin1,3 Marco Caponigro2 Lara Trussardi 3,4

1 UPMC Paris (France) 2 CNAM Paris (France)3 INRIA Paris (France) 4 Uni Wien (Austria)

January 18, 2018 – DK Winter Workshop

SFB

P

D ME

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 1 / 28

Page 2: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Index

1 Motivations

2 Model

3 Optimal control

4 Results and Outlook

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 2 / 28

Page 3: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Motivations

Model how the individuals change their mind

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 3 / 28

Page 4: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Motivations

Model how the individuals change their mind

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 3 / 28

Page 5: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Settings

Two products: P 7→ +1; M 7→ −1N individualsxi ∈ [−1,1]: opinion of the individual i-th, i = 1, . . . ,N

Evolution of the opinion for each individual xi , i = 1, . . .N

xi(t) =N∑

j=1

aij(xj(t)− xi(t)) + Pi(t)(1− xi(t))−Mi(t)(1 + xi(t))

interactions between individualsexternal factors(e.g. advertising)

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 4 / 28

Page 6: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Settings

Two products: P 7→ +1; M 7→ −1N individualsxi ∈ [−1,1]: opinion of the individual i-th, i = 1, . . . ,N

Evolution of the opinion for each individual xi , i = 1, . . .N

xi(t) =N∑

j=1

aij(xj(t)− xi(t)) + Pi(t)(1− xi(t))−Mi(t)(1 + xi(t))

interactions between individualsexternal factors(e.g. advertising)

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 4 / 28

Page 7: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Model

Interactions between individuals:

xi(t) =N∑

j=1

aij(xj(t)− xi(t)); •xi

xj1

xj2

xj3

xj4

with A = (aij) matrix, aij 6= aji

External factors:

xi(t) = Pi(t)(1− xi(t))−Mi(t)(1 + xi(t));

Pi(t),Mi(t) ∈ [0,1]:P leads the individuals toward +1, M leads the individuals toward −1

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 5 / 28

Page 8: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Model

Interactions between individuals:

xi(t) =N∑

j=1

aij(xj(t)− xi(t)); •xi

xj1

xj2

xj3

xj4

with A = (aij) matrix, aij 6= aji

External factors:

xi(t) = Pi(t)(1− xi(t))−Mi(t)(1 + xi(t));

Pi(t),Mi(t) ∈ [0,1]:P leads the individuals toward +1, M leads the individuals toward −1

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 5 / 28

Page 9: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control

Aimtry to understand the best strategy that a seller should have in order to

maximize his sales

Mi(t) known (strategy), T > 0 fixed final timeFind ui(t) : [0,T ]→ [0,1] such that

∫ T0∑N

i=1 ui(t)dt ≤ C1

xi(t) =N∑

j=1

aij(xj(t)− xi(t)) + ui(t)(1− xi(t))−Mi(t)(1 + xi(t))

Goalto maximize the number of individuals in 1 and minimize the cost:

minN∑

i=1

(1− xi(T ))2 +

∫ T

0

N∑i=1

ui(t)2dt

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 6 / 28

Page 10: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control

Aimtry to understand the best strategy that a seller should have in order to

maximize his sales

Mi(t) known (strategy), T > 0 fixed final timeFind ui(t) : [0,T ]→ [0,1] such that

∫ T0∑N

i=1 ui(t)dt ≤ C1

xi(t) =N∑

j=1

aij(xj(t)− xi(t)) + ui(t)(1− xi(t))−Mi(t)(1 + xi(t))

Goalto maximize the number of individuals in 1 and minimize the cost:

minN∑

i=1

(1− xi(T ))2 +

∫ T

0

N∑i=1

ui(t)2dt

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 6 / 28

Page 11: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control

Aimtry to understand the best strategy that a seller should have in order to

maximize his sales

Mi(t) known (strategy), T > 0 fixed final timeFind ui(t) : [0,T ]→ [0,1] such that

∫ T0∑N

i=1 ui(t)dt ≤ C1

xi(t) =N∑

j=1

aij(xj(t)− xi(t)) + ui(t)(1− xi(t))−Mi(t)(1 + xi(t))

