laser spectroscopy of exotic helium isotopescolloquium/2008s/_home_isaac... · june 15thth --...

48
NTHU Physics Colloquium, 2/27/2008 Laser Spectroscopy of Exotic Helium Laser Spectroscopy of Exotic Helium Isotopes Isotopes 王立邦 清華大學物理系

Upload: others

Post on 09-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • NTHU Physics Colloquium, 2/27/2008

    Laser Spectroscopy of Exotic Helium Laser Spectroscopy of Exotic Helium IsotopesIsotopes

    王立邦

    清華大學物理系

  • Neutron HaloNeutron Halo

    Discovery of neutron halo change our common view of nuclear structureHow is it discovered?

    neutron proton stable nucleus3,4He, 6,7Li, 40,48Ca

    neutron halo6,8He, 11Li, 14Be

    proton halo8B, 17Ne(?)

  • Nuclear Interaction Cross SectionNuclear Interaction Cross Section

    Interaction cross section σI =π(Rtarget+Rbeam)2

    First observation of “halo nuclei” by Tanihata, 1985

    σI(6He) ~ σI(4He) + σ-2n(6He)

    target

    target

    Radioactivebeam

    Target nuclei

    3.0

    2.5

    2.0

    1.5

    1.0

    Inte

    ract

    ion

    Rad

    ius

    (fm)

    876543

    Helium Mass Number A

  • Nuclear ChartNuclear Chart

    Neutron number

    Pro

    ton

    num

    ber

    stable nuclei

    unstable nuclei

  • NeutronNeutron--rich rich 66He and He and 88HeHe

    Charge radius probes “valence neutron correlation”

    Isotope Half-life Spin Isospin Core + Valence

    He-6 807 ms 0+ 1 α + 2n

    He-8 119 ms 0+ 2 α + 4n

  • Methods of Measuring Charge RadiiMethods of Measuring Charge Radii

    ( )

    2sin4

    )(42

    222

    θασ

    E

    cZdd

    Rutherfordh

    222exp )(*2

    cos*)()( qGdd

    dd

    ERutherfordθσσ

    Ω=

    Ω

    02

    22

    arg2

    2

    )(6=

    −=><q

    Eech dq

    qdGr h

    Electron scattering

    Nuclei with finite size:

    R=1.21×A1/3 fm for non-deformed nucleiCan NOT apply to unstable (short-lived) nuclei

    e beam

    qpi

    pf

    θ

  • NeutronNeutron--rich rich 66He and He and 88HeHe

    Charge radius probes “valence neutron correlation”

    Isotope Half-life Spin Isospin Core + Valence

    He-6 807 ms 0+ 1 α + 2n

    He-8 119 ms 0+ 2 α + 4n

  • Nuclear ForceNuclear Force

    Fundamental theory QCD not calculable in low-energy regime

    Modern nuclear models use “effective potential”

    Long range (~2 fm) attraction: one-pion exchange

    Intermediate range (~1 fm) attraction: two-pion exchange

    Short range repulsion: hard-core effect, quarks are fermions

    QCD

    q

    q

    qq

    qq

    N

    N

    Mesonexchangeq

    qq

    q

    qq

    N

    N

    π

    qq

  • Neutron Halo Nuclei 6He and 8HeNeutron Halo Nuclei 6He and 8HeIsotope Half-life Spin Isospin Core + Valence

    He-6 807 ms 0+ 1 α + 2n

    He-8 119 ms 0+ 2 α + 4n

    4He

    8He

    6He

    QuantumMonte Carlocalculation

    Proton

    NeutronPieper & Wiringa (2006)

  • Charge Radius of Helium IsotopesCharge Radius of Helium Isotopes

    Charge radii 4He < 6He ~ 8HeElectron scattering, not possible for 6He, 8HeElastic proton scattering involves strong interaction, cannot separate proton and neutronNo “Poisson equation” for QCD to relate strong force to nucleon distributionAtomic isotope shift, measure the difference

    ??1.673(1)1.964(1)AtomicIsotope shift

    1.80(7)1.56(6)

    2.09(9)1.95(8)1.79(4)

    Protonscattering

    1.676(8)1.96(3)Electron scattering

    1.99(1)2.05(1)1.662(5)1.954(5)Theory

    8He6He4He3He

  • Atomic Isotope ShiftAtomic Isotope Shift

    Mass shift: due to nucleus recoil

    Isotope Shift δν = δνMS + δνFS

    Field shift: due to nuclear size

    δνMS ∝ ''

    AAAA −

    δνFS∝ [Ψ(0)]2 × δ< rc2 >

    Nuclear mass precisely known Atomic structure Ψ(0) calculable,H, He, Li.