Goalto maximize the number of individuals in 1 and minimize the cost:

minN∑

i=1

(1− xi(T ))2 +

∫ T

0

N∑i=1

ui(t)2dt

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 6 / 28

Page 12: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control theory

L. Pontryagin R. Bellman

Developed in 1950sIt is an extension of the calculus of variationsIt deals with systems that can be controlled, i.e. whose evolutioncan be influenced by some external agent

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 7 / 28

Page 13: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Let x(t) = f (x(t),u(t), t), x(0) = x0 (1)

x(t): stateu(t) ∈ U = u(·) measurable,u(t) ∈ U ⊂ Rm compact: control

I open-loop strategy: u = u(t)I closed-loop or feedback strategy: u = u(x , t)

Ω open subset of R× Rn, f : Ω× U → Rn continuous in allvariables and continuously differentiable w.r.t x

for each initial point x0 there are many trajectories depending on thechoice of the control parameter u

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 8 / 28

Page 14: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Let x(t) = f (x(t),u(t), t), x(0) = x0 (1)

x(t): state

u(t) ∈ U = u(·) measurable,u(t) ∈ U ⊂ Rm compact: controlI open-loop strategy: u = u(t)I closed-loop or feedback strategy: u = u(x , t)

Ω open subset of R× Rn, f : Ω× U → Rn continuous in allvariables and continuously differentiable w.r.t x

for each initial point x0 there are many trajectories depending on thechoice of the control parameter u

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 8 / 28

Page 15: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Let x(t) = f (x(t),u(t), t), x(0) = x0 (1)

x(t): stateu(t) ∈ U = u(·) measurable,u(t) ∈ U ⊂ Rm compact: control

I open-loop strategy: u = u(t)I closed-loop or feedback strategy: u = u(x , t)

Ω open subset of R× Rn, f : Ω× U → Rn continuous in allvariables and continuously differentiable w.r.t x

for each initial point x0 there are many trajectories depending on thechoice of the control parameter u

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 8 / 28

Page 16: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Let x(t) = f (x(t),u(t), t), x(0) = x0 (1)

x(t): stateu(t) ∈ U = u(·) measurable,u(t) ∈ U ⊂ Rm compact: control

I open-loop strategy: u = u(t)I closed-loop or feedback strategy: u = u(x , t)

Ω open subset of R× Rn, f : Ω× U → Rn continuous in allvariables and continuously differentiable w.r.t x

for each initial point x0 there are many trajectories depending on thechoice of the control parameter u

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 8 / 28

Page 17: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Let x(t) = f (x(t),u(t), t), x(0) = x0 (1)

x(t): stateu(t) ∈ U = u(·) measurable,u(t) ∈ U ⊂ Rm compact: control

I open-loop strategy: u = u(t)I closed-loop or feedback strategy: u = u(x , t)

Ω open subset of R× Rn, f : Ω× U → Rn continuous in allvariables and continuously differentiable w.r.t x

for each initial point x0 there are many trajectories depending on thechoice of the control parameter u

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 8 / 28

Page 18: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Hypothesis

What we need:set points that can be reached (controllability)

If controllability to find a final point xf is granted then one can try toreach xf minimizing some cost,

thus defining an optimal control problem: min Ψ(u)

final time T fixed or freeset of admissible controls and set of admissible trajectories

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 9 / 28

Page 19: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Hypothesis

What we need:set points that can be reached (controllability)

If controllability to find a final point xf is granted then one can try toreach xf minimizing some cost,

thus defining an optimal control problem: min Ψ(u)

final time T fixed or freeset of admissible controls and set of admissible trajectories

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 9 / 28

Page 20: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Given a final time T > 0, find a control u : [0,T ]→ [0,∞] (eventuallywith some constraints) which minimize the pay-off functional Ψ:

Ψ(x ,u) = Φ(x(T )) +

∫ T

0L(t , x(t),u(t))dt

Φ(x(T )) terminal pay-offL(t , x(t),u(t)) running cost

under the constraint x = f (x ,u, t).

If L = 0: Mayer problem; if L 6= 0: otherwise Bolza problem.

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 10 / 28

Page 21: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Given a final time T > 0, find a control u : [0,T ]→ [0,∞] (eventuallywith some constraints) which minimize the pay-off functional Ψ:

Ψ(x ,u) = Φ(x(T )) +

∫ T

0L(t , x(t),u(t))dt

Φ(x(T )) terminal pay-off

L(t , x(t),u(t)) running cost

under the constraint x = f (x ,u, t).

If L = 0: Mayer problem; if L 6= 0: otherwise Bolza problem.

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 10 / 28

Page 22: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Given a final time T > 0, find a control u : [0,T ]→ [0,∞] (eventuallywith some constraints) which minimize the pay-off functional Ψ:

Ψ(x ,u) = Φ(x(T )) +

∫ T

0L(t , x(t),u(t))dt

Φ(x(T )) terminal pay-offL(t , x(t),u(t)) running cost

under the constraint x = f (x ,u, t).

If L = 0: Mayer problem; if L 6= 0: otherwise Bolza problem.

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 10 / 28

Page 23: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Definitions

Given a final time T > 0, find a control u : [0,T ]→ [0,∞] (eventuallywith some constraints) which minimize the pay-off functional Ψ:

Ψ(x ,u) = Φ(x(T )) +

∫ T

0L(t , x(t),u(t))dt

Φ(x(T )) terminal pay-offL(t , x(t),u(t)) running cost

under the constraint x = f (x ,u, t).

If L = 0: Mayer problem; if L 6= 0: otherwise Bolza problem.

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 10 / 28

Page 24: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Example 1: unitary mass on a 1D-line

Point of unitary mass moving on a one dimensional lineControl an external bounded forcex position of the pointu control

x = u, x ∈ R, |u| ≤ C

x1 = x , x2 = x1

x1 = x2, x2 = u

Goal: Drive the point to the origin with zero velocity in minimum timefrom the original position (x0

1 , x02 )

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 11 / 28

Page 25: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Example 1: unitary mass on a 1D-line

Point of unitary mass moving on a one dimensional lineControl an external bounded forcex position of the pointu control

x = u, x ∈ R, |u| ≤ C

x1 = x , x2 = x1

x1 = x2, x2 = u

Goal: Drive the point to the origin with zero velocity in minimum timefrom the original position (x0

1 , x02 )

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 11 / 28

Page 26: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Example 2: reproductive strategies in social insects1

Let T be the length of the seasonw(t): number of workers at time tq(t): number of queens at time tu(t): fraction of colony effort devoted to increasing work forces(t): known rate at which each worker contributes to the beeeconomy

w(t) = −νw(t) + bs(t)u(t)w(t), w(0) = w0

q(t) = −νq(t) + c(1− u(t))s(t)w(t), q(0) = q0

Goal: maximize the number of the queens: Ψ(u(·)) = q(T )

1Caste and Ecology in Social Insects, by G. Oster and E. O. WilsonLara Trussardi Optimal control for a multi-agents model DK Winter Workshop 12 / 28

Page 27: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Basic problem

Find u∗ which minimize the pay-off, i.e.

Ψ(u∗(·)) ≤ Ψ(u(·))

for all u ∈ U .

Questions:does an optimal control u∗ exist?how can we characterize an optimal control mathematically?how can we construct an optimal control?

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 13 / 28

Page 28: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Legendre Transformation

Standard problem in Calculus of Variations: find a curve x∗ whichminimize

I(x(·)) =

∫ T

0L(x(t), x(t))dt , x(0) = x0, x(T ) = xT

where L, smooth function, is the Lagrangian.

If a C2 minimizer x∗(·) exists, it satisfies the Euler Lagrange equations(EL)

ddt∂L∂xi

(x∗(t), x∗(t)) =∂L∂xi

(x∗(t), x∗(t))

Difficulty: second order ODEs

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 14 / 28

Page 29: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Legendre Transformation

Standard problem in Calculus of Variations: find a curve x∗ whichminimize

I(x(·)) =

∫ T

0L(x(t), x(t))dt , x(0) = x0, x(T ) = xT

where L, smooth function, is the Lagrangian.