  • Field (Volume) ShiftField (Volume) ShiftAA

    FS rZe′

    ⋅ΨΔ⋅−= 222 )0(3

    2 δπδν

    1 10 1001E-3

    0.01

    0.1

    1

    10

    100

    | Iso

    tope

    Shi

    ft |,

    GH

    zA tom ic num ber, Z

    Mass shift

    Field

    shift

    rE

    s

    p

    V ~ - 1/r

  • Gordon W.F. Drake (Can. J. Phys 84, 83 2006)

    Non-relativistic wave functions fromvariational calculationsPerturbation theory for relativistic corrections, QED, finite nuclear mass and nuclear charge radiusQED terms “cancel” in isotope shift

    Atomic Theory of HeliumAtomic Theory of Helium

    Experimental confirmationTotal transition frequency4He Fine structure splitting3He-4He Isotope shift + HFS

    3He 4He

    33PJ

    23S1

  • Atomic Isotope ShiftAtomic Isotope Shift

    Mass shift: due to nucleus recoil

    Isotope Shift δν = δνMS + δνFS

    Field shift: due to nuclear size

    δνMS ∝ ''

    AAAA −

    δνFS∝ [Ψ(0)]2 × δ< rc2 >

    Nuclear mass precisely known Atomic structure Ψ(0) calculable,H, He, Li.

    For 23S1 – 33P2 transition @ 389 nm:

    6He - 4He : δν6,4 = 43196.202(16) MHz + 1.008 (He4 - He6) MHz/fm28He - 4He : δν8,4 = 64702.410(70) MHz + 1.008 (He4 - He8) MHz/fm2

    G.W.F. Drake, Univ. of Windsor, Nucl. Phys. A737c, 25 (2004)

    100 kHz error in IS ~ 1% error in radius

  • Helium Energy LevelHelium Energy Level

    For noble gas atom, first excited state too high for laser excitation, (VUV)Exp. on metastable stateRF discharge by electron collision

    A glow discharge He gas cell

    23S1

    11S0

    389 nm

    1083 nm

    23P0,1,2

    19.82 eV

    33P0,1,2

    He energy level

    τ=106 ns

    τ=98 ns

  • Spectroscopy of Spectroscopy of 66HeHeTechnical challenges:

    Short lifetime, small samples (~ 106 atom/s available)Difficult spectroscopy (Metastable efficiency ~ 10-5)Precision requirement (100kHz = Doppler shift @ 0.04 m/s)

    Solution: Spectroscopy with cooled atoms in a magneto-optical trap

    High resolution: cold atoms, Doppler width largely reducedHigh sensitivity: capable of detecting a single atom

  • 66He ProductionHe Production

    Stripping reaction at ATLAS: 12C(7Li,6He)13N6He extraction rate ~ 3×106 /s

    12C Target

    7Li3+ 100 pnA60 MeV

    β Counter

    750 ºC

    6He

    Turbopump 6He→ 6Li+β-+ν

    0 1 2 3 410

    100

    1000

    Rat

    e (c

    ount

    s/se

    c)

    Time (sec)

    t1/2 ~ 800 mst1/2 ≈ 800 ms

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.01

    10

    100

    Cou

    nts

    Energy (MeV)

    3.5 MeV

  • Experimental SetupExperimental Setup

    6He from ATLASTransport time ~ 1 sec

    PhotonCounter

    RF discharge

    4He, Kr

    6He

    He* Zeeman Slower MOT

    TransverseCooling

    389 nm 1083 nm

    Mixingchamber

    389 nm

  • Single Single 66He Atom DetectionHe Atom Detection

    0 5 10 15 200.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Pho

    ton

    coun

    t rat

    e (k

    Hz)

    Time (s)

    Capture efficiency ~ 2×10−8single atom detection necessary!

    Imaging system and reducing background6He capture rate ~ 150 per hour

    Trap

    Detector

    Aperture

    Filter

    Single

    6He atom!

    60 70 80 90

    0

    1

    2

    3

    4

    5

    6

    Pho

    ton

    coun

    t rat

    e (k

    Hz)

    Time (s)

    4He test

  • Spectroscopy of Trapped AtomsSpectroscopy of Trapped Atoms

    Light shift and Zeeman shiftHeating and cooling effect: asymmetric line shape

    single γ recoil: 440 kHz for 6He, 330 kHz for 8HeProbing laser power must be very low!M. Zhu, C. Oates, J. Hall, Opt. Lett., 18,1186 (1993)

    -15 -10 -5 0 5 10 15 20

    0

    2

    4

    6

    8

    10

    Phot

    odet

    ecto

    r sig

    nal (

    a.u.

    )

    R e la tive frequency (M H z)

    6uw 150uw 650uw

    Test using 4He trap

  • Frequency Scanning StrategyFrequency Scanning Strategy

    off

    onoffon

    8μs2μs

    ~ 12 μs

    Frequency scan 12MHz

    Trapping light

    Probe laser

    Fast switch & scan

    Identification50 ms

    Spectroscopy for 1 s

    Two frequency-detuning trap (hot and cold)Balance between the two probe beams

  • Systematic Effect StudySystematic Effect Study

    PMT

    liquid N2 cooledRF discharge

    He*

    transversecooling

    He + Kr

    4He fine structure splitting as a testAtomic Beam ExperimentVery different systematic effect

    2 3S1

    3 3PJ

    389 nm

    J=0

    J=1

    J=2ν12

    ν01ν02

    4He level

  • 44He Fine StructureHe Fine Structure

    ReferencesLamb ‘57: I. Wieder and W.E. Lamb, Jr., Phys. Rev. 107, 125 (1957)Pipkin ‘78: P. Kramer and F. Pipkin, Phys. Rev. A18, 212 (1978)Metcalf ‘86: D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. A33, 1725 (1986)This work: P. Mueller, L.-B. Wang, G.W.F. Drake, K. Bailey, R.J. Holt,

    Z.-T. Lu, and T.P. O’Connor, Phys. Rev. Lett. 94, 133001(2005)

    8113.6 8114.0658.4 658.8 8772.4 8772.8

    Metcalf '86

    Pipkin '78

    Lamb '57

    Drake '04

    This work(trap)

    ν12 ν01

    Fine structure splitting, MHz

    ν02

    This work(atomic beam)

  • 66He SingleHe Single--Atom SpectroscopyAtom Spectroscopy

    ~150 6He atomsin one hour

    IS = 43 194.772(56) MHz

    1/2 = 2.054(14) fm (0.7%)Phys. Rev. Lett. 93, 142501 (2004)

    0 2 4 6 8 10 12 14 16 18 2043194.0

    43194.4

    43194.8

    43195.2

    43195.6

    Isot

    ope

    Shift

    (MH

    z)

    # of Measurement

    April Run May Run

    Frequency (MHz)

    Res

    idua

    l

    - 8 -6 -4 -2 0 2 4 6 8-4 0

    0

    4 0

    -8 -6 -4 -2 0 2 4 6 8-1 0 0

    0

    1 0 0

    50

    100

    150

    200

    250

    300

    Pho

    ton

    coun

    ts

    0

    300

    600

    900

    1200

    Phot

    on c

    ount

    s 6He4He

    Res

    idua

    l

    Frequency (MHz)

    (a) (b)

  • Point Proton RadiusPoint Proton Radius

    Theory:ms point-proton radius

    rp

    Experimental mean square charge radii:Proton 1/2 = 0.895(18) fm, [Sick, 2003]Neutron = −0.120(5) fm2, [Kopecky, 1997]

    Experiment:ms charge radius

    Rp

    rc

    Rn

    >< 22

    222 143 n

    pppc RZ

    NM

    Rrr

  • Comparison with TheoriesComparison with Theories

    Neutron-halo structure confirmedUnderestimate in cluster modelsDisagree with nuclear collision

    Reaction collision

    Elastic collision

    Isotope shift

    Clustermodels

    No-core shell

    Quantum MC

    1.8 1.9 2.0 2.1 2.2 2.3 2.4

    Nuclear charge radius of 6He (fm)

    [Tanihata, 1992]

    [Alkhazov, 1997]

    This work

    [Csoto, 1993]

    [Funada, 1994]

    [Varga, 1994]

    [Wurzer, 1997]

    [Esbensen, 1997]

    [Navratil, 2001]

    [Pieper, 2005]

    AIP Physics News Update, # 702-3, Sep. 2004

  • Where to find Where to find 88He?He?