If a C2 minimizer x∗(·) exists, it satisfies the Euler Lagrange equations(EL)

ddt∂L∂xi

(x∗(t), x∗(t)) =∂L∂xi

(x∗(t), x∗(t))

Difficulty: second order ODEsSolution: transform the (EL) into a system of ODEs (Hamiltonian

equations) via the Legendre transform i.e. decouple the problem to thecorresponding level sets

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 14 / 28

Page 30: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Hamiltonian equations

Steps:reduce the system (EL) into a system of 2n first order ODEsintroducing u := xchange coordinates (x ,u)→ (x ,p), pi = ∂L

∂ui=: Φi(x ,u)

define the Hamiltonian H(x ,p) := pΦ−1(x ,p)− L(x ,Φ−1(x ,p))

We get (H)

x =∂H∂p

, p = −∂H∂x

a solution for (EL) is a solution for (H) and t 7−→ H(x(t),p(t)) isconstant

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 15 / 28

Page 31: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Hamiltonian equations

Steps:reduce the system (EL) into a system of 2n first order ODEsintroducing u := xchange coordinates (x ,u)→ (x ,p), pi = ∂L

∂ui=: Φi(x ,u)

define the Hamiltonian H(x ,p) := pΦ−1(x ,p)− L(x ,Φ−1(x ,p))

We get (H)

x =∂H∂p

, p = −∂H∂x

a solution for (EL) is a solution for (H) and t 7−→ H(x(t),p(t)) isconstant

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 15 / 28

Page 32: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Generalization of Classical Calculus of Variations

min∫ T

0L(x(t), x(t))dt , x(0) = x0, x(T ) = xf

with non-holonomic constrains of the kind x = f (x ,u),u ∈ Uthe Lagrangian L is a function of (x ,u) instead of (x , x)

Tool: Pontryagin maximum principle (PMP)

it generalizes the Euler- Lagrange equation and the Weierstrasscondition of Calculus of Variation to variational problem withnon-holonomic constraintsit provides a pseudo-Hamiltonian formulation of the variationalproblem in the case when the standard Lagrange transformation isnot well-defined

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 16 / 28

Page 33: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Generalization of Classical Calculus of Variations

min∫ T

0L(x(t), x(t))dt , x(0) = x0, x(T ) = xf

with non-holonomic constrains of the kind x = f (x ,u),u ∈ Uthe Lagrangian L is a function of (x ,u) instead of (x , x)

Tool: Pontryagin maximum principle (PMP)

it generalizes the Euler- Lagrange equation and the Weierstrasscondition of Calculus of Variation to variational problem withnon-holonomic constraintsit provides a pseudo-Hamiltonian formulation of the variationalproblem in the case when the standard Lagrange transformation isnot well-defined

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 16 / 28

Page 34: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Constraints and Lagrange multipliers

If u∗ is an optimal control, then there exists a function p∗, called thecostate, that satisfies a certain maximization principle.

Setup:ODE x(t) = f (x(t),u(t), t), x(0) = x0

Payoff functional: Ψ(x(T ,u)) = Φ(x(T )) +∫ T

0 L(x(t),u(t))dt

The Pontryagin Maximum Principle asserts the existence of a functionp∗(t), which together with the optimal trajectory x∗(t), satisfies an

analogue of Hamilton’s ODE, given byH(x ,p,u) = f (x ,u) · p + L(x(t),u(t))

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 17 / 28

Page 35: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Constraints and Lagrange multipliers

If u∗ is an optimal control, then there exists a function p∗, called thecostate, that satisfies a certain maximization principle.

Setup:ODE x(t) = f (x(t),u(t), t), x(0) = x0

Payoff functional: Ψ(x(T ,u)) = Φ(x(T )) +∫ T

0 L(x(t),u(t))dt

The Pontryagin Maximum Principle asserts the existence of a functionp∗(t), which together with the optimal trajectory x∗(t), satisfies an

analogue of Hamilton’s ODE, given byH(x ,p,u) = f (x ,u) · p + L(x(t),u(t))

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 17 / 28

Page 36: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Pontryagin Maximum Principle

Find the optimal solution to the problem

minu∈U

Ψ(x(T ,u)) = min Φ(x(T )) +

∫ T

0Ldt

subject to x = f (t , x(t),u(t)), x(0) = x0.

TheoremAssume u∗ is optimal and x∗ is the corresponding trajectory. Thenthere exists a function p∗ : [0,T ]→ Rn such that

x∗(t) =∂H∂p

(x∗(t),p∗(t),u ∗ (t))

p∗(t) = −∂H∂x

(x∗(t),p∗(t),u ∗ (t))

and H(x∗(t),p∗(t),u∗(t)) = minu∈U H(x∗(t),p∗(t),u). In addition themapping t 7−→ H(x∗(t),p∗(t),u∗(t)) is constant. And the terminalcondition is p∗(T ) = ∇Φ(x∗(T )).

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 18 / 28

Page 37: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Example 3: control of production and consumption

x(t): output produced at time t ≥ 0 by a given factoryu(t): fraction of output reinvested at time t ≥ 0

x = ku(t)x(t), x(0) = x0

with k >0 modelling the growth rate of our reinvestment.

Payoff functional:

Ψ(u(·)) =

∫ T

0(1− u(t))x(t)dt

Goal: maximize the total consumption of the output

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 19 / 28

Page 38: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Pontryagin maximum principle

Difficulties:the maximization condition not always provide a unique solutionPMP gives two-points boundary value problem with someboundary condition given at initial time (state) and some at finaltime (covector)integrate a pseudo-Hamiltonian systemeven if one is able to find all the solutions to the PMP, it remainsthe problem of selecting among them the optimal trajectory

Advantages:necessary optimality condition: sometimes sufficient (convexproblems)invariant with respect to a broad class of transformations(reformulations) of the problemdoes not require prior evaluation of the pay-off functional

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 20 / 28

Page 39: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Pontryagin maximum principle

Difficulties:the maximization condition not always provide a unique solutionPMP gives two-points boundary value problem with someboundary condition given at initial time (state) and some at finaltime (covector)integrate a pseudo-Hamiltonian systemeven if one is able to find all the solutions to the PMP, it remainsthe problem of selecting among them the optimal trajectory

Advantages:necessary optimality condition: sometimes sufficient (convexproblems)invariant with respect to a broad class of transformations(reformulations) of the problemdoes not require prior evaluation of the pay-off functional

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 20 / 28

Page 40: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Open-loop strategies with L1 constraint

Given T > 0, find u : [0,T ]→ [0,1] such that∫ T

0∑N

i=1 ui(t)dt ≤ C1which minimizes Ψ:

Ψ(x ,u) =Φ(x(T )) + ε

∫ T

0L(t , x(t),u(t))dt

=1N

N∑i=1

(1− xi(T ))2 + ε

∫ T

0

N∑i=1

u2i dt

subject to

x(t) =N∑

j=1

aij(xj(t)− xi(t)) + ui(t)(1− xi(t))−Mi(t)(1 + xi(t))

xi(0) = x0i .

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 21 / 28

Page 41: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Existence of optimal solution

Under certain hypothesis on:the set of admissible controls (compact)the function f , the cost function and the running cost (continuous)

we get the existence of optimal solution.

Goal: derive necessary conditions in order that a trajectoryx∗(t) = x∗(t ,u∗(t)) be optimal where u∗ is a bounded admissible

control

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 22 / 28

Page 42: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Existence of optimal solution

Under certain hypothesis on:the set of admissible controls (compact)the function f , the cost function and the running cost (continuous)

we get the existence of optimal solution.