    GANILCaen, France

    Other possible sites:

    TRIUMF in CanadaISOLDE @ CERNNSCL @ MSU

  • 88He @ GANILHe @ GANIL

    2.15 3.15

    1.85 0.75

    1.65

    5 m

    Salle D2

    6,8He+@ 20 keV

    6,8Hethermal

    Laser System

    MOT

    ECR Ion Source

    Massseparator

    75 MeV/u, 0.4 pμA 13C beamon 12C target

  • Atom Trapping of Atom Trapping of 66He & He & 88He at GANILHe at GANIL

    ~1x108 6He+/s~5x105 8He+/s

    PMT

    Zeemanslower

    MOTTransverse

    cooling 389 nm 1083 nm

    Atom Trap Setup

    RF -Discharge

    Xe

    Capture efficiency1x10-7

    Source~5x107 He-6/s,~1x105 He-8/s

    Trap~5 He-6/s,

    ~30 He-8/hr

  • Jan. 26th 2007

  • … June 2007

  • June 15June 15thth -- HeHe--8 Trapped!8 Trapped!

    First He-8 AtomJune 15th 2007

    t

    f

    -10 -8 -6 -4 -2 0 2 4 6 8 100

    100

    200

    300

    400

    500

    Cou

    nts

    per C

    hann

    el

    Rel. Laser Frequency, MHz-10 -8 -6 -4 -2 0 2 4 6 8 10

    0

    20

    40

    60

    80

    100

    Cou

    nts

    per C

    hann

    el

    Rel. Laser Frequency, MHz

    50 kHz

    6He

    ~ 5 6He atoms/s

    110 kHz60 atoms

    8He

    ~ 30 8He atoms/hr

  • 0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    -1.6

    -1.4

    -1.2

    -1.0

    -0.8

    -0.6

    δν6,

    4 - 4

    3194

    , MH

    z

    (b)

    (a)

    δν8,

    4 - 6

    4701

    , MH

    z

    J = 0 J = 1 J = 2

    (c)

    6He8He

    Fiel

    d S

    hift,

    MH

    z

    J = 0 J = 1 J = 2

    8He

    6He

    Isotope Shift and Field Shift : J Isotope Shift and Field Shift : J -- Dependence?Dependence?

    2 3S1

    389

    nm

    3 3P0,1,2

    J=2J=1

    J=0

    J=1

    Wang 04Argonne

  • Experimental Uncertainties and CorrectionsExperimental Uncertainties and Corrections

    74 kHz15 kHzNuclear Mass

    97 kHz35 kHzTOTAL

    45 kHz30 kHzZeeman Shift

    15 kHz0 kHzProbing Power Shift

    24 kHz2 kHzReference Laser Drift

    12 kHz2 kHzLaser Alignment Drift

    32 kHz8 kHzPhoton Counting

    8He6He

    Statistical {

    Systematic {

    -2(1) kHz-14(3) kHzNuclear Polarization

    +165(0) kHz+110(0) kHzRecoil EffectCorrections

  • 66He & He & 88He RMS Point Proton RadiiHe RMS Point Proton Radii

    0.4 %0.3 %- He-4: 1.460(8) fm1.0 %0.2 %- Mass Systematics0.6 %0.3 %- Trap Systematics

    0.6 %0.1 %- Statistical1.3 %0.5 %Total Uncertainty

    1.809(28)1.926(11)RMS Rpp, fm-0.916(95)-1.464(34)Field Shift, MHz

    8He6He

    PRL 99, 252501 (2007)

  • 66He & He & 88He Charge RadiiHe Charge Radii

    AIP Physics News Update, # 851-2, Dec. 2007

  • ConclusionConclusion

    Hypothesis of neutron-halo structure confirmed model-independentlyDemonstrated trap spectroscopy with single atom sensitivity

    OutlookTo further improve the precision and compare with theories:Nuclear polarizability and MEC (meson exchange current) correction necessary at this level of precisionNeed more precise value of proton radius Need more precise value of helium-4 radius See also recent laser spectroscopy work on Li-11 at GSI/TRIUMFNew He-8 mass measurement in Penning trap @ TRIUMF in Dec. ‘07

  • CollaborationCollaborationK. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R.

    Janssens, C.L. Jiang, Z.-T. Lu, P. Mueller, T. O’Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, I.

    Sulai, X.D. Tang Argonne National Laboratory, USA

    M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari et al.- GANIL, Caen, France

    G. W. F. Drake - University of Windsor, Canada

    L.-B. Wang - Los Alamos National Laboratory, USA

    P. Mueller L.-B. Wang I. Sulai Z.-T. Lu

  • GFMC GFMC –– What happens to the Core?What happens to the Core?

  • MesonMeson--Exchange Current CorrectionExchange Current Correction

    Mesons mediating strong force carry electric chargeExpected to be different among 4He, 6He and 8HeIn H−D isotope shift, MEC correction ~0.2% of deuteron charge radiusSmall but NOT negligible at this precision

    ⇒ further theoretical investigation necessary

    MECnp

    ppc rRZN

    MRrr >< 222

    222 143

  • Cluster Models for Cluster Models for 66HeHe

    Assume α core not affected much by the two neutronsEmpirical form of n-n, n-α potential, parameterized by scattering phase shiftCluster modelsTriton + triton channel used

    α

    C.M.

    n n

    r1R1C.M.

    α

    n n

    r2 R2

    α

    n n

    R3

    r3

    t

    t

    R4

    (a) (d)(c)(b)

  • MuonicMuonic Atom XAtom X--ray Spectroscopyray Spectroscopy

    mμ/me ~ 200

    Bohr radius

    Energy level

    Wave function

    Energy shift due to nuclear size

    ~

    Sensitivity ~ (mμ/me)3

    muon decay μ νν− −→ e

    nucleus μ-em

    a 1~0

    2~ nmE en −

    Muonic 4He+ Energy Level

    δν(2S1/2-2P3/2)=1.813 −0.102 eV811.68(15)nm ⇒ 1/2(4He)=1.673(1) fm

    Carboni et al., Nucl. Phys. A278, (1977)

    Muonic hydrogen in PSI ⇒ proton radius1 S1/2

    2 P3/2

    8.2 keVX ray

    2 S1/2

    1.5 eV 812 nm

    4% in metastable state

    ( ) 220 rδΨΔ

    ( ) 0/2/30~ arear −−Ψ

  • Atomic Theory of HeliumAtomic Theory of Helium

    Solve 3-body Schrödinger Equation

    2×10-96×10-31×10-78×10-85×10-47×10-49×10-44

    Z4 (RN/ao)2Z4 α3ln αZ4 α2 μ/MZ2(μ/M)2Z2μ/MZ4 α3Z4α2Z2Magnitude

    Relativistic correctionAnomalous magnetic moment

    Nonrelativistic energy

    Second-order mass polarizationMass polarization (SMS)

    Finite Nuclear SizeQED correction (Lamb shift)Finite mass correction (NMS)

    Contribution

    Error

  • Binding Energy of Light NucleiBinding Energy of Light Nuclei

    α+2n 6He+2n8He+2n

    S. Pieper and R. Wiringa, Annu.Rev. Nucl. Part. Sci. 51, 53(2001)

  • Monte Carlo CalculationMonte Carlo Calculation

    Argonne v18 two-body potential:

    ∑ ∑<

    +++=i ji

    Rijijiji vvvKH

    πγ

    EM OPE TPE+HC

    • Coupling strength to fit NN scattering data• Problem: binding energy of most light nuclei too small

    Illinois 3-body potential:

    Rijkijkijkijk VVVV ++=

    ππ 32

    Urbana IX Illinois 1-5

    •In nuclei A>3, excitation of the excited state of nucleons•Parameters to fit 3H, 3He binding energy• Isospin dependant, Neutron-rich light nuclei, e.g. 6He

    S. Pieper and R. Wiringa, Annu.Rev. Nucl. Part. Sci. 51, 53(2001)

  • NuclearNuclear--Medium CorrectionMedium Correction

    Electron does NOT see the bare nucleus ⇒ Nuclear polarizabilityThe energy shift in the helium 23S1−33P2 transition:

    )()()( 087 2

    46

    HαHeαHeαkHz.δν

    E

    EE −×=

    ∑≠ −

    =0 0

    20

    32

    N NE EE

    DNαα ∫∞

    =+0

    22

    )(21 ω

    ωωσ

    πβα γ dME

    G.W.F. Drake, private communication

    αE(6He) = 0.68 − 0.74 fm3 by Esbensen αE(6He) ~ 0.8 fm3 by BaccaαE(2H) = 0.63 fm3 by Friar

    10 kHz shift expectedIncrease 6He 1/2 by 0.1%

    Baldin-Lapidus sum rule

  • 389 nm Spectroscopy Laser Setup389 nm Spectroscopy Laser Setup

    389 nmoutput

    Diode Laser 1@ 778 nm

    Diode Laser 2@ 778 nm

    lock to I2 transition

    TaperedAmplifier

    measure beatfrequency

    I2 spectrum near 777.946 nm

    2S-3P 389 nm Frequency (GHz)40.6-44.6 0

    3He I2×24He 6He

    -2.5

    Frequencydoubling

    0 200 400 600 800 1000 1200 1400 1600

    -3

    -2

    -1

    0

    1

    2

    3

    Sign

    al (a

    rb. u

    nit)

    Relative Frequency (MHz)

    used for laser locking

    AOM

    Fast frequency scan for spectroscopy