Goal: derive necessary conditions in order that a trajectoryx∗(t) = x∗(t ,u∗(t)) be optimal where u∗ is a bounded admissible

control

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 22 / 28

Page 43: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Pontryagin maximum principle

TheoremLet f and L be continuous in all variables and continuouslydifferentiable w.r.t. t , x. Let the bounded control u∗ : [0,T ]→ U beoptimal. Then there exists a nontrivial adjoint vector p = (p1, . . . ,pn)and constants λ0, λ with λ0 ≥ 0 such that, for almost every t ∈ [0,T ]

pi(t) = −N∑

i=1

pj(t)∂fj∂xi

(t , x∗(t),u∗(t))− λ0∂L∂xi

(t , x∗(t),u∗(t))

andp(t)f (t , x∗(t),u∗) + λ0L(t , x∗(t),u∗) =

minω adm

p(t)f (t , x∗(t), ω) + λ0L(t , x∗(t), ω)

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 23 / 28

Page 44: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control u∗

minω adm

N∑i=1

[pi(t)ωi(t)(1− x∗i (t)) + λωi(t) + ελ0ω

2i (t)

]

If λ0 = 0

u∗i (t) =

0 if λ ≥ −pi(t)(1− xi(t))

−λ− pi(t)(1− xi(t)) if λ < −pi(t)(1− xi(t))(1)

If λ0 > 0

u∗i (t) =

0 if λ ≥ −pi(t)(1− xi(t))

minC∞, −pi (t)(1−xi (t))−λ2ελ0

if λ < −pi(t)(1− xi(t))(2)

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 24 / 28

Page 45: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Optimal control u∗

minω adm

N∑i=1

[pi(t)ωi(t)(1− x∗i (t)) + λωi(t) + ελ0ω

2i (t)

]If λ0 = 0

u∗i (t) =

0 if λ ≥ −pi(t)(1− xi(t))

−λ− pi(t)(1− xi(t)) if λ < −pi(t)(1− xi(t))(1)

If λ0 > 0

u∗i (t) =

0 if λ ≥ −pi(t)(1− xi(t))

minC∞, −pi (t)(1−xi (t))−λ2ελ0

if λ < −pi(t)(1− xi(t))(2)

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 24 / 28

Page 46: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Numerical simulations

M = 0: only aggregation

0 0.07 0.14 0.21 0.28 0.35

time

-1

-0.5

0

0.5

1

agents

x0

x1

x2

x3

0 0.175 0.35

time

0

0.5

1

contr

ol

u0

u1

u2

u3

0 0.1 0.2 0.3 0.4

time

0

0.5

1

contr

ol

u0

u1

u2

u3

0 0.25 0.5

time

0

0.5

1

contr

ol

u0

u1

u2

u3

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 25 / 28

Page 47: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Numerical simulations

M = exp−t/25

0 0.07 0.14 0.21 0.28 0.35

time

-1

-0.5

0

0.5

1

agents

x0

x1

x2

x3

0 0.175 0.35

time

0

0.5

1

contr

ol

u0

u1

u2

u3

0 0.1 0.2 0.3 0.4

time

0

0.5

1

contr

ol

u0

u1

u2

u3

0 0.25 0.5

time

0

0.5

1

contr

ol

u0

u1

u2

u3

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 26 / 28

Page 48: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Numerical simulations

M = exp−t/25

0 1 2 3 4 5

time

-1

-0.5

0

0.5

1

ag

en

ts

x0

x1

x2

x3

0 2.5 5

time

0

0.5

1

co

ntr

ol

u0

u1

u2

u3

t∗ ≈ T − C1

N

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 27 / 28

Page 49: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Numerical simulations

M = exp−t/25

0 1 2 3 4 5

time

-1

-0.5

0

0.5

1

ag

en

ts

x0

x1

x2

x3

0 2.5 5

time

0

0.5

1

co

ntr

ol

u0

u1

u2

u3

t∗ ≈ T − C1

N

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 27 / 28

Page 50: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Outlook and open questions

Uniqueness of uIndividuals in −1, +1 do not change their mindFeedback strategies: ui = ui(t , x)

Two controls: differential games

Thanks for your attention

SFB

P

D ME

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 28 / 28

Page 51: Laurent Boudin Marco Caponigro Lara Trussardi...Optimal control in multi-agents model Laurent Boudin1;3 Marco Caponigro2 Lara Trussardi 3;4 1 UPMC Paris (France) 2 CNAM Paris (France)

Outlook and open questions

Uniqueness of uIndividuals in −1, +1 do not change their mindFeedback strategies: ui = ui(t , x)

Two controls: differential games

Thanks for your attention

SFB

P

D ME

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 28 / 